
Biological Interactions and Network Analysis Using

BIANA Cytoscape Plugin

Emre Güney & Javier Garćıa Garćıa

November 3, 2009

CONTENTS 1

Contents

1 Introduction 2
1.1 BIANA Overview . 2
1.2 BIANA Architecture . 3
1.3 BIANA Data Unification Approach 4

2 Installation 7
2.1 Requirements . 7
2.2 Installation . 7

3 Usage 10
3.1 Execution . 10

3.1.1 Executing BIANA in a Python script 10
3.2 Executing BIANA as a Cytoscape plugin 10

4 BIANA administration commands 11
4.1 Executing administration commands 12

4.1.1 From graphical interface 12
4.1.2 From command line 12
4.1.3 From Biana API . 12

4.2 Create a new BIANA database 12
4.3 Populate an existing BIANA Database 13
4.4 Drop an existing BIANA Database 13
4.5 Create a new unification protocol in a BIANA Database . . . 14
4.6 Drop an unification protocol in a BIANA Database 14

5 BIANA working commands 16
5.1 Preliminary introduction . 16

5.1.1 User Entity Concept Focused 16
5.1.2 User Entity Set creation 16
5.1.3 Network expansion progressively by levels 17

CONTENTS 2

5.2 Start a working session . 17
5.3 User Entity Sets: Characteristics and methods 18

5.3.1 Create a new set of user entities 18
5.3.2 Duplicate a user entity set 19
5.3.3 Remove a user entity set 20
5.3.4 Select nodes in a user entity set 20
5.3.5 Clear previous selection of nodes in a user entity set . 21
5.3.6 Tag selected nodes in a user entity set 21
5.3.7 Delete selected nodes in a user entity set 22
5.3.8 Create a sub user entity set 22
5.3.9 Intersection of user entity sets 23
5.3.10 Union of user entity sets 24
5.3.11 View and Export . 24
5.3.12 Creating a network in a User Entity Set 25
5.3.13 Network Randomization 27
5.3.14 Output network of relations 27
5.3.15 Show relation details 28

6 BIANA External Databases Parsers 30
6.1 Available External Databases Parsers 30

6.1.1 Data retrieval . 31
6.1.2 Available Parsers . 33

6.2 Preparing my data to use the generic parser 49
6.3 Creating your own parser for your own data 51
6.4 Command line arguments accepted by parsers 55
6.5 Attributes and types recognized by BIANA and defining new

ones . 56
6.6 Proposed unification protocol 59

7 Additional administration utilities 61
7.1 BIANA database backup . 61

8 Glossary 63

9 Frequently Asked Questions (FAQs) 65

3

Chapter 1

Introduction

1.1 BIANA Overview

BIANA (Biologic Interactions and Network Analysis) is a biological database
integration and network management framework written in Python. BIANA
is a Python framework designed to achieve two major goals: i) the integra-
tion of multiple sources of biological information, including biological entities
and their relationships, and ii) the management of biological information as
a network where entities are nodes and relationships are edges.

BIANA uses a generic method to find entries of a given molecule that are
equivalent across different biological data repositories. Moreover, BIANA
incorporates and empowers a variety of network analysis methods through
NetworkX python package. In addition to integrating all major biological
repositories, BIANA is easily adaptable to newly created data repositories.
The BIANA framework is an extension of the Protein Interaction and Net-
work Analysis (PIANA), which was focused on protein-protein interactions.
BIANA bridges the network visualization of Cytoscape and the network
analysis capabilities of NetworkX with customizable data integration for
any type of relationships between genes and their products. BIANA ad-
dress the challenge of unambiguously gathering all available data for the
biological entities of interest and working with their networks.

The main focus of BIANA is biological database unification and to let
user decide how to do it. In order to make sure that BIANA would be
freely accessible by anybody, BIANA framework uses either free open-source
software (Python, MySQL, MySQLdb, NetworkX, Cytoscape, CD-HIT) or
publicly available free software (BLAST). For users who want to skip these
software requirements, we provide BIANA web server at the price of loosing

1.2 BIANA Architecture 4

freedom on how to decide data unification, relinquishing to incorporate user-
defined data and obliging primitive network analysis & visualization.

1.2 BIANA Architecture

BIANA uses a high level abstraction schema to define databases provid-
ing any kind of biological information (both individual entries and their
relationships) (See Figure 1.1 and 1.2). Any data source that contains bio-
logic or chemical data parsed by BIANA is defined as an external database.
Similarly BIANA integration approach adopts the concept of external en-
tity, corresponding to entries in external databases. For example, a Uniprot
entry (a protein), a GenBank entry (a gene), an IntAct interaction (an in-
teraction), a KEGG pathway (a metabolic relation) or a PFAM alignment
are all represented as external entities.

In order to achieve data uniformity, in the cases where the data reposi-
tory supplies relations, both participants and relation itself are considered as
external entities. The relation itself is annotated as external entity relation
(a subtype of external entity). External entity objects are characterized by
several attributes, such as database identifiers, sequence, taxonomy, descrip-
tion or function. Each external entity relation object is further characterized
by some attributes like detection method and reliability. Alternatively, the
participants in external entity relations can have their particular attributes
like role and cardinality.

BIANA unifies external data inserted into its database using its parsers
based on a specific protocol. This protocol, called unification protocol, con-
sists of a set of rules that determine how data in various data sources are
combined (crossed). Each rule is composed of attributes that have to be
crossed and the external databases which are going to be used. The set
of external entities that are decided to be ”equivalent” with respect to a
given unification protocol is called user entity. User entities inherit all the
attributes of their included external entries. Thus, BIANA utilizes user
entries specific to a certain unification protocol chosen by the user. User
can either use provided built-in unification protocols or create his/her own
unification protocols. As an example, a user may be interested in creat-
ing a unification protocol defined by crossing similar sequences and same
taxonomy between two or more databases and crossing entities by uniprot
accession code. The advantages of this integration approach are: 1) BIANA
database only contains raw data (with exactly the same nomenclature and
identifiers of the original data source), therefore does not entail any assump-

1.3 BIANA Data Unification Approach 5

tion on data integration allowing user to specify how the integration should
be done; 2) User can use information from a single database or the combi-
nation of multiple databases, selecting which ones he wants to use at each
moment; 3) User can know exactly how was the original data, and do a
backtracking of his/her integration approach.

Figure 1.1: BIANA data model UML diagram.

1.3 BIANA Data Unification Approach

The integration protocol is defined by the user deciding which type of com-
mon features will be used on the equivalence of database entries (i.e. by
using sequence identity, matching identifiers or sharing domain). Equiva-
lent entries in distinct biological database sources are represented as a single
node in a network, while their relationships with other nodes are considered
edges. The main advantage of BIANA over other unification software is
being user driven. By default, all entities (usually molecules) coming from
different databases are considered non-equivalent. Then user decides which
databases are unified and which attributes are used to consider molecules
as equivalent. This approach has the advantage that the user decides the
databases (including his/her own data if any) and identifiers being used. On
the other hand, rather inconvenient than a drawback, it is the responsibility

1.3 BIANA Data Unification Approach 6

Figure 1.2: BIANA relational database schema.

of the user to know which attributes are provided in each database.
BIANA also offers insertion of an External Database as promiscu-

ous. If a database is specified as promiscuous, the entries coming from
this database will be treated differently during data unification. The entries
coming from promiscuous databases, when unified, can belong to multiple
User Entity s if they satisfy the equivalence conditions (imposed by the uni-
fication protocol) with any non-promiscuous entry belonging to the same
set. A useful example of a promiscuous database is SCOP, database of pro-
tein structural domains, where a domain can be contained more than one
protein (User Entity in our analogy).

See Figure 1.3 for a demonstration of how different unification approaches
work in BIANA .

1.3 BIANA Data Unification Approach 7

Figure 1.3: Demonstration of BIANA unification approach.

8

Chapter 2

Installation

2.1 Requirements

• Windows:

– Cytoscape 2.6 (http://www.cytoscape.org/) (only required if BIANA
is going to be used as a Cytoscape Plugin)

• MAC and Unix based systems:

– A MySQL server version 5+ (http://www.mysql.com/).

∗ Mac Users: If you experience problems installing MySQL
Server, check the following link: http://www.brainfault.com/2008/04/18/install-
python-mysql-mysqldb-on-mac-osx/.

– Python, version 2.5 http://www.python.org/

– Cytoscape 2.6 (http://www.cytoscape.org/) (required if BIANA
is going to be used as a Cytoscape Plugin)

2.2 Installation

• Windows:

– Download the BIANA Windows Installer and follow setup in-
structions.

– Installation of BIANA Cytoscape Plugin:

∗ Use the Plugin Cytoscape manager:
1. Plugins → Manage Plugins

2.2 Installation 9

2. Change Download Site → Edit sites
3. Add http://sbi.imim.es/data/biana/Biana cytoscape plugin.xml).

For more details, look at at http://sbi.imim.es/web/BIANA.php
∗ Execute Cytoscape and run BIANA Cytoscape plugin (Plu-

gins → BIANA).
∗ Automatically, it will ask you to select your Python Inter-

preter: Select the file biana.bat (located where you installed
BIANA). If you want to change it in the future, go to Con-
figuration → Preferences.

• MAC and Unix based systems:

1. Download source code from http://sbi.imim.es/web/BIANA.php.

2. UNIX and MAC. Installation from Source Package:

– Installation WITH system administration privileges (which
will install biana in site-packages of default Python inter-
preter):
\$> ./install.sh

– Installation WITHOUT system administration privileges:
∗ Use install.sh with destination path as an argument as

follows:
\$> ./install.sh <path_to_install_biana>

∗ Then update PYTHONPATH environment variable as
follows (put it in .bash profile to make this change per-
manent)
\$> export PYTHONPATH=\$PYTHONPATH:<path_to_install_biana>

3. Checking whether installation was successful To start using BIANA
import biana library inside a Python script as follows:
\$> python

>>> import biana

BIANA>

• Installation of BIANA Cytoscape Plugin:

– Use the Plugin Cytoscape manager:

1. Plugins → Manage Plugins
2. Change Download Site → Edit sites
3. Add http://sbi.imim.es/data/biana/Biana cytoscape plugin.xml).

– Execute Cytoscape and run BIANA Cytoscape plugin (Plugins
→ BIANA).

2.2 Installation 10

– Automatically, it will ask you to select your Python Interpreter:
Select the python executable file in your system. If you want to
change it in the future, go to Configuration → Preferences.

11

Chapter 3

Usage

BIANA is developed as a Python package, and it is thought to be executed
in Python scripts. In order to facilitate users work, most of its commands
can also be executed as a Cytoscape plugin.

3.1 Execution

3.1.1 Executing BIANA in a Python script

If you want to access to the BIANA Python module directly, you have to
import it in your Python script:

import biana

or
from biana import *

For more details in BIANA available functionalities and methods, see
sections 4 and 5. Some of the most common scripts are demonstrated in the
scripts directory.

3.2 Executing BIANA as a Cytoscape plugin

On the Cytoscape menus at the top, go to Plugins and then click on
BIANA.

12

Chapter 4

BIANA administration
commands

BIANA administration commands consist of a set of procedures to create
and maintain BIANA databases in a transparent way designated for end
users. The user executing these administration commands must be granted
MySQL permissions for creating new databases, new tables and inserting
new data, updating, altering, deleting existing data, lock and drop tables
depending on the command.

BIANA uses a MySQL database in order to store information obtained
from external databases. BIANA offers to the user a transparent way of
creating and managing distinct BIANA Databases, in which each one can
contain distinct external databases and distinct unification protocols.

The basic procedure when installing BIANA , is the following:

1. Install BIANA and all its requirements.

2. Create a new BIANA Database.

3. Populate BIANA Database by inserting information from external
databases.

4. Integrate external databases using a unification protocol decided by
the user.

5. Start working with the created database and unification protocol.

* Considerations to take in account:
In order to optimize data insertion and data access, BIANA Databasescan

be found in two possible states:

4.1 Executing administration commands 13

• Parsing state: State in which database is optimized for parsing step.
This is the default state when a new BIANA Databaseis created.

• Running state: State in which database is optimized for running step.
Database changes to this state in the first running procedure.

4.1 Executing administration commands

4.1.1 From graphical interface

All administration options are found on BIANA Menu Configuration button.

4.1.2 From command line

All scripts related with administration commands are found on path:
biana/scripts/administration/script_to_execute {Tentative path}

4.1.3 From Biana API

All administration methods can be executed by using the Biana API:
import biana

biana.scripts.administration.COMMAND_TO_EXECUTE

4.2 Create a new BIANA database

• Function: Creates an empty BIANA repository and prepares this
repository for parsing external databases. It creates all necessary ta-
bles and database indices.

• Special requirements: User must have database CREATION, LOCK
and INSERT grants on MySQL server.

• Executing from Graphical Interface: Configuration → Create
new BIANA database

• Executing it from BIANA API:

create_biana_database(dbname = "YOUR_BIANA_DATABASE_NAME",

dbhost = "MYSQ_SERVER_HOST",

dbuser = "USER",

dbpassword = "PASSWORD",

description = "Test database")

4.3 Populate an existing BIANA Database 14

• Executing it from command line:
scripts/administration> python create_new_biana_database.py

• Parameters:
*dbname: name of the new \Bdb. It must not exist previously!

*dbhost: name or IP where the MySQL server is.

*dbuser: user of MySQL database. User must have database creation grants!

*dbpassword: Password of MySQL user.

*description: Description for \Bdb

4.3 Populate an existing BIANA Database

• Function: Inserts the information from an external database into
selected BIANA Databaseusing selected parser.

• Special requirements: User must have INSERT grant on MySQL
server for the selected BIANA Database.

• Executing from Graphical Interface: Configuration → Parse Ex-
ternal Database

• Executing it from BIANA API: Not possible. Use command line
or graphical interface.

• Executing it from command line:
scripts/administration> python parse_database.py

To check which external databases are available, which files are required
and how to execute parsers using command line, see section 6.

4.4 Drop an existing BIANA Database

• Function: Drops an existing BIANA Database. Precaution! This
action can not be undone! If you want to drop a BIANA Databasebut
have a permanent copy in a smaller file, see section 7.1.

• Special requirements: User must have database DROP grants on
MySQL server.

• Executing from Graphical Interface: Configuration → Delete
BIANA Databases

4.5 Create a new unification protocol in a BIANA Database 15

• Executing it from BIANA API:
delete_biana_database(dbname = "DATABASE NAME",

dbhost = "MYSQL_SERVER_HOST",

dbuser = "USER",

dbpassword = "PASSWORD")

• Executing it from command line:
scripts/administration> python delete_biana_database.py

4.5 Create a new unification protocol in a BIANA
Database

• Function: Creates a new unification protocol from scratch using a
given BIANA Database.

• Special requirements: User must have INSERT, CREATE, DELETE
and DROP grants on MySQL for selected BIANA Database.

• Executing from Graphical Interface: Configuration → Create
New Unification Protocol

• Executing it from BIANA API:
create_unification_protocol(dbname = "BIANA_DATABASE_V1",

dbhost = "localhost",

dbuser = "root",

dbpassword = "",

unification_protocol_name = "NAME",

list_unification_atom_elements = [([dbID_list],[attributes]),

([dbID_list],[attribute_list])])

• Executing it from command line:
scripts/administration> python create_unification_protocol.py

• Parameters:
*unification_protocol_name: Name defining the unification protocol

*list_unification_atom_elements: List of tuples.

First position in each tuple consists of a list of external database identifiers, and

second position in the tuple consists in a list of external entity attributes to be used.

4.6 Drop an unification protocol in a BIANA Database

• Function: Drops an existing unification protocol in a BIANA Database.
Precaution! This action can not be undone! If you want to drop an
unification protocol in a BIANA Databaseit is recommended to have a
permanent copy of the complete database in a file, see section “Dump
BIANA Database”.

4.6 Drop an unification protocol in a BIANA Database 16

• Special requirements: User must have DROP database grant on
MySQL server.

• Executing from Graphical Interface: Configuration → Delete
Unification Protocol

• Executing it from BIANA API:
delete_unification_protocol(dbname = "BIANA_DATABASE",

dbhost = "MYSQL SERVER HOST",

dbuser = "USER",

dbpassword = "PASSWORD",

unification_protocol_name = ‘‘UNIFICATION NAME’’)

• Executing it from command line:
scripts/administration> python delete_unification_protocol.py

17

Chapter 5

BIANA working commands

5.1 Preliminary introduction

5.1.1 User Entity Concept Focused

BIANA works with the abstract concept of “User Entity”, as explained in
the introduction section. User entities are the collections of external entities
that are considered to be equivalent according to a unification protocol.
So, it is not possible to directly compare user entities coming from distinct
unification protocols.

5.1.2 User Entity Set creation

The first step to create a network is the acquisition of an initial set of
seed user entities (represented as nodes) (i.e. the biologic entities of in-
terest). Note that if no unification is used, these user entities would cor-
respond to individual biomolecules (like proteins and genes) other than a
set of biomolecules. The created set of user entities is called User Entity
Set. Once created, user can interact directly with one or more user entity
sets by combining them via union or intersection. User entity sets are cre-
ated from a given list of attribute and value pairs which describe biological
entries in some data repository (e.g. (UniProt accession, P49137), (gene
symbol, MAPKAPK2), (uniprot entry name, MAPK2 HUMAN), (HGNC,
6887), (HPRD, 11882), (Entrez, 9261), . . .). All user entry possessing ex-
ternal entries associated with these values for specified attributes will be
contained in the same user entity set. Some restrictions can also be imposed
(for example, user may dictate that all user entities in the set must have the
attribute Taxonomy Name “human”).

5.2 Start a working session 18

5.1.3 Network expansion progressively by levels

Once the user has created the user entity set, it can be expanded to further
levels, creating a network of relations. Relations can be of different types:

User entity relations . Two user entities will be linked if any of their
external entities have a relation observed in any external database.
This includes interactions, reactions, pathways, . . .). BIANA works
only with the concept of BINARY relations, which are represented
as edges. So, if user selects to view “pathway” relations, two nodes
belonging to the same pathway will be linked by a direct edge. So,
there will be an edge between all nodes belonging to the same pathway.
This is applied to all types of relations (see group expansion to expand
by some relations types without adding edges).

Attribute relations . Two user entities will be linked if they share some
attributes (for example, user can create a network of protein similarity,
where nodes will be linked if they share sequence similarity measures).

Predicted relations by attribute expansion . BIANA predicts novel
relationships based on information transferred by using common prop-
erties shared by the nodes of the graph. Basically, let x, y, z be bio-
logical entities obtained with the integration approach, an interaction
is predicted between x and y, if x is observed to interact with z and
y shares some attributes (decided by the user, i.e. PFAM domains,
sequence similarity, etc.) with node z. BIANA can help to unravel
latent relationships between entities using various attributes such as
sequence similarity using cutoffs based on e-value or percentage of
identity, PFAM or SCOP domains, or GO terms.

5.2 Start a working session

• Function: Starts a new working session, using a specified Biana
Database and given Unification Protocol.

• Special requirements: A populated Biana database must exist with
the parameters given. User must have SELECT grant on MySQL
server for the selected BIANA Database.

• Executing from Graphical Interface: New Session Button

5.3 User Entity Sets: Characteristics and methods 19

• Executing it from BIANA API:
session = create_new_session(sessionID = "ID",

dbname="BIANA_DBNAME",

dbhost="BIANA_DBHOST",

dbuser="BIANA_DBUSER",

dbpassword="BIANA_DBPASS",

unification_protocol="No unification")

• Parameters:
*unification_protocol: Name defining the unification protocol to be used

The method returns a session object. The session object is also stored
in a session dictionary, named available sessions, where sessions are iden-
tified by their unique sessionIDs. So, session object can be accessed di-
rectly (session.METHOD_TO_EXECUTE) or by using the session dictionary
(available_sessions["SessionID"].METHOD_TO_EXECUTE). In the follow-
ing examples, the second way is used.

5.3 User Entity Sets: Characteristics and meth-
ods

The User Entities is the basic BIANA set of data to work. First it is
necessary to create a Set by defining which entities must be in it, by selecting
which attribute values and restrictions they must have. After creating the
initial set, it can be extended to further levels by adding the relation partners
of seed entities. So, a User Entity Set contains the seed user entities obtained
with the attribute values given during set creation, and all the user entities
obtained during network creation.

5.3.1 Create a new set of user entities

• Function: Creates a new set of user entities based on given user entity
attribute values and user entity attribute restrictions.

• Special requirements: A working session has been started

• Executing from Graphical Interface: BIANA Session → Create
New Set.

• Executing it from BIANA API:

• Parameters:

5.3 User Entity Sets: Characteristics and methods 20

A User Entity Set is characterized by:

• The user entities it contains (nodes)

• The levels of their nodes (at which step of network extension nodes
have been added)

• Relations between user entities (edges)

• Tags assigned to nodes and relations

• Groups of nodes by some criteria

In the graphical interface, these elements can be accessed by using the
User Entity Set Tree, which has three elements:

Network: All nodes contained in the user entity set classified by the level
of relation.

Tags: All tags added to nodes or edges.

Groups:

Actions that can be performed in a user entity set can be accessed in the
graphical interface by selecting the user entity set in the Session Tree. Using
Biana API, all the methods on user entity sets must be used through the Ses-
sion instance, where the user entity must be called as the user entity set id
parameter.

5.3.2 Duplicate a user entity set

• Function: Creates a new user entity set with another name by dupli-
cating an existing one. It is an exact copy of the original one (same
set restrictions, same levels, . . .)

• Special requirements: A user entity set has been created.

• Executing from Graphical Interface: User Entity Set Tree Node
→ Duplicate

• Executing it from BIANA API:
session.duplicate_user_entity_set(user_entity_set_id="User_Entity_id1",

new_user_entity_set_id="New id")

5.3 User Entity Sets: Characteristics and methods 21

5.3.3 Remove a user entity set

• Function: Deletes a user entity set. This action is not reversible!

• Special requirements: The use entity set must previously exist.

• Executing from Graphical Interface: User Entity Set Tree Node
→ Delete

• Executing it from BIANA API:
session.remove_user_entity_set(user_entity_set_id="User_Entity_Set_1")

5.3.4 Select nodes in a user entity set

In most experiments, it is interesting to select a subset of nodes inside a
User Entity Set because of several reasons: create a new user entity set with
selected nodes, analyze a subset of nodes instead of all the nodes, etc. Nodes
can be selected using distinct criteria:

• Nodes that have some attribute.

• Nodes belonging to certain level on the network.

• Mapping one user entity set on other (select the nodes that are in the
intersection in both user entity sets).

• Manually selecting nodes in network viewer inside Cytoscape Plugin

• Directly by using User Entity ID.

• Function:

• Special requirements:

• Executing from Graphical Interface:
User Entity Set Tree Node → Network → Level X User Entity Set
Tree Node → Select User Entities by User Entity Set Tree Node →
Select All User Entities Manually selecting nodes in network viewer
inside Cytoscape Plugin

• Executing it from BIANA API:

– To select all nodes of a user entity set:
session.select_all_user_entities(user_entity_set_id = "User_Entity_Set_Name")

5.3 User Entity Sets: Characteristics and methods 22

– To select nodes by level:
user_entity_set = session.get_user_entity_set(

user_entity_set_id = User_Entity_Set_Name")

user_entity_ids = user_entity_set.get_user_entity_ids(level = 1)

session.select_user_entities_from_user_entity_set(

user_entity_set_id = "User_Entity_Set_Name",

user_entity_id_list = user_entity_ids,

clear_previous_selection = True)

– To select nodes by attribute:
session.select_user_entities_from_user_entity_set(

user_entity_set_id = "User_Entity_Set_Name",

identifier_description_list =

[("attr_name", "attr_value"), ...],

external_entity_attribute_restriction_list =

[("attr_name", "attr_value"), ...],

id_type = "embedded",

clear_previous_selection = True)

5.3.5 Clear previous selection of nodes in a user entity set

Care must be taken during selection actions, not clearing previous selec-
tions may cause undesired nodes included in the following actions. To clean
previous selection of nodes:

• Function: Clears the selection of nodes in a user entity set.

• Special requirements: A user entity set has been created and has
selected nodes.

• Executing from Graphical Interface: Simply click on the network
where there are no nodes and edges, and the current selection will
disappear.

• Executing it from BIANA API:
user_entity_set = session.get_user_entity_set(

user_entity_set_id = "User_Entity_Set_Name")

user_entity_set.clear_user_entity_selection()

5.3.6 Tag selected nodes in a user entity set

Tags are used to mark a set of selected nodes in a given moment. For
example, if a User Entity Set contains nodes related to some illnesses, it
would be interesting to tag them to analyze their properties compared with
the rest of the nodes. Tags are always applied to selected nodes.

5.3 User Entity Sets: Characteristics and methods 23

• Function: Tags all selected nodes in a User Entity Set.

• Special requirements: A user entity set has been created and there
are some user entities selected.

• Executing from Graphical Interface: Right-click one of the se-
lected nodes in network viewer inside Cytoscape Plugin. From the
menu that appears, select; BIANA → Tag Selected Nodes. Then in
the pop-up dialog box, enter the name of the tag as shown below.

• Executing it from BIANA API:
user_entity_set = session.get_user_entity_set(

user_entity_set_id = "User_Entity_Set_Name")

user_entity_set.clear_user_entity_selection()

5.3.7 Delete selected nodes in a user entity set

• Function: A selected group of nodes can be removed from the network
they belong to permanently. Deletes selected user entities and their
relations in the user entity set.

• Special requirements: A user entity set is created and it has selected
nodes.

• Executing from Graphical Interface: Right-click one of the se-
lected nodes in network viewer inside Cytoscape Plugin. From the
arising menu, select; BIANA → Remove Selected Nodes. Then in the
pop-up dialog box, select “Yes”, to accept the removal irreversibly as
demonstrated below.

• Executing it from BIANA API:
user_entity_set = session.get_user_entity_set(

user_entity_set_id = "User_Entity_Set_Name")

user_entity_set.select_user_entities(

user_entity_id_list = [(id_user_entity_1,

id_user_entity_2, ...])

session.remove_selected_user_entities(

user_entity_set_id = "User_Entity_Set_Name")

5.3.8 Create a sub user entity set

More often than not, users may be interested in generating a new user entity
set from a subset of nodes in an existing user entity set.

5.3 User Entity Sets: Characteristics and methods 24

• Function: Creates a new set from selected user entities in a user entity
set. The new set DOES not include any of the attribute restrictions
from its parent set.

• Special requirements: A user entity set is created and it has selected
user entities.

• Executing from Graphical Interface: Right click one of the se-
lected nodes in network viewer inside Cytoscape Plugin. From the
arising menu, select; BIANA → Create new set from selected nodes.
Specify the name for the user entity set to be created from the appear-
ing dialog box;

• Executing it from BIANA API:
user_entity_set = session.get_user_entity_set(

user_entity_set_id = "User_Entity_Set_Name")

user_entity_set.select_user_entities(

user_entity_id_list = [(id_user_entity_1,

id_user_entity_2, ...])

session.get_sub_user_entity_set(

user_entity_set_id = "User_Entity_Set_Name",

include_relations = True,

new_user_entity_set_id = "New_User_Entity_Name")

5.3.9 Intersection of user entity sets

Any number of user entity sets can be intersected with each other to generate
a new user entity set containing nodes and edges common to all of them.

• Function: Gets a new user entity set containing the user entities that
are in the intersection of all user entity sets specified.

• Special requirements:

• Executing from Graphical Interface:

1. Select more than one user entity set from BIANA Session Tree
(click while holding control key) and right-click.

2. From the arising menu, select “Intersection”; BIANA Session
Tree Selected User Entity Nodes → Intersection

3. Specify the name for the user entity set to be created from the
appearing dialog box;

5.3 User Entity Sets: Characteristics and methods 25

• Executing it from BIANA API:
session.get_intersection_of_user_entity_set_list(

user_entity_set_list = ["User_Entity_Set_Name_1",

"User_Entity_Set_Name_2", ...]

include_relations = True,

new_user_entity_set_id = "New_User_Entity_Name")

5.3.10 Union of user entity sets

Any number of user entity sets can be combined with each other to generate
a new user entity set containing nodes and edges in all of them.

• Function:

• Special requirements:

• Executing from Graphical Interface:

1. Select more than one user entity set from BIANA Session Tree
(click while holding control key) and right-click.

2. From the arising menu, select “Union”; BIANA Session Tree
Selected Nodes → Union

3. Specify the name for the user entity set to be created from the
appearing dialog box;

• Executing it from BIANA API:
session.get_union_of_user_entity_set_list(

user_entity_set_list = ["User_Entity_Set_Name_1",

"User_Entity_Set_Name_2", ...]

include_relations = True,

new_user_entity_set_id = "New_User_Entity_Name")

5.3.11 View and Export

Output user entity details from a user entity set

• Function:Shows or prints into a file user entities information.

• Executing from Graphical Interface:

– All user entities in the set:

1. BIANA Session Tree Selected User Entity Node → View Set
Details

2. Select attributes for which information of user entities will
be retrieved from the arising window.

5.3 User Entity Sets: Characteristics and methods 26

– Only selected user entities:

1. Select a set of nodes and right-click one of them.
2. In the appearing menu: BIANA → View Entity Details-
3. Select relevant attributes from the pop-up window as ex-

plained in the previous option.

• Executing it from BIANA API:
session.output_user_entity_set_details (

user_entity_set_id = "User_Entity_Set_Name",

attributes = ["attr_name_1", "attr_name_2", ...],

only_selected = False,

output_format = "xml",

out_method = sys.stdout.write())

Show user entity attributes

Prints the composition details from selected User Entities, where attributes
are showed for each External Entity .

• Function: Shows or prints into a file External Entities information
that belong to selected User Entities.

• Executing from Graphical Interface:In the user entity set details
window, it is possible to select and display information about external
entities contained in individual user entities by; User Entity Set Details
Window → View Details

• Executing it from BIANA API:
session.output_external_entity_details (

user_entity_id_list = ["external_etity_1",

"external_entity_2", ...],

attributes = ["attr_name_1", "attr_name_2", ...],

outmethod = sys.stdout.write())

5.3.12 Creating a network in a User Entity Set

BIANA allows user to create 3 different types of relation networks:

Relation network: connecting user entities (nodes) with respect to indi-
vidual relationships (interaction, pathway, reaction, no interaction) of
contained external entities of user entities.

Attribute network: connecting user entities with respect to shared at-
tributes of contained external entities of user entities.

5.3 User Entity Sets: Characteristics and methods 27

Expansion network: connecting user entities with respect to predicted
relations based on some attributes.

• Function: Creates a network of relations

• Special requirements: A user entity set has been created.

• Executing from Graphical Interface: User Entity Set Tree Node
→ Create/Expand Network or User Entity Set Tree Node Network
→ Create/Expand. Then in the network selection window (Image
20), check “Add attribute relations”. Next, in the appearing pop-up
window, select types of relations between user entities to be added and
restrictions to be applied on those relations.

• Executing it from BIANA API:
session.create_network(user_entity_set_id,

level=0,

include_relations_last_level = True,

relation_type_list=[],

relation_attribute_restriction_list=[],

use_self_relations=True,

expansion_attribute_list=[],

expansion_relation_type_list=[],

expansion_level=2,

attribute_network_attribute_list=[],

group_relation_type_list=[])

• Parameters:
* user_entity_set_id: identifier of user entity set for

which network will be created

* level: level of the network to be created,

network will be expanded till that level

* include_relations_last_level: include relations between the nodes

residing at the last level

* relation_type_list: type of the relations to be used in expansion

* relation_attribute_restriction_list: tuples of (attribute, value)

corresponding to restrictions to be applied on attributes of relations

* use_self_relations: include relations within the node itself

* expansion_attribute_list: tuples of (attribute, value_dictionary) corresponding

to attributes to be used in relation inference between nodes based on

shared attributes - value_dictionary is empty if attribute is not parameterizable

* expansion_relation_type_list: type of relations to be used in shared attribute

based relation inference

* expansion_level: number of relations (edges) to

look further while inferring relations based on shared attributes

* attribute_network_attribute_list: tuples of (attribute, value) corresponding to

attributes to be used while associating nodes with common attributes - value_dictionary

is empty if attribute is not parameterizable

* group_relation_type_list: type of relations that are going to be treated

as a group (like pathway, complex, cluster..)

5.3 User Entity Sets: Characteristics and methods 28

ATTENTION! The attribute value list in expansion attribute list ar-
gument is reserved to be used for attribute type “proteinSequence” and
should be empty ([]) for attributes other than “proteinSequence”. In case
of “proteinSequence” attribute valid options are “identities”, “similarity”,
“coverage A”, “coverage B”, “bit score”, “evalue”.

5.3.13 Network Randomization

• Function: Randomizes current network in user entity set.

• Executing from Graphical Interface:User Entity Set Tree Node
→ Randomize Network or User Entity Set Tree Node Network →
Randomize

• Executing it from BIANA API:
session.create_randomized_user_entity_set(user_entity_set_id,

new_user_entity_set_id,

type_randomization)

• Parameters:
* user_entity_set_id: id of the user entity set whose

copy with random network is going to be created

* new_user_entity_set_id: id for the created

copy of user entity set

* type_randomization: randomization type to be used in network randomization,

can be one of the following: "random", "preserve_topology", "preserve_topology_and_node_degree",

"preserve_degree_distribution", "preserve_degree_distribution_and_node_degree", "erdos_renyi", "barabasi_albert"

where;

- "random": add same number of edges randomly between nodes of original graph

- "preserve_topology": keep edges, shuffle nodes of original graph

- "preserve_topology_and_node_degree": keep edges, shuffle nodes of original graph with the nodes of same degree

- "preserve_degree_distribution": remove an edge between two random nodes with degrees k, l then add to two nodes with degrees k-1 & l-1, then shuffle nodes

- "preserve_degree_distribution_and_node_degree": remove 2 random edges between a-b and c-d where degree(a)=degree(c) and degree(b)=degree(d) then add 2 edges between a-d and b-c, then shuffle nodes with the same degree

- "erdos_renyi": creates a graph where edges are redistributed based on erdos renyi random model

- "barabasi_albert": creates a graph where edges are redistributed based on barabasi albert model (preferential attachment)

5.3.14 Output network of relations

• Function: Shows or prints into a file user entities network informa-
tion.

• Executing from Graphical Interface: User Entity Set Tree Node
→ View Network Details or User Entity Set Tree Node Network →
View Details. Then in the attribute selection window, select attributes
for which information of edges and nodes connected by those edges will
be retrieved.

5.3 User Entity Sets: Characteristics and methods 29

• Executing it from BIANA API:
session.output_user_entity_set_network(user_entity_set_id,

out_method=None,

node_attributes = [],

participant_attributes = [],

relation_attributes=[],

allowed_relation_types="all",

include_participant_tags=True,

include_relation_tags=True,

include_relation_ids=True,

include_participant_ids=True,

include_relation_type=True,

include_relation_sources=True,

output_1_value_per_attribute=True,

output_format="xml",

value_seperator=", ",

only_selected=False,

include_command_in_rows=False,

substitute_node_attribute_if_not_exists=False,

include_unconnected_nodes=True)

• Parameters:
* output_1_value_per_attribute: Boolean. Defines whether 1 or multiple values

are outputted per each attribute

* output_format: format for the output used in case format is "table"; can be "tabulated" or "xml"

* include_relation_ids: Boolean to whether display or not relation identifiers

* include_participant_ids: Boolean to whether display or not relation participant identifiers

* include_relation_type: Boolean to whether display or not types of relations

* include_relation_sources: Boolean to whether display or not relation sources

* include_participant_tags: Boolean to whether display or not tags of participants

* include_relation_tags: Boolean to whether display or not tags of relations

* value_separator: string to separate consecutive values in the same column

* only_selected: Boolean to decide whether to output only selected nodes or all nodes (and their interactions)

* include_command_in_rows: Include the command to output individual relation information at each row

* substitute_node_attribute_if_not_exists: In case the node does not have a value for a

given attribute (s.t. uniprotaccession) this flag make it possible to output another

attribute (e.g. geneid) in the same column indicated as attribute:value (e.g. geneid:123123)

* include_unconnected_nodes: Boolean to whether display or not unconnected nodes

5.3.15 Show relation details

• Function: Shows or prints into a file the details of a user entity
relation.

• Executing from Graphical Interface: In the user entity set net-
work details window, it is possible to select and display information
about all relations connecting external entities contained in individ-
ual user entities by selecting relations from the user entity network
details view window and clicking “View Details” button yielding in a
new information window poped-up. User Entity Set Network Details
Window → View Details

5.3 User Entity Sets: Characteristics and methods 30

• Executing it from BIANA API:
session.output_external_entity_relation_details(out_method=None,

external_entity_relation_id_list=[],

attributes=[],

node_attributes=[],

relation_attributes=[],

participant_attributes=[])

• Parameters:
* external_entity_relation_id_list: list of relation identifiers

for which details will be outputted

* node_attributes: attributes of user entities connected by

these relations for which information will be fetched

* relation_attributes: attributes of external entity relations for

which information will be fetched

* participant_attributes: attributes of external entity relation participants for

which information will be fetched

* out_method: output method to be used if None overwritten by instance default output method

31

Chapter 6

BIANA External Databases
Parsers

BIANA provides some default database parsers for most common databases
and formats. BIANA has been designed to be able to store any kind of bio-
logic database, relying on the user how he wants to integrate data between
databases by choosing which combinations of attributes must be shared.
However, due to the large number of different databases, formats and ver-
sions, and that often different versions of the same database have differ-
ent formats, not all databases with biologic data have a current working
BIANA Parser. Despite existing interchange standard formats, databases
often change their formats, so parsers are not guaranteed to work in all
database versions. In order to solve this problem, we provide a set of de-
fault parsers, that will be updated in this list of available parsers.

If you find an existing parser is not working any more for a new database
version, or you are interested in having a parser for another database not
available here, you can ask for us to make it (it can take some time), or try
yourself creating a new parser (see 6.3. Alternatively, you can use BIANA
Generic Parser which accepts data in a certain tab-separated format (see
6.2). Once you convert your data you can user the Generic Parser to parse
your data.

6.1 Available External Databases Parsers

An external database is any data source that contains biologic or chemical
data that can be parsed by BIANA and inserted in the database in order
to be integrated with data in other databases. Here are described available

6.1 Available External Databases Parsers 32

external database parsers, with the following information:

• External database.

• External database description.

• Needed external database files and how obtaining them.

• External entity description and external entity attributes.

• Last checked version.

• Approximate parsing time.

Distinct versions or releases of external databases may contain distinct
formats or special characteristics than make parser to not work properly.
If any error is produced during parsing due to unexpected database for-
mat, a control process is executed and whole database is deleted from
BIANA Database. However, it is recommended to create a testing BIANA
Databaseto inserted data before inserting it to the desired BIANA Database,
in order to check all is working properly. Parsers can be used directly from
Graphical Interface or by command line. A script for parsing is available in
BIANA administration scripts.

6.1.1 Data retrieval

Data from external databases can be obtained directly from website or FTP
links listed below. In order to facilitate data retrieval, in administration
scripts directory there are several ftp scripts to automatically get the data.

scripts/administration/external_database_download_scripts

Each script has one of the following formats:

• ftp DATABASE

• wget DATABASE

• html DATABASE

To execute them, execute the following command, replacing DATABASE
for the desired database depending on the prefix (either ftp, wget or html)
preceding the DATABASE.

• For DATABASEs preceded with ftp:
\$> ftp_get_database.sh ftp_DATABASE

calls: ftp -inp < ftp_DATABASE

6.1 Available External Databases Parsers 33

• For DATABASEs preceded with wget:
\$> wget_get_database.sh ftp_DATABASE

calls: wget -i wget_DATABASE

• For DATABASEs preceded with html: Those DATABASEs either re-
quires registration or needs human interaction during download so use
a web browser to go to the page indicated in html DATABASE file.
\$> html_get_database.sh html_DATABASE

calls: lynx html_DATABASE

6.1 Available External Databases Parsers 34

6.1.2 Available Parsers

Uniprot

Description Swiss-Prot, which is manually annotated and reviewed.
TrEMBL, which is automatically annotated and is not re-
viewed. UniProt (Universal Protein Resource) is the world’s
most comprehensive catalog of information on proteins. It
is a central repository of protein sequence and function cre-
ated by joining the information contained in Swiss-Prot,
TrEMBL, and PIR.

Database Refer-
ence

The UniProt Consortium (2007) The Universal Protein Re-
source (UniProt). Nucleic Acids Res. 35: D193-197.

Database Link ftp://ftp.uniprot.org/pub/databases/uniprot/current release/knowledgebase/complete

External Entity
Types

Protein

External Entity
Relation Types
Needed files uniprot sprot.dat.gz (SWISS-PROT) and

uniprot trembl.dat.gz (TREMBL)
Parser name uniprot
Input-identifier Files uniprot sprot.dat.gz and uniprot trebml.dat.gz
Checked version Uniprot Knowledgbase Release 14.1 (September 2008)
Comments Swiss-prot and TrembL must be inserted as distinct

databases.
Approximate
parsing time

Swissprot: One hour (or less). Trembl: 8 hours

Shell Command:
\$> python parse_database.py uniprot --input-identifier=uniprot_sprot.dat.gz

--biana-dbname="BIANA_DB"

--biana-dbuser="root"

--biana-dbpass="PASSWORD"

--time-control

--database-name="uniprot swissprot"

--database-version="Release XX"

\$> python parse_database.py uniprot --input-identifier=uniprot_trembl.dat.gz

--biana-dbname="BIANA_DB"

--biana-dbuser="root"

--biana-dbpass="PASSWORD"

--time-control

--database-name="uniprot trembl"

--database-version="Release XX"

6.1 Available External Databases Parsers 35

GenBank Database

Description GenBank is the NIH genetic sequence database, an collection
of all publicly available DNA. GenPept contains proteins
codified by those sequences.

Database Refer-
ence

Genbank. Nucleic Acids Res. 2007 Jan;35(Database
issue):D21-5.

Database Link ftp://ftp.ncbi.nih.gov/ncbiasn1/protein fasta/

External Entity
Types

Protein

External Entity
Relation Types

-

Needed files All fsa aa.gz files in ftp site
Parser name ncbi genpept
Input-identifier The path where all fsa aa.gz files are saved
Checked version Release 167
Comments It is necessary to have previously inserted taxonomy

database.
Approximate
parsing time

5 hours

Shell Command:
\$> python parse_database.py ncbi_genpept --input-identifier=path/

--biana-dbname="BIANA_DB"

--biana-dbuser="root"

--biana-dbpass="PASSWORD"

--time-control

--database-name="genpept"

--database-version="Release XX"

6.1 Available External Databases Parsers 36

Taxonomy Database

Description The NCBI taxonomy database contains the names of all or-
ganisms that are represented in the genetic databases with
at least one nucleotide or protein sequence

Database Refer-
ence

Wheeler DL, Chappey C, Lash AE, Leipe DD, Madden TL,
Schuler GD, Tatusova TA, Rapp BA (2000). Database re-
sources of the National Center for Biotechnology Informa-
tion. Nucleic Acids Res 2000 Jan 1;28(1):10-4

Database Link ftp://ftp.ncbi.nih.gov/pub/taxonomy

External Entity
Types

Taxonomy

External Entity
Relation Types
Needed files taxdump.tar.Z
Parser name taxonomy
Input-identifier Path where taxdump.tar.Z is uncompressed
Checked version August 2008
Comments Uncompress and untar taxdump.tar.Z file
Approximate
parsing time

10 minutes

Shell Command:
\$> python parse_database.py taxonomy --input-identifier=path/

--biana-dbname="BIANA_DB"

--biana-dbuser="root"

--biana-dbpass="PASSWORD"

--time-control

--database-name="Taxonomy"

--database-version="Database release"

6.1 Available External Databases Parsers 37

Protein-protein interactions Open Biomedical Ontologies

Description A structured controlled vocabulary for the annotation of ex-
periments concerned with protein-protein interactions. De-
veloped by the HUPO Proteomics Standards Initiative.

Database Refer-
ence
Database Link http://psidev.sourceforge.net/mi/psi-mi.obo

External Entity
Types

PsiMiOboOntologyElement

External Entity
Relation Types

-

Needed files psimiobo
Parser name psi mi obo
Input-identifier Path where psi-mi.obo file is
Checked version July 2008
Comments
Approximate
parsing time

Less than a minute

Shell Command:
\$> python parse_database.py psi_mi_obo --input-identifier=path where psi-mi.obo file is

--biana-dbname="BIANA_DB"

--biana-dbuser="root"

--biana-dbpass="PASSWORD"

--time-control

--database-name="PSI-MI Obo"

--database-version="Database release"

6.1 Available External Databases Parsers 38

NCBI Blast Non-Redundant Database

Description NCBI Non-redundant sequence database for Blast
Database Refer-
ence

Genbank. Nucleic Acids Res. 2007 Jan;35(Database
issue):D21-5

Database Link ftp://ftp.ncbi.nih.gov/ncbi-asn1/protein fasta/

External Entity
Types

Protein

External Entity
Relation Types
Needed files nr.gz
Parser name nr
Input-identifier nr.gz file
Checked version August 2008
Comments It is necessary to have previously inserted taxonomy

database
Approximate
parsing time

4-5 hours

Shell Command:
\$> python parse_database.py nr --input-identifier=nr.gz

--biana-dbname="BIANA_DB"

--biana-dbuser="root"

--biana-dbpass="PASSWORD"

--time-control

--database-name="nr"

--database-version="Database release X"

6.1 Available External Databases Parsers 39

International Protein Index Database (IPI)

Description The International Protein Index: An integrated database for
proteomics experiments.

Database Refer-
ence

TKersey P. J., Duarte J., Williams A., Karavidopoulou Y.,
Birney E., Apweiler R. The International Protein Index: An
integrated database for proteomics experiments. Proteomics
4(7): 1985-1988 (2004).

Database Link ftp://ftp.ebi.ac.uk/pub/databases/IPI/current/

External Entity
Types

Protein

External Entity
Relation Types
Needed files All fasta files in ftp site
Parser name ipi
Input-identifier The path where all ipi.XXXX.fasta.gz files are saved
Checked version 1 September 2008
Comments
Approximate
parsing time

10 minutes

Shell Command:
\$> python parse_database.py ipi --input-identifier=path_where_ipi_files_are

--biana-dbname="BIANA_DB"

--biana-dbuser="root"

--biana-dbpass="PASSWORD"

--time-control

--database-name="ipi"

--database-version="Database release X"

6.1 Available External Databases Parsers 40

iRefIndex

Description A reference index for protein interaction data
Database Refer-
ence

iRefIndex: a consolidated protein interaction database with
provenance. Razick S, Magklaras G, Donaldson IM. BMC
Bioinformatics. 2008 Sep 30;9:405.

Database Link ftp://ftp.no.embnet.org/irefindex/data/

External Entity
Types

Protein

External Entity
Relation Types

Interaction and complex

Needed files File ALl.mitab.??????.txt.zip
Parser name iRefIndex
Input-identifier The downloaded file
Checked version 06042009
Comments
Approximate
parsing time

10 minutes

Shell Command:
\$> python parse_database.py irefindex --input-identifier=path_where_downloaded_file_is

--biana-dbname="BIANA_DB"

--biana-dbuser="root"

--biana-dbpass="PASSWORD"

--time-control

--database-name="iRefIndex"

--database-version="Database release X"

6.1 Available External Databases Parsers 41

Cluster Of Orthologous Genes Database (COGs)

Description Clusters of Orthologous Groups of proteins (COG). COG is
delineated by comparing protein sequences encoded in com-
plete genomes, representing major phylogenetic lineages.
Each COG consists of individual proteins or groups of par-
alogs from at least 3 lineages and thus corresponds to an
ancient conserved domain.

Database Refer-
ence

Science 1997 Oct 24;278(5338):631-7, BMC Bioinformatics
2003 Sep 11;4(1):41.

Database Link ftp://ftp.ncbi.nih.gov/pub/COG/COG/

External Entity
Types

Protein

External Entity
Relation Types
Needed files myva, myva=gb, org.txt, fun.txt
Parser name cog
Input-identifier Path where cog files are downloaded
Checked version 2003
Comments
Approximate
parsing time

165 seconds

Shell Command:
\$> python parse_database.py cog --input-identifier=path_where_cog_files_are

--biana-dbname="BIANA_DB"

--biana-dbuser="root"

--biana-dbpass="PASSWORD"

--time-control

--database-name="COG"

--database-version="Database release X"

--promiscuous

6.1 Available External Databases Parsers 42

HUGO Gene Nomenclature Committee (HGNC)

Description HUGO Gene Nomenclature Committee. Each symbol is
unique and we ensure that each gene is only given one ap-
proved gene symbol.

Database Refer-
ence
Database Link http://www.genenames.org/data/gdlw index.html

External Entity
Types

Protein

External Entity
Relation Types
Needed files “All data” in “Text format”
Parser name hgnc
Input-identifier The file where the data is saved
Checked version September 2008
Comments
Approximate
parsing time

Less than a minute

Shell Command:
\$> python parse_database.py hgnc --input-identifier=FILE_WHERE_DATA_IS_SAVED

--biana-dbname="BIANA_DB"

--biana-dbuser="root"

--biana-dbpass="PASSWORD"

--time-control

--database-name="HGNC"

--database-version="Database release X"

6.1 Available External Databases Parsers 43

KEGG: Kyoto Encyclopedia of Genes and Genomes

Description KEGG: Kyoto Encyclopedia of Genes and Genomes
Database Refer-
ence

KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic
Acids Res. 28, 27-30 (2000)

Database Link ftp://ftp.genome.jp/pub/kegg/

External Entity
Types

protein, drug, compound, enzyme, glycan

External Entity
Relation Types

relation, pathway, cluster

Needed files ko (for kegg ko) genes.tar.gz (for kegg gene) compound drug
enzyme glycan reaction (for keg ligand)

Parser name kegg ko kegg gene kegg ligand
Input-identifier ko (for kegg ko) genes.tar.gz (for kegg gene)
Checked version
Comments
Approximate
parsing time

Shell Command for Kegg KO:
\$> python parse_database.py kegg_ko --input-identifier=FILE_WHERE_DATA_IS_SAVED

--biana-dbname="BIANA_DB"

--biana-dbuser="root"

--biana-dbpass="PASSWORD"

--time-control

--database-name="KEGG KO"

--database-version="Database release X"

Shell Command for Kegg Gene:
\$> python parse_database.py kegg_gene --input-identifier=genes.tar.gz

--biana-dbname="BIANA_DB"

--biana-dbuser="root"

--biana-dbpass="PASSWORD"

--time-control

--database-name="KeggGene"

--database-version="Database release X"

Instead you can insert gene data in two steps using genes.pep and genes.nuc
Peptide sequences:
\$> python parse_database.py kegg_gene --input-identifier=genes.pep

--biana-dbname="BIANA_DB"

--biana-dbuser="root"

--biana-dbpass="PASSWORD"

--time-control

--database-name="KeggGenePep"

--database-version="Database release X"

\$> python parse_database.py kegg_gene --input-identifier=genes.nuc

--biana-dbname="BIANA_DB"

--biana-dbuser="root"

--biana-dbpass="PASSWORD"

--time-control

--database-name="KeggGeneNuc"

--database-version="Database release X"

6.1 Available External Databases Parsers 44

PSI-MI 2.5 Formatted databases

Description Protein protein interaction databases in PSI-MI 2.5 Format
Database Refer-
ence
Database Link
External Entity
Types
External Entity
Relation Types
Needed files
Parser name psi mi 2.5
Input-identifier
Checked version
Comments
Approximate
parsing time

Shell Command:
\$> python parse_database.py psi_mi_2.5 --input-identifier=FILE_WHERE_DATA_IS_SAVED

--biana-dbname="BIANA_DB"

--biana-dbuser="root"

--biana-dbpass="PASSWORD"

--time-control

--database-name="Database name"

--database-version="Database release X"

This parser has been tested for PSI-MI 2.5 formatted databases:

• IntAct

Website http://www.ebi.ac.uk/intact/site/index.jsf

Download all xml files in ftp://ftp.ebi.ac.uk/pub/databases/intact/current/psi25/species

Input identifier Path containing the xml files.

Checked for version of September 2008

Parsing time 1/2 hour

• BioGrid

Website http://www.thebiogrid.org/downloads.php

Download BIOGRID-ORGANISM-x.x.xx.psi25.zip. It is necessary
to uncompress manually the zip file (unzip BIOGRID-ORGANISM-x.x.xx.psi25.zip)

Input identifier Path containing uncompressed files (usually it un-
compresses it into a folder named “textfiles”).

6.1 Available External Databases Parsers 45

Checked for version 2.0.44 (September 2008)

Parsing time 1000 seconds

• DIP

Website http://dip.doe-mbi.ucla.edu/ (It is necessary to register in
order to download data.)

Download FULL file from downloads, which is complete DIP data
set (file dip200xxxxxxx.mif25).

Input identifier dip200xxxxxxx.mif25 file

Checked for version 2008.07.08

Parsing time 250 seconds

• HPRD

Website www.hprd.org

Download HPRD PSIMI xxxxxx.tar.gz. Untar and unzip the file

Input identifier Path where all uncompressed files are

Checked Release 7

Parsing time 746 seconds

• MPACT

Description Currently MPact gives access to yeast protein-protein
interaction data contained in CYGD.

Website http://mips.gsf.de/genre/proj/mpact/

Download file ftp://ftpmips.gsf.de/yeast/PPI/mpact-complete.psi25.xml.gz

Input identifier File

Checked version April 2007

Parsing time 150 seconds

• MINT

Website http://mint.bio.uniroma2.it/mint/download.do

Download ftp://mint.bio.uniroma2.it/pub/release/psi/2.5/2008-05-21/dataset/full.psi25.zip
file. Uncompressed it

Input identifier Path where file is uncompressed

Checked for version: 2008.05.21

6.1 Available External Databases Parsers 46

Parsing time less than an hour

Biopax Level 2 Formatted databases

Description BioPAX Level 2 covers metabolic pathways, molecular in-
teractions and protein post-translational modifications

Database Refer-
ence
Database Link
External Entity
Types

protein

External Entity
Relation Types

interaction, pathway

Needed files
Parser name biopax level 2
Input-identifier
Checked version
Comments
Approximate
parsing time

Shell Command:
\$> python parse_database.py biopax_level_2 --input-identifier=FILE_WHERE_DATA_IS_SAVED

--biana-dbname="BIANA_DB"

--biana-dbuser="root"

--biana-dbpass=PASSWORD"

--time-control

--database-name="Database name"

--database-version="Database release X"

This parser has been tested for Biopax Level 2 formatted databases:

• Reactome

Website http://reactome.org/download/index.html

Download “Events in the BioPAX Level 2 format” file. Uncompress
this file

Input identifier Path where uncompressed files are

Checked September 2008

Parsing time 700 seconds

6.1 Available External Databases Parsers 47

Structural Classification of Proteins (SCOP)

Description SCOP. Structural Classification of Proteins
Database Refer-
ence

Murzin A. G., Brenner S. E., Hubbard T., Chothia C.
(1995). SCOP: a structural classification of proteins
database for the investigation of sequences and structures.
J. Mol. Biol.

Database Link http://scop.mrc-lmb.cam.ac.uk/scop/

External Entity
Types

protein domain

External Entity
Relation Types
Needed files All parsable SCOP files
Parser name scop
Input-identifier Path where files are found
Checked version 1.73
Comments Database-version must be exactly the same as the SCOP

version (i.e. if it is release 1.73, database-version must be
“1.73”.

Approximate
parsing time

1 minute

Shell Command:
\$> python parse_database.py scop --input-identifier=PATH_WHERE_FILES_ARE_SAVED

--biana-dbname="BIANA_DB"

--biana-dbuser="root"

--biana-dbpass="PASSWORD""

--time-control

--database-name="SCOP"

--database-version="1.73"

--promiscuous

6.1 Available External Databases Parsers 48

Protein Families database (PFAM)

Description The Pfam database is a large collection of protein families,
each represented by multiple sequence alignments and hid-
den Markov models (HMMs).

Database Refer-
ence

The Pfam protein families database, Nucleic Acids Research
(2008) Database Issue 36:D281-D288

Database Link http://www.geneontology.org/GO.downloads.shtml

External Entity
Types

pattern, protein

External Entity
Relation Types
Needed files pfamA-file-name=Pfam-A.full.gz pfamB-file-name=Pfam-

B.gz pfamSeq-file-name=pfamseq.gz
Parser name pfam
Input-identifier Path where files are found.
Checked version 23.0
Comments Need to use the following additional arguments with the

following values: pfamA-file-name=Pfam-A.full.gz pfamB-
file-name=Pfam-B.gz pfamSeq-file-name=pfamseq.gz

Approximate
parsing time

Shell Command:
\$> python parse_database.py pfam --input-identifier=PATH_WHERE_FILES_ARE_SAVED

-- pfamA-file-name=Pfam-A.full.gz

--pfamB-file-name=Pfam-B.gz

--pfamSeq-file-name=pfamseq.gz

--biana-dbname="BIANA_DB"

--biana-dbuser="root"

--biana-dbpass="PASSWORD"

--time-control

--database-name="PFAM"

--database-version="23.0"

--promiscuous

6.1 Available External Databases Parsers 49

Gene Ontology (GO)

Description The Gene Ontology project provides a controlled vocabu-
lary to describe gene and gene product attributes in any
organism.

Database Refer-
ence

Gene Ontology: tool for the unification of biology. Nature
Genet. (2000) 25: 25-29

Database Link http://www.geneontology.org/GO.downloads.shtml

External Entity
Types

ontology

External Entity
Relation Types
Needed files gene ontology edit.obo
Parser name go obo
Input-identifier gene ontology edit.obo
Checked version
Comments This parser is for go obo v1.2
Approximate
parsing time

Shell Command:
\$> python parse_database.py go_obo --input-identifier="gene_ontology_edit.obo"

--biana-dbname="BIANA_DB"

--biana-dbuser="root"

--biana-dbpass="PASSWORD"

--time-control

--database-name="GO"

--database-version="VERSION X"

6.2 Preparing my data to use the generic parser 50

STRING

Description
Database Refer-
ence
Database Link http://string.embl.de/

External Entity
Types

protein

External Entity
Relation Types

functional association

Needed files protein.aliases.v7.1.txt, protein.links.detailed.v7.1.txt.gz
and protein.sequences.v7.1.fa.gz

Parser name string
Input-identifier Path where downloaded files are
Checked version v7.1
Comments Database version must be the same as in the files! (i.e. v7.1)
Approximate
parsing time

Shell Command:
\$> python parse_database.py go_obo --input-identifier="gene_ontology_edit.obo"

--biana-dbname="BIANA_DB"

--biana-dbuser="root"

--biana-dbpass="PASSWORD"

--time-control

--database-name="STRING"

--database-version="v7.1"

6.2 Preparing my data to use the generic parser

BIANA can parse any kind of user provided data given in tabulated (tab-
separated) text format with its pre-specified Generic Parser.

Description User defined (generic) data parser
External Entity
Types

Any

External Entity
Relation Types

Any

Parser name Any
Input-identifier File path
Comments See explanation below to see details about file format
Approximate
parsing time

Depends on database size

6.2 Preparing my data to use the generic parser 51

\$> python parse_database.py generic

--input-identifier=PATH_WHERE_INPUT_FILE_RESIDES

--biana-dbname="BIANA_DB"

--biana-dbuser="root"

--biana-dbpass="PASSWORD"

--time-control

--database-name="MyClinicalExperiment08"

--database-version="1.0"

A typical input file for this parser lets the program aware which type of
entry it is providing via use of two tags at the beginning of a line:

• @EXTERNAL ENTITY DATA

• @EXTERNAL ENTITY RELATION DATA

Line with @EXTERNAL ENTITY DATA tag is for specifying that in-
formation for individual user data entries is going to be parsed, whereas line
with @EXTERNAL ENTITY RELATION DATA tells that user data rela-
tion entry information is going to be given thereafter. In the first occurrence
of any of these tags in the input file, it is required that they are followed by
a so called definition line describing the names of the columns of the data
they are providing afterwards. Definition line begins with several default
columns followed by userdefined columns.For external entity data entries
default columns in the definition line are “id” and “type” corresponding to
internal identifier and type of the entry. On the other hand, for external
entity relation data entries, default columns in the definition line are “id”,
“interactor id list” and “type” corresponding to identifiers of the two par-
ticipants and the type of the relationship. Each column should be separated
by at least one tab character (“\t”) and values inside columns should not in-
clude tab character. It is worth noting here that fields in relations can give
information about individual participants rather than just relation using
“interactor id: ATTRIBUTE. In case, a list of values need to be provided in
the same column, values should be separated by “|” character. If a column
has no value, this should be denoted by “-” character. The concept can be
understood better on the input file format explanation given below.

@EXTERNAL_ENTITY_DATA
id type geneID chebI name
1 protein 1234 - protein A
2 protein 2314 - protein A2
3 protein 9999 - protein B
4 protein 1111 - protein C
5 protein 6778 - protein D

6.3 Creating your own parser for your own data 52

6 protein 1982 - protein E
7 protein 12178 - protein_X
8 gene 38111 - -
9 gene 2018 - -
100 protein 1001 - protein1001
101 protein 1002 - prot1002
102 protein 1003 - p1003
103 protein 1004 - p1004
104 protein 1005 - p1005
105 protein 1006 - p1006
106 protein 1007 - p1007
W compound - 15377 water
B12 compound - 8843 Lactoflavin|Vitamin B2
C1 compound - 15422 Adenosine 5’-triphosphate
C2 compound - 16761 Adenosine 5’-diphosphate
C3 compound - 17621 Riboflavin-5-phosphate

@EXTERNAL_ENTITY_RELATION_DATA
id interactor_id_list type name method_ID participants:role
R1 6|7 interaction - 18 6: bait| 7:prey
R2 2|3 interaction - 18 -
R3 3|4 interaction - 18 -
R4 100|101|102|103 complex ABC complex 109 -
R5 103|104 interaction - 109 -
R6 104|105 interaction - 109 -
R7 105|106 interaction - 109 -
R8 4|105 interaction - 18 -
R9 W|B12|C1|C2|C3 reaction reaction_sample - B12: substrate|C1: substrate|C2: substrate|C3: product|W: product
R10 R4|R5|R6|R7 pathway first_pathway - -
R11 R2|R3|R8 pathway pathway2 - -
R12 R10|R11 pathway global pathway - -

6.3 Creating your own parser for your own data

All parsers written in BIANA inherits BianaParser class found in biana/BianaParser/bianaParser.py.
To write your own parser you need to create a new Python class whose par-
ent is BianaParser. Then all you need to define is the arguments your

6.3 Creating your own parser for your own data 53

parser would require in the __init__ (class constructor) method and over-
write parse database member method which is responsible from reading and
inserting information from your data files. Here is an example parser (My-
DataParser.py) to insert data in user specified format into BIANA . Let’s
go over the code.

First we start with subclassing BianaParser:
from bianaParser import *

class MyDataParser(BianaParser):

"""

MyData Parser Class

Parses data in the following format (meaining Uniprot_id1 interacts with Uniprot_id2 and

some scores are associated with both the participants and the interaction):

Uniprot_id1 Description1 Participant_score1 Uniprot_id2 Description2

Participant_score2 Interaction_Affinity_score

"""

name = "mydata"

description = "This file implements a program that fills up tables

in BIANA database from data in MyData format"

external_entity_definition = "An external entity represents a protein"

external_entity_relations = "An external relation represents an interaction with given affinity"

Above we introduce our parser and give name and description attributes,
mandatory fields that are going to be used by BIANA to describe this parser.
Then we create __init__ method where we call the constructor of the parent
(BianaParser) with some additional descriptive arguments. You can add
additional compulsory arguments to be requested from user by including
”additional compulsory arguments” with a list of triplets (argument name,
default value, description) (see list of command line arguments accepted by
BianaParser by default).

def __init__(self):

"""

Start with the default values

"""

BianaParser.__init__(self, default_db_description = "MyData parser",

default_script_name = "MyDataParser.py",

default_script_description = MyDataParser.description,

additional_compulsory_arguments = [])

Next, we are going to overwrite parse_database method (responsible
from reading and inserting information from your data files) where we intro-
duce some initial arrangements to let BIANA know about the characteristics
of the data we are going to insert:

6.3 Creating your own parser for your own data 54

def parse_database(self):

"""

Method that implements the specific operations of a MyData formatted file

"""

Add affinity score as a valid external entity relation since it is not recognized by BIANA

self.biana_access.add_valid_external_entity_attribute_type(name = "AffinityScore",

data_type = "double",

category = "eE numeric attribute")

Add score as a valid external entity relation participant attribute

since it is not recognized by BIANA

(Do not confuse with external entity/relation score attribute,

#participants can have their attributes as well)

self.biana_access.add_valid_external_entity_relation_participant_attribute_type(

name = "Score", data_type = "float unsigned")

Since we have added new attributes that are not in the default BIANA distribution,

#we execute the following command

self.biana_access.refresh_database_information()

There are various attributes and types in BIANA to annotate data en-
tries coming from external databases (see attributes and types recognized
by BIANA for details). In case we need to use attributes/types that are not
by default recognized by BIANA we need to make them known to BIANA as
it is done above with add_valid_external_entity_attribute_type and
add_valid_external_entity_relation_participant_attribute_type meth-
ods (see defining new attributes and types for details).

Open input file for reading

self.input_file_fd = open(self.input_file, ’r’)

Keep track of data entries in the file and ids assigned by BIANA for them in a dictionary

self.external_entity_ids_dict = {}

for line in self.input_file_fd:

(id1, desc1, score1, id2, desc2, score2, score_int) = line.strip().split()

Above we open a file for reading and start reading the file. This is
followed by converting data read from the file into objects BIANA will un-
derstand and insert them into database:

6.3 Creating your own parser for your own data 55

Create an external entity corresponding to Uniprot_id1 in database (if it is not already created)

if not self.external_entity_ids_dict.has_key(id1):

new_external_entity = ExternalEntity(source_database = self.database,

type = "protein")

Annotate it as Uniprot_id1

new_external_entity.add_attribute(ExternalEntityAttribute(attribute_identifier= "Uniprot",

value=id1, type="cross-reference"))

Associate its description

new_external_entity.add_attribute(ExternalEntityAttribute(attribute_identifier= "Description",

value=desc1))

Insert this external entity into database

self.external_entity_ids_dict[id1] = \

self.biana_access.insert_new_external_entity(externalEntity = new_external_entity)

Create an external entity corresponding to Uniprot_id2 in database (if it is not already created)

if not self.external_entity_ids_dict.has_key(id2):

new_external_entity = ExternalEntity(source_database = self.database, type = "protein")

Annotate it as Uniprot_id2

new_external_entity.add_attribute(ExternalEntityAttribute(attribute_identifier= "Uniprot",

value=id2, type="cross-reference"))

Associate its description

new_external_entity.add_attribute(ExternalEntityAttribute(attribute_identifier= "Description",

value=desc2))

Insert this external entity into database

self.external_entity_ids_dict[id2] = self.biana_access.insert_new_external_entity(\

externalEntity = new_external_entity)

Finally we insert information of the interaction as follows:

6.4 Command line arguments accepted by parsers 56

Create an external entity relation corresponding to interaction between Uniprot_id1

and Uniprot_id2 in database

new_external_entity_relation = ExternalEntityRelation(source_database = self.database,

relation_type = "interaction")

Associate Uniprot_id1 as the first participant in this interaction

new_external_entity_relation.add_participant(externalEntityID = \

self.external_entity_ids_dict[id1])

Associate Uniprot_id2 as the second participant in this interaction

new_external_entity_relation.add_participant(externalEntityID = \

self.external_entity_ids_dict[values[1]])

Associate score of first participant Uniprot_id1 with this interaction

new_external_entity_relation.add_participant_attributes(externalEntityID = \

self.external_entity_ids_dict[id1],

participantAttribute = ExternalEntityRelationParticipantAttribute(\

attribute_identifier = "Score",

value = score1))

Associate score of second participant Uniprot_id2 with this interaction

new_external_entity_relation.add_participant_attributes(externalEntityID = \

self.external_entity_ids_dict[id2],

participantAttribute = ExternalEntityRelationParticipantAttribute(\

attribute_identifier = "Score", value = score2))

Associate the score of the interaction with this interaction

new_external_entity_relation.add_attribute(ExternalEntityRelationAttribute(attribute_identifier = "AffinityScore",

value = score_int))

Insert this external entity relation into database

self.biana_access.insert_new_external_entity(externalEntity = new_external_entity_relation)

As a good programming practice we do not forget to close the file we red
as follows:

self.input_file_fd.close()

6.4 Command line arguments accepted by parsers

By default BIANA parsers require:

input-identifier= : path or file name of input file(s) containing database
data. Path names must end with /.

biana-dbname= : name of database biana to be used

biana-dbhost= : name of host where database biana to be used is going
to be placed

database-name= : internal identifier name to this database (it must be
unique in the database)

6.5 Attributes and types recognized by BIANA and defining new
ones 57

database-version= : version of the database to be inserted”

The following optional arguments are also recognized:

biana-dbuser= : user name for the specified host

biana-dbpass= : password for the specified user name and host

optimize-for-parsing : set to disable indices (if there is any) and reduce
parsing time. Useful when you want to insert a considerable amount
of data to an existing BIANA Databasewith indices created

promiscuous : set to allow entries coming from parsed database to belong
multiple User Entities.

6.5 Attributes and types recognized by BIANA
and defining new ones

BIANA uses a set of attributes and types to define external entities coming
from external biological databases (such as Uniprot Accession, STRING id,
GO id, etc... as attributes and protein, DNA, interaction, complex, etc...
as types). If you write a parser specialized for a particular data you have,
you could either use existing attributes and types to annotate the entries in
your data or create new ones if existing ones do not work for you. Here we
give a list of valid BIANA attributes:

• External Entity & External Entity Relation Attributes

6.5 Attributes and types recognized by BIANA and defining new
ones 58

CHEBI
COG
CYGD
DIP
EC
Encode
Ensembl
FlyBase
GDB
GeneID
GeneSymbol
GenomeReviews
GI
GO
HGNC
HPRD
Huge
IMGT
IntAct
IntEnz
InterPro
IPI
KeggCode
KeggGene
Method id
MGI
MIM
MINT
MIPS
OrderedLocusName
ORFName
PFAM
PIR
PRINTS
PRODOM
Prosite
psimi name
PubChemCompound
Ratmap
Reactome
RGD
SCOP
SGD
STRING
Tair
TaxID
Unigene
UniParc
UniprotEntry
WormBaseGeneID
WormBaseSequenceName
YPD
AccessionNumber
RefSeq
TIGR
UniprotAccession
Disease
Function
Keyword
Description
SubcellularLocation
Name
Pubmed
Formula
Pvalue
Score
ProteinSequence
Pattern
STRINGScore
STRINGScore neighborhood
STRINGScore fusion
STRINGScore cooccurence
STRINGScore coexpression
STRINGScore experimental
STRINGScore db
STRINGScore textmining
SequenceMap
NucleotideSequence
PDB
TaxID category
TaxID name
GO name

6.5 Attributes and types recognized by BIANA and defining new
ones 59

• External Entity Relation Participant Attributes
cardinality
detection method
GO
KeggCode
role

And here is the list of valid BIANA types:

• External Entity Types
protein
DNA
RNA
mRNA
tRNA
rRNA
CDS
gene
sRNA
snRNA
snoRNA
structure
pattern
compound
drug
glycan
enzyme
relation
ontology
SCOPElement
taxonomyElement
PsiMiOboOntologyElement
GOElement

• External Entity Relation Types

6.6 Proposed unification protocol 60

interaction
no interaction
reaction
functional association
cluster
homology
pathway
alignment
complex
regulation
cooperation
forward reaction
backward reaction

In case, you need to annotate your data with some attribute or type that
does not belong to the lists given above, you can use the following methods
to introduce your attributes and types to BIANA . To add an;

External Entity Type • add valid external entity type(new type)

External Entity Relation • add valid external entity relation type(new type
)

External Entity Attribute (Textual) • add valid external entity attribute type(
new attribute, data type, “eE identifier attribute”)

External Entity Attribute (Numeric) • add valid external entity attribute type(
new attribute, data type, “eE numeric attribute”)

External Entity Relation Attribute (Textual) • add valid external entity attribute type(
new attribute, data type, “eE identifier attribute”)

External Entity Relation Attribute (Numeric) • add valid external entity attribute type(
new attribute, data type, “eE numeric attribute”)

External Entity Relation Participant Attribute • add valid external entity relation participant attribute type(
new attribute, data type)

6.6 Proposed unification protocol

List of external databases and the attributes (identifiers) proposed to be
used in a unification protocol are given below.

6.6 Proposed unification protocol 61

External Databases Attributes
(identifiers)

Uniprot, GeneBank, IPI, KeggGene, COG, String ProteinSequence
AND taxID

Uniprot, HGNC, HPRD, DIP, MPACT, Reac-
tome, IPI, BioGrid, MINT, IntAct, String

UniprotAccession

Uniprot, String UniprotEntry
Uniprot, HGNC, HPRD, DIP, String GeneID
Uniprot, SCOP(promiscuous) PDB

62

Chapter 7

Additional administration
utilities

In this section, some additional administration commands are explained.
Some of the commands are in the scripts folder of the application, and other
are usual command line commands. Some of the commands are available
for Windows and UNIX systems, and some others only for UNIX Systems.

7.1 BIANA database backup

In order to do a backup of the BIANA Database, it is only necessary to use
the mysqldump\ utility provided with MySQL. Having a database dump is
a good idea for the following reasons:

1. Copying a database from one server to another without having to parse
all databases again (easier, faster).

2. Having a backup of the data used to perform specific experiments.

The command necessary to get the dump file and compress it is:
\$> mysqldump --opt --user=USER --password=PASSWORD

--host=HOST BIANA_DATABASE_NAME | gzip -c > database_backup_X.sql.gz

* In Windows, probably the gzip program is not available. Skip it, and
the compress the file with you compression program.

The commands necessary to put the data into a new database are:
1) Create a new mysql database:
\$> mysql --user=USER --password=PASSWORD --host=HOST -e

"CREATE DATABASE DATABASE_NAME"

2) Insert the data into the database:

7.1 BIANA database backup 63

\$> gunzip -c your_backup_mysql_file.sql.gz | mysql

--user=USER --password=PASSWORD --host=HOST "DATABASE_NAME"

* In Windows, probably the gunzip program is not available by default.
You must uncompress the file using tools as WinZip and the execute the
mysql command..

64

Chapter 8

Glossary

BIANA Database A repository of BIANA containing set of external databases
and unified entries compiled from all available external databases based
on specified unification protocols.

External Database Any data source that contains biologic or chemical
data that can be parsed by BIANA .

External Entity Any entry found in any external database, such as a
uniprot entry (a protein), a GenBank entry (a gene), an IntAct in-
teraction (an interaction), a KEGG pathway or a PFAM alignment.

External Entity Attribute Element associated to an external entity. Ex-
ternal entities are characterized by several attributes such as database
identifiers, descriptions, function, disease, . . . Each external entity at-
tribute has a distinct meaning. Each external entity is characterized
by its associated attributes.

External Entity Relation Any relation between two or more external en-
tities.

Hub User Entity User entity that has a number of connections in a rela-
tionships network higher than a given cutoff.

Leaf User Entity User entity that only contains an edge in a relationship
network.

Linker User Entity Given a relationship graph between user entities, a
user entity is considered linker only if it belongs to the path that links
two or more seed user entities.

65

Promiscuous external database External database whose external en-
tities can belong to multiple User Entities in the same unification pro-
tocol.

Unification Protocol Set of rules (unification protocol atoms) that de-
termine how data in various data sources are combined (crossed). All
unification protocol atoms are used in with union strategy (OR), i.e.
rule1 OR rule2 OR rule3.

Unification Protocol Atom Rule that determines how data in two ex-
ternal databases should be crossed. It is composed by two external
databases (that can be the same or not) and one or more attributes.
All attributes in an unification protocol atom are used with inter-
section strategy (AND). For example, external entities from external
databases 1 and 2 are going to be considered equivalent if they share
sequence similarity and taxonomy id.

User Entity Set of external entities considered as equivalent as the result
of applying a unification protocol. Each user entity has a unique iden-
tifier for each unification protocol. An external entity can belong only
to one user entity (if the external database is not promiscuous), but a
user entity can be composed by several external entities.

User Entity Level Maximum number of connections between any seed
node and any other non-seed node.

User Entity Set Set of user entities result of a user experiment. User
entity set contains the seed user entities obtained when creating the
set, and all the user entities obtained when creating the network. User
entity set is characterized by the user entities it contains, as well as
the levels of their nodes, tags assigned to nodes and relations, groups
of nodes by some criteria, etc.

Seed User Entity User entity used in the first step of network creation
(user entities belonging to level 0).

66

Chapter 9

Frequently Asked Questions
(FAQs)

• Installation

– How do I check whether BIANA python package is in-
stalled properly?

∗ Execute python interpreter and try to import the package as
below. If you interpreter prompts “BIANA¿” string, BIANA
is installed properly.

\$>python

>>> import biana

BIANA> If not, revisit the installation instructions
and make sure that BIANA python package is installed prop-
erly.

– What to do if Cytoscape gives BIANA package import
error while starting BIANA plugin?

∗ Make sure that you configured PYTHONPATH environment
variable to include directory where BIANA python package
is installed.

∗ Restart your computer (to make sure that Cytoscape sees
the changes you made to PYTHONPATH).

– What should I do if I get “can not connect to MySQL
database” error?

∗ Check that MySQL server is running properly and (re)start
it if necessary.

67

∗ Check that database host and user information you provide
is correct.

∗ If you are MySQL server in your local host try using “127.0.0.1”
instead of “localhost” as host name.

• Database population

– Is it normal that populating a BIANA Databasetakes
more time than expected?

∗ BIANA Databasepopulation time will depend on multiple
factors that can produce differences in parsing between differ-
ent computers: parsed database, disk free space, disk access
speed, network speed if MySQL server is in other computer...
BIANA Databasecan have two distinct states: Running and
parsing. When parsing, BIANA Databasestate is in “pars-
ing” mode, and when starting a BIANA Session it changes
automatically to “running” mode.

– Why does BIANA not recognize, a new parser I have
created?

∗ Make sure you copied your new parser into BIANA Installation
path/bianaParser. Then, BIANA should recognize the parser
and it will appear in the graphical interface as well. If you
are not sure where BIANA was installed, execute python in-
terpreter and try the following.

\$> python

>>> import biana

BIANA> biana.__path__

• Data Unification

– What is the best unification protocol to use, do you have
any suggested unification protocols?

∗ Create & use a unification protocol that suits best to your
needs (specific to your problem). You may want to check 6.6
proposed unification protocol section to have some ideas.

• BIANA Execution

– Why does the message “Optimizing database...” appear
during a long time, when I start a BIANA Session?

68

∗ This message only appears the first time you start a Session
in a BIANA Databaseafter adding a new external database in
it. This process creates all necessary indices in the database
to increase performance while running, and it is done af-
ter populating database in order to increase parsing perfor-
mance. Depending on the BIANA Database size, this process
can take from few seconds to a couple of hours.

∗ If it takes too long, check your disk space where BIANA
Database is stored is not full!

– I do not have any entries when I create a new user entity
set, what could be the reason?

∗ If you created a unification protocol using only promiscuous
databases, it is normal that you do not have any user entities.
Data coming from promiscuous databases added to (multi-
ple) user entities that contain at least one entry coming from
a non-promiscuous entry.

∗ There may not be any entry associated with your query, try
to refine the attributes and values you have used.

– Is it normal that creating networks takes too much time?

∗ Huge and very connected networks can take some time. Be
patient. Be sure you are doing the network you want to the
correct level. If you don’t want interactions between elements
at the last level, don’t add them!

∗ If you are using the graphical interface as a Cytoscape Plugin,
it usually slows down the process significantly. Execute the
same process by command line. A trick is to create the set
with Cytoscape, start the network at level 0 without relations
at the last level, then save the commands into a file, then edit
manually the file to set the correct level and finally execute
the script.

– Database connection has been lost when using BIANA
Cytoscape plugin. Should I restart the plugin?

∗ MySQL server usually closes connection after some time the
connection has not been used (this time will depend on your
MySQL server configuration). It is not necessary to restart
the plugin, right-click in the Biana Session and select the
option “Reconnect database”.

69

– When I execute BIANA Cytoscape plugin, it is very slow
or Cytoscape exits suddenly.

∗ When executing BIANA as a Cytoscape plugin, it consumes
more time and memory than executing it as a command line
application. You have different options:
· By default, cytoscape.sh uses a maximum memory limit

of 512Mb. If the program exceeds it, it will automati-
cally exit without saving anything. You can increase this
memory limit by modifying the parameter -Xmx512M
when executing cytoscape.

· If you are creating a huge network and you are not inter-
ested in visualizing it but only in getting the data, use
BIANA scripts: it will be faster and it will require less
computer resources. You can use the following trick to
create the script you are interested in:
1. Run BIANA Cytoscape plugin, create the network at

level 0 and perform all the operations you are inter-
ested in.

2. In the Session Pop-up Menu (right-click on BIANA
Session), select the option “Save commands history”.

3. Modify the saved script by changing all the parameters
you want and execute it from command line.

