Fold Prediction



Fold prediction

1. Fold recognition (threading)
2. ab initio fold prediction
3. Protein folding (MD with explicit solvent)



Threading

ldea: Find the optimal structure for
a new (target) sequence in the
set of known 3D-structures
(templates) by threading the
target sequence.




Fold recognition / Threading

Principle: Find a compatible fold for a given sequence ....
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Using ...

» 1D — 3D profile matching,

» mean force potentials,

 secondary structure predictions,

* position specific scoring matrices (PSSM),
» keyword statistics,



1. Fold recognition (threading)
1. Knowledge-base potentials

1. Distance dependent potentials

Atom-centered
Sequence distance
Reference state

2. Solvation

3. Z-scores and energy profiles

4. Methods: Prosa, Anolea, DOPE
2. Distance homology matrices (PSSM)

1. Function association

2. Methods: FUGUE, PHYRE, ModLink
3. Secondary structure alignment

1. Secondary structure prediction
Machine learning theory
Neural Networks

2. Methods: TOPITS



1. Knowledge-base potentials
1. Distance dependent potentials

According to Boltzmann law

1
P(x) = — o E@/ksT
() ==

Therefore, energy is related with probability

P(Asp,Asp,d =10A) = E(Asp,Asp,d =10A)



1. Knowledge-base potentials
1. Distance dependent potentials

Asp

Glu-Arg Glu-Asp
Ar

frequency

Glu

distance



1. Knowledge-base potentials
1. Distance dependent potentials

1. Distances are calculated between atoms: We have to

select what atom are we going to use
*The best choice is C[3 because it indicates the

direction of the side-chain




1. Knowledge-base potentials
1. Distance dependent potentials

2. The database of structures to extract distances has to
avoid redundant structures (between homologs and
members of the same family/superfamily)
 |f we use all the structures of the same or similar

protein there will be a bias. Thus, we use a set with
less than 40% of sequence similarities



1. Knowledge-base potentials
1. Distance dependent potentials

({39 b

3. The frequency of a pair of residues at distance “r’ is
different if the residues are close or distant along
the sequence
« We split the calculation of frequencies

depending on the sequence distance between
residues




1. Knowledge-base potentials
1. Distance dependent potentials

4. Reference state: The density of residues around one
residue is not a continuous model, it depends on
the size and shape of the protein.

« We need to normalize by the density (4rrés(r))
and thus defining a reference state




1. Knowledge-base potentials
1. Distance dependent potentials

4. Reference state: the simplest definition of the
reference state is to use the whole data set of
residue pairs, thus instead of using energies we
use incremental energies.
 Let be a pair of residues Asp and Glu at

distance n in sequence. Let be N(r/ED,n) the
number of pairs ED like this at distance r
between their C3 atoms, and N(r/n) the total of
pairs of residues at distance n in sequence and r
between their Cp3 atoms



1. Knowledge-base potentials
1. Distance dependent potentials

Asp(i) i

Glu(i+n) i

AE(r[(Glu, Asp.CB.CB.n)) = _len(N (r/ ED,n))

N(r/n)



1. Knowledge-base potentials
1. Distance dependent potentials

Example of distance dependent knowledge-based potentials

1.5 -

Glu-Asp (n>10)

Glu-Arg (n>10)

Energy (kcal/mol)

Distance C3-Cj3



1. Knowledge-base potentials
2. Solvation

1.

Solvation of a residue is calculated as

proportional to accessible surface area (ASA)

* The factor of proportion depends on the
tendency of the residue (i.e. Asp in position
“I” of the sequence) to be solvated
(hydrophobicity calculated with water-octanol
partition coefficient)

E sol (l) = -'UAsp ASA(l)

. Solvation can also be calculated using the

frequency of the residue to be exposed on the
surface



1. Knowledge-base potentials
3. Z-scores and energy profiles

Once we have a set of energies for pairs of residues
(force field) we can calculate the energy of each
residue along the sequence in a specific conformation

—

E(i) is the energy on
placing the residue
(i.e. Asp) in this
position (i)



1. Knowledge-base potentials
3. Z-scores and energy profiles

E;=YE;(rn=|j-i)

J=i
E,(r.n=|j 1) = AE(r [(Glu(j),Asp(i),CB.CB.n))
E sol (l) = O-Asp ASA(Z)

Note: we have assumed that in position | we have placed Asp and Glu in
position j=i+n



1. Knowledge-base potentials
3. Z-scores and energy profiles

The total energy of a protein is obtained by the
sum of the pair-energies and the energy from its
surface (solvation)

E = E Ei"'ﬁz Esol(i)

The profile energy is obtained by the curves of the
pair-energies, surface energy and combined
energy of both with respect to the residue position



1. Knowledge-base potentials
3. Z-scores and energy profiles

Example of profile energy from PROSA

3ldh 6ldh
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1. Knowledge-base potentials
3. Z-scores and energy profiles

Often the curve is smoothed by windowing the curve: the
value on each point is defined by the average of a window of
W residues and the window moves along the X axis.

3

— window size 10
= Window size 40

Knowledge-based energy

Sequence position
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1. Knowledge-base potentials

3. Z-scores and energy profiles

Energy profiles can be used to detect errors in modeling
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1. Knowledge-base potentials
3. Z-scores and energy profiles

Question:
Can we use the total energy to discriminate correct folds
among wrong conformations (decoys)?

E, E1 > EZ

N \/ Wrong solution




1. Knowledge-base potentials
3. Z-scores and energy profiles

Question:
Can we use the total energy to discriminate correct folds
among wrong conformations (decoys)?

O>E>E,>EL >E,
Many solutions is a wrong solution

Solution:
Define a new function statistically meaningful, the Z-score



1. Knowledge-base potentials
3. Z-scores and energy profiles

Threading Z-score is defined by comparing the energy on
one fold (j) with the average of the real folds from the
database (i.e. transforms the function “energy” into a
Gaussian distribution centered at zero)

E j <E >
Zscore =
O
Nfolds
real

St

< E> _ _i=l
Nf()[a's
Nfolds

S (-(£)

O = =1
\ Nf()/ds -1

This is the same problem as the following:
Consider the final marks in the class after the
exam. We can calculate the 10 best alumni
according to their marks.

Are these the best alumni of SBI in the world?
We have to weight their marks with the best
students of the world, assuming the exam was
the same.

To do that, we use the set of marks of the total
of SBI teachers in the world, and we assume
they are the best set.

Then, we compare our 10 alumni with them.
If their marks are similar (close to the average
of teachers), they are indeed the best.




1. Knowledge-base potentials
3. Z-scores and energy profiles
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1. Knowledge-base potentials
3. Z-scores and energy profiles

Zscores can also be presented as a function of the length of
the protein sequence

X-ray
« NMR

Non-acceptable folds

Z-score

Surprisingly good folds? o

0 200 400 600 200 1000
Number of residues



2. Remote homologs (PSSM)

We can use sequence alignments with position specific substitution
matrices (PSSM) (see theory in practices)

1. Alignment between one sequence and a Hidden Markov
Model profile (hmmpfam, hmmscan)

2. Alignment between two Hidden Markov Model profiles
(HHSearch, PRC)

3. Alignment between sequences using PSSMs (BLAST, fugue)



2. Remote homologs (PSSM)
1. Function association

PHYRE / 3D-PSSM

Remotely homologous structures that can't be found by conventional methods
are detected by using profiles (or PSSMs) generated by PSI-Blast for both
target sequence and the sequences of the known structures. Phyre performs a
profile-profile matching algorithm together with predicted secondary structure
matching.

The functional keywords are found by gathering homologues of the target
sequence from Swissprot, taking the keywords associated with the Swissprot
homologues and weighting them according to their background frequency
across the whole Swissprot database using SAWTED



1. Knowledge-base potentials
3. Z-scores and energy profiles

SAWTED

What is SAWTED?

SAWTED stands for Structure Assignment With Text Description. It is a method to
improve the coverage of the detection of remote homologues of known structure
by sequence searches (e.g. PSI-BLAST) and fold recognition programs.

What does it do?

When sequence database searches return only hits with scores worse than an
accepted threshold for reliability the user will often compare what is known
about the function of the query sequence with that known about the poor
scoring hits. Some hits may appear more sensible than others and deserve closer
inspection. In SAWTED this comparison is made automatically using an algorithm
to compare the text of SWISS-PROT annotations related to the query and to the
poor scoring hits. A single E-value is given for the user to assess the similarity of
function.

SAWTED is currently implemented to enhance PSI-BLAST searches against the
PDB, and as part of our 3D-PSSM fold recognition server



1. Knowledge-base potentials
3. Z-scores and energy profiles

SAWTED in PHYRE & 3D-PSSM

QUERY

Y

BLAST against PDB

E-value < 0.0001 no hits or E-value > 0.0001

Trivial answer PSI-BLAST against NCBI-nr

/’/STWSS-PROT seq.
E-value < 0.0001

SWISS-PROT entry for query

DB

seq.

any E-value

SWISS-PROT~ E-value < 0.1 -~ PDB hit

entry

SWISS-PRO T~agg—
entry

SWISS-PROT-4E™]

BLAST
against
SWISS-PROT

8~ PDB hit
N ¥—PDB hit

entry

Re-assess PDB hits with SAWTED E-values



2. Remote homologs (PSSM)
1. Function association

3D2GO

Requires the use of Machine learning methods (SVM) to select the best
associated terms

Sequence homologues
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2. Remote homologs (PSSM)
1. Function association

ModLink
Uses the knowledge of protein-protein interactions to select the best

candidates (according to sequence-based alignments) among the homologs
with known structure.

Query sequence

~—~( Homology ) ~\ - { Interactions )~ t3 rget
9 Extraction of \1- 1
PSI-BLAST search of interacting partners !
the TrEMBL database from the DIP database :
& G
Expansion of :
-RoN-hub” proteins _ g

|
PSI-BLAST search 9 )
of set DIP-SCOP using

Grouping sets of
the PSSM from step 1

partners from step 3
| \_ /
Homologs to the

query sequence
(set Go)

template

Partners to the
query sequence
(sets Gz, G12, G24, G1234)

Ranking of proteins in the intersection by PSI-BLAST e-value



2. Remote homologs (PSSM)
1. Function association

Example

PSI-BLAST search of the C-terminal domain of yeast
Elongation Factor 1y (Ferredoxin like fold)

Hits in E-value Shares Appears in
SwissProt Fold G,
SYEC_YEAST 0.027 no ?
EF1B_YEAST 0.036 yes ?

SC14_YEAST 0.83 no ?




2. Remote homologs (PSSM)
1. Function association

Example

PSI-BLAST search of the C-terminal domain of yeast
Elongation Factor 1y (Ferredoxin like fold)

Hits in E-value Shares Appears in
SwissProt Fold G,
SYEC_YEAST 0.027 no ?
EF1B_YEAST 0.036 yes ?
SC14_YEAST 0.83 no ?
DIP entry 17026 |
EF1G_YEAST EF1A YEAST




2. Remote homologs (PSSM)
1. Function association

Example

PSI-BLAST search of the C-terminal domain of yeast
Elongation Factor 1y (Ferredoxin like fold)

Hits in E-value Shares Appears in
SwissProt Fold G,
SYEC_YEAST 0.027 no ?
EF1B_YEAST 0.036 yes ?
SC14_YEAST 0.83 no ?
EF1G_YEAST F1A _YEAST

G-protein famlly | I -
KEMl YEAST




2. Remote homologs (PSSM)
1. Function association

Example

PSI-BLAST search of the C-terminal domain of yeast
Elongation Factor 1y (Ferredoxin like fold)

Hits in E-value Shares Appears in
SwissProt Fold G,
SYEC_YEAST 0.027 no ?
EF1B_YEAST 0.036 yes ?
SC14_YEAST 0.83 no ?
EF1G_YEAST EF1A_YEAST

TEM1_YEAST EF1B_YEAST

DIP entry 13895E |




2. Remote homologs (PSSM)
1. Function association

Example

PSI-BLAST search of the C-terminal domain of yeast
Elongation Factor 1y (Ferredoxin like fold)

EF1G_YEAST

Hits in E-value Shares Appears in
SwissProt Fold G,
SYEC_YEAST 0.027 no no
EF1B_YEAST 0.036 yes yes
SC14_YEAST 0.83 no no
EF1A_YEAST
« J
TEM1_YEAST EF1B_YEAST

G,



3. Secondary structure alignment
1. secondary structure prediction (machine learning)

M = { set of data obtained with a predictive model}
D = { set of data known}

Bayes Theorem

P(DNM)
P(M)
P(DNM)
P(D)

P(D/M) =

P(M/D)=

p(M/D) = P(D/ M) LMD
P(D)



3. Secondary structure alignment
1. secondary structure prediction (machine learning)

M = { set of data obtained with a predictive model}
D = { set of data known}

Optimizing Function @ (minimum @)

® =-log(P(M /D))

D= —log(P(D/M)) - log(P(M)) + log(P(D))
Min(®) = Min(~log(P(D/M)) - log(P(M)))
Min(®) = Min(~log(P(D/M)))

Maximum a priori

Maximum likelihood



3. Secondary structure alignment
1. secondary structure prediction (machine learning)

Training set

Set of data without redundancies (i.e. a set of non-homologous
sequences). This is used to optimize the parameters describing the
model

Test set

Set of data without any element used on the training set or similar to
some element of the training set (i.e. a set of sequences non-
homologous between them and non-homologous to any of the
elements of the training set). This set is used to test the approach
and validate the statistical accuracy of the method.



3. Secondary structure alignment
1. secondary structure prediction (Neural Network)

input ={v;,/v;i=1,n},
output = {u; / u; j|=1,m}

Vi Vi vy vy U,
Vo Vo Vs Vs Neuron U,
V3 V3 vy v, B =) U,
Vg Vyu V4 Vy (D U4
Vs Vs Vs Vs 4 samples




3. Secondary structure alignment
1. secondary structure prediction (Neural Network)

Parameters for the model: ®

2 WkV] + W

f(x]) =

e

We need to optimize the parameters in order to get
y; as close as possible to u;



3. Secondary structure alignment
1. secondary structure prediction (Neural Network)

Working hypothesis:

The error between the expected output values (u) and the
output obtained with this “neuron” approach follows a
multiple gaussian distribution. Therefore, the probability to
obtain the output data, given the parameters of the neuron (®

and function f), is: _(uj_yj)z

P(DIM)=P(ulw, f)=ﬁm/12 xe ¥

i(uj_yj)z
G=\ - m-1

Where m is the number of samples




3. Secondary structure alignment
1. secondary structure prediction (Neural Network)

Maximum Likelihood solution:

This implies we can solve the optimization by means of the
maximum likelihood approach. It also can be further
simplified by assuming a constant standard deviation.

log(2m)

d(w) = —log(P) = — — log(o) + E(u] — yj)z/Zaz
J

_x,

u —_ e ] ]
Z( y] VkJ
aWk 1 — e_xj




3. Secondary structure alignment
1. secondary structure prediction (Neural Network)

Neural Network

The protein sequence can be transformed into a set of vectors on
the space of residues (dimension 20)

Inputs can check by windows of 15 Aa along the sequence

We can use more than one neuron, forming a layer of neurons.
We can add multiple layers formed by neurons.

. Single layer

V1 U+

v - 0

V3 & Us

V4 Uy

vy () -
-



3. Secondary structure alignment
1. secondary structure prediction (Neural Network)

Neural Network (PHD) N
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3. Secondary structure alignment
2. Method of fold recognition TOPITS and THREADER

----- EEEEE ———-EEEEEE————— —====EEEEE - ——— -EEHHHH- ——— predict 1D
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align pre-

dicted and

knonn
\\\\\\~ struchres)
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good match to one of the known structures?

= predict fold of matching structure

* model 3D coordinates by homology




Fold prediction

2. ab initio fold prediction (Rosetta)
1.Revisiting the knowledge-based potential
2.New potential based on conditional probabilities
3.9-Fragment database of structures
4.Simulated Annealing construction
5.Mutual Information
6.Examples



1. Revisiting the knowledge-based potential

Given the radius of gyration of a protein structure (RG), we
approximate the probability that this is the structure for a
given sequence, where the sequence is defined as the

P(sequence | structure)

P(structure | sequence) = P(structure) x
P(sequence)

P(r,laa;,aa;)

P(r;)

P(sequence | structure) = HP(aa,.,aaj) X

i<j

P(qj‘aa.,aa_/)

l

(Equation 1)
P(r;)

P(structure | sequence) = "¢ x H

i<j

Where the term on the right contains the distance dependent knowledge-
based potential: P(r;|aa;,aa;) /P(r;)



2. New potential based on conditional probabilities

By applying Bayes theorem on a sequence (set of elements
amino-acids), we can approach the conditional probability
with respect to the structure in which the sequence is
folded with the first two terms of the expansion:

P(x;,
P(x,X,X5,0.0,X,) = np(xl_) x np(f;ll))zx) )

i<j

P(sequence | structure) = P(aa,aa,,...aa, | structure)

P(aa;,aa;|r;,E . E )
P(aa,,aa,,...aa, | structure) = HP(aa,-|E,-) X H ‘ -

i i<j P(Clal Ij’EI’E )P(Cla U’E”E )
P(structure | sequence) = e x P(aay,aa,,...aa, | structure) (Equation 2)

Where E; is the environment (secondary structure, accessibility, etc.) of residue aa;



2. New potential based on conditional probabilities

Score
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3. 9-Fragment database of structures

Rosetta splits the sequence in fragments of 9 residues,
using a window-like method

Rosetta contains a database of 9-residue fragments
extracted from the total set of protein structures

Rosetta assigns the first 25 most probable 9-fragment
segments to a 9-residue fragment of the target sequence
by selecting those with smallest score:

9 20
score = E E’S(aa,i) — X (aa,i)

i=1 aa=1

Where S(aa,i) is the frequency of residue aa in position i of the target sequence and
its homologs in the same 9-residues fragment. Similarly, X(aa,i) is the frequency of
amino-acid aa in position i for all similar 9-residue fragments (with the same
structure)



4. Simulated annealing construction

Rosetta applies small changes in torsional angles for each
fragment considered in order to join the 9-residue
fragmented structures assigned to the 9-residue segment
of the target

A conformation is selected according to the most probable
structure-score: P(structure|sequence). A Metropolis-
Montecarlo simulation is applied using a simulated
annealing

The structure-score is first calculated with equation 1, and
when the simulation obtains a closer and more definite
structure equation 2 (with more detailed potential) is
applied.



5. ITASSER
iTASSER uses LOMETS threading. LOMETS uses the results

of several threading approaches based on remote
homology (i.e. FUGUE, HHSEARCH, etc.) and selects the

common fragment-templates to assemble the target
structure. Then it follows a similar approach to Rosetta

Global and local
structure matches

Structure reassembly

Structure assembly

8
2
8
T
@
S
b1 Lowest E structure PDB library
g ;
£
£

REMO H-bond

:' optimization

Structural analogy

EC classification
GO terms
Binding site

Function prediction

Cluster centroid Final model

Template



6. Mutual Information

%

/

inference Q\J'C

contact in 3D

Q
constraint N )ﬁm

—P> S S A RRARIDD
-l <M EAOOO

correlated

fy4.B)
M= 2J548) I FT B

top Ml pairs



6. Mutual Information
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Marks DS et al.. PLoS One. 2011;6(12):e28766. Epub 2011

Morcos F, et al. . Proc Natl Acad Sci U S A. 2011 Dec 6;108(49):E1293-301.



6. Mutual Information

A Sigma-E region 2 (MI) B Sigma-E region 2 (DI)
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6. Mutual Information
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7. Exam ples ‘ --I_W&TIVE PREDICTED Né’lilVE PREDIC(;-ED

Rosetta



7. Examples Direct information

predicted observed
blind top ranked crystal structure

ELAV4 HUMAN

TRY2_RAT 3TGl.pdb



8. CASP (Critical Assessment of Structure Prediction)

a Classic

[-strand

amino acid

o-helix

oy

Protein sequence 3D structure

N
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8. CASP (Critical Assessment of Structure Prediction)
EVALUATION: GDT_TS

The GDT score is calculated as the largest set of amino acid residues' alpha
carbon atoms in the model structure falling within a defined distance cutoff of their
position in the experimental structure, after superimposing two structures.

By the original design the GDT algorithm calculates 20 GDT scores,i.e. for each of
20 consecutive distance cutoffs (0.5 A, 1.0 A, 1.5A, ... 10.0 A).

For structure similarity assessment it is intended to use the GDT scores from
several cutoff distances, and scores generally increase with increasing cutoff.

A plateau in this increase may indicate an extreme divergence between the
experimental and predicted structures, such that no additional atoms are included

in any cutoff of a reasonable distance.

The conventional GDT_TS total score in CASP is the average result of cutoffs at 1,
2,4,and 8 A

GDT_TS was implemented in the Local-Global Alignment (LGA) program.


https://en.wikipedia.org/wiki/Amino_acid
https://en.wikipedia.org/wiki/Alpha_carbon
https://en.wikipedia.org/wiki/Angstrom
https://en.wikipedia.org/wiki/CASP

8. CASP (Critical Assessment of Structure Prediction)
EVALUATION: TM _score

The template modeling score or TM-score is a measure of similarity between

two protein structures. The TM-score indicates their difference: 1 indicates a perfect
match between two structures (thus the higher the better). Generally, scores below
0.20 corresponds to randomly chosen unrelated proteins, whereas structures with a
score higher than 0.5 assume roughly the same fold.

1 Laligned 1
TM-score = max E >
Ltarget ; 14+ ( d; )
_ do (Ltarget) d alignment

where

d() (Ltarget) — 1~24\?/Ltarget — 15 — ].8



https://en.wikipedia.org/wiki/Protein_structure

8. CASP (Critical Assessment of Structure Prediction)
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8. CASP (Critical Assessment of Structure Prediction)
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8. CASP (Critical Assessment of Structure Prediction)
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9. AlphaFold 1
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9. AlphaFold 1 (Distogram)
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9. AlphaFold 1 (Potentials) i H
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Distance potentials The basic distance potential is computed as a sum over all residue pairs of
the likelihood of the inter-residue distances:

Vaistance(X) = — Y _ log P(dy; | S, MSA(S)). (1)
0., 1]
The distance potential with a reference state becomes:
Viistance(X) = — Y log P(d;; | S,MSA(S)) — log P(d;; | length, d,p). )
1., i#]
The torsions are modelled with a von Mises distribution for each residue:

%orsion(ﬁba ",b) = - Z 1ngvonMises (¢z, ’d}z | 87 MSA(S)) (3)

The total potential that we optimise is thus:
V:cotal(¢7 ’%b) = ‘/distance(G(¢7 "P)) + ‘/torsion(qba w) + ‘/score2_smooth(G(¢7 'd))) (4)

The terms are weighted equally as determined by cross-validation.



9. AlphaFold 1
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10. ...where the future goes

Not an end, but a Beginning:
The door is open to?:

* Protein complexes

* Accuracy estimation

* Protein design

* Protein dynamics

* Protein conformational change
* Preferred conformations of disordered proteins
* Mutation interpretation
e Ligand docking

We are approaching the times when

computational biology
will be used to VALIDATE

experimental structures



