
Fold Prediction



Fold prediction

1.Fold recognition (threading)
2. ab initio fold prediction
3.Protein folding (MD with explicit solvent)



Threading

Idea: Find the optimal structure for 
a new (target) sequence in the 
set of known 3D-structures 
(templates) by threading the 
target sequence.



Fold recognition / Threading 

Principle: Find a compatible fold for a given sequence ....
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Using ...
• 1D – 3D profile matching,
• mean force potentials,
• secondary structure predictions, 
• position specific scoring matrices (PSSM),
• keyword statistics, 
• ....



1. Fold recognition (threading)
1. Knowledge-base potentials

1. Distance dependent potentials
• Atom-centered
• Sequence distance
• Reference state

2. Solvation
3. Z-scores and energy profiles
4. Methods: Prosa, Anolea, DOPE

2. Distance homology matrices (PSSM)
1. Function association
2. Methods: FUGUE, PHYRE, ModLink

3. Secondary structure alignment
1. Secondary structure prediction

• Machine learning theory
• Neural Networks

2. Methods: TOPITS



1. Knowledge-base potentials
1. Distance dependent potentials

According to Boltzmann law

Therefore, energy is related with probability



1. Knowledge-base potentials
1. Distance dependent potentials
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1. Knowledge-base potentials
1. Distance dependent potentials

1. Distances are calculated between atoms: We have to 
select what atom are we going to use
•The best choice is Cb because it indicates the 
direction of the side-chain

Ca CaCbCb



1. Knowledge-base potentials
1. Distance dependent potentials

2. The database of structures to extract distances has to 
avoid redundant structures (between homologs and 
members of the same family/superfamily)
• If we use all the structures of the same or similar 

protein there will be a bias. Thus, we use a set with 
less than 40% of sequence similarities 



1. Knowledge-base potentials
1. Distance dependent potentials

Asp

Glu

Glu

3. The frequency of a pair of residues at distance “r” is 
different if the residues are close or distant along 
the sequence
• We split the calculation of frequencies 

depending on the sequence distance between 
residues 



1. Knowledge-base potentials
1. Distance dependent potentials

r
1Å

4. Reference state: The density of residues around one 
residue is not a continuous model, it depends on 
the size and shape of the protein.
• We need to normalize by the density (4pr2e(r)) 

and thus defining a reference state



1. Knowledge-base potentials
1. Distance dependent potentials

4. Reference state: the simplest definition of the 
reference state is to use the whole data set of 
residue pairs, thus instead of using energies we 
use incremental energies.
• Let be a pair of residues Asp and Glu at 

distance n in sequence. Let be N(r/ED,n) the 
number of pairs ED like this at distance r 
between their Cb atoms, and N(r/n) the total of 
pairs of residues at distance n in sequence and r 
between their Cb atoms



1. Knowledge-base potentials
1. Distance dependent potentials
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1. Knowledge-base potentials
1. Distance dependent potentials
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Glu-Asp (n>10)

Glu-Arg (n>10)

Example of distance dependent knowledge-based potentials



1. Knowledge-base potentials
2. Solvation

1. Solvation of a residue is calculated as 
proportional to accessible surface area (ASA)
• The factor of proportion depends on the 

tendency of the residue (i.e. Asp in position 
“i” of the sequence)  to be solvated 
(hydrophobicity calculated with water-octanol 
partition coefficient)

2. Solvation can also be calculated using the 
frequency of the residue to be exposed on the 
surface



1. Knowledge-base potentials
3. Z-scores and energy profiles

Once we have a set of energies for pairs of residues 
(force field) we can calculate the energy of each 
residue along the sequence in a specific conformation

E(i) is the energy on 
placing the residue 
(i.e. Asp) in this 
position (i)

i



1. Knowledge-base potentials
3. Z-scores and energy profiles

i

Note:  we have assumed that in position I we have placed Asp and Glu in 
position j=i+n 



1. Knowledge-base potentials
3. Z-scores and energy profiles

The total energy of a protein is obtained by the 
sum of the pair-energies and the energy from its 
surface (solvation)

The profile energy is obtained by the curves of the 
pair-energies,  surface energy and combined 
energy of both with respect to the residue position



1. Knowledge-base potentials
3. Z-scores and energy profiles

Example of profile energy from PROSA



Often the curve is smoothed by windowing the curve: the 
value on each point is defined by the average of a window of 
W residues and the window moves along the X axis.

1. Knowledge-base potentials
3. Z-scores and energy profiles



Energy profiles can be used to detect errors in modeling

1. Knowledge-base potentials
3. Z-scores and energy profiles



Question:
Can we use the total energy to discriminate correct folds 
among wrong conformations (decoys)?

1. Knowledge-base potentials
3. Z-scores and energy profiles

E1

E2

Wrong solution



Question:
Can we use the total energy to discriminate correct folds 
among wrong conformations (decoys)?

1. Knowledge-base potentials
3. Z-scores and energy profiles

Many solutions is a wrong solution

Solution:
Define a new function statistically meaningful, the Z-score



1. Knowledge-base potentials
3. Z-scores and energy profiles

Threading Z-score is defined by comparing the energy on 
one fold (j) with the average of the real folds from the 
database (i.e. transforms the function “energy” into a 
Gaussian distribution centered at zero)

This is the same problem as the following: 
Consider the final marks in the class after the 
exam. We can calculate the 10 best alumni 
according to their marks.
Are these the best alumni of SBI in the world?
We have to weight their marks with the best 
students of the world, assuming the exam was 
the same.
To do that, we use the set of marks of the total 
of SBI teachers in the world, and we assume 
they are the best set.
Then,  we compare our 10 alumni with them.
If their marks are similar (close to the average 
of teachers), they are indeed the best.



1. Knowledge-base potentials
3. Z-scores and energy profiles
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1. Knowledge-base potentials
3. Z-scores and energy profiles

Zscores can also be presented as a function of the length of 
the protein sequence

Non-acceptable folds

Surprisingly good folds?



2. Remote homologs (PSSM)

We can use sequence alignments with position specific substitution 
matrices (PSSM) (see theory in practices)

1. Alignment between one sequence and a Hidden Markov 
Model profile (hmmpfam, hmmscan)

2. Alignment between two  Hidden Markov Model profiles 
(HHSearch, PRC)

3. Alignment between sequences using PSSMs (BLAST, fugue)



2. Remote homologs (PSSM)
1. Function association

PHYRE / 3D-PSSM 

Remotely homologous structures that can't be found by conventional methods 
are detected by using profiles (or PSSMs) generated by PSI-Blast for both 
target sequence and the sequences of the known structures. Phyre performs a 
profile-profile matching algorithm together with predicted secondary structure 
matching.

The functional keywords are found by gathering homologues of the target 
sequence from Swissprot, taking the keywords associated with the Swissprot 
homologues and weighting them according to their background frequency 
across the whole Swissprot database using SAWTED



1. Knowledge-base potentials
3. Z-scores and energy profiles

SAWTED

What is SAWTED?
SAWTED stands for Structure Assignment With Text Description. It is a method to 
improve the coverage of the detection of remote homologues of known structure 
by sequence searches (e.g. PSI-BLAST) and fold recognition programs.

What does it do?
When sequence database searches return only hits with scores worse than an 
accepted threshold for reliability the user will often compare what is known 
about the function of the query sequence with that known about the poor 
scoring hits. Some hits may appear more sensible than others and deserve closer 
inspection. In SAWTED this comparison is made automatically using an algorithm 
to compare the text of SWISS-PROT annotations related to the query and to the 
poor scoring hits. A single E-value is given for the user to assess the similarity of 
function. 
SAWTED is currently implemented to enhance PSI-BLAST searches against the 
PDB, and as part of our 3D-PSSM fold recognition server



1. Knowledge-base potentials
3. Z-scores and energy profiles

SAWTED in PHYRE & 3D-PSSM



2. Remote homologs (PSSM)
1. Function association

3D2GO

Requires the use of Machine learning methods (SVM) to select the best 
associated terms



2. Remote homologs (PSSM)
1. Function association

ModLink
Uses the knowledge of protein-protein interactions to select the best 
candidates (according to sequence-based alignments) among the homologs 
with known structure.

Query sequence

Ranking of proteins in the intersection by PSI-BLAST e-value

Homology Interactions

PSI-BLAST search of
the TrEMBL database

PSI-BLAST search
of set DIP-SCOP using
the PSSM from step 1

Homologs to the
query sequence

(set G0)

Partners to the
query sequence

(sets G2, G1,2, G2,4, G1,2,3,4)

Extraction of
interacting partners

from the DIP database
&

Expansion of
—non-hub“ proteins

1

2

3

5

4
Grouping sets of

partners from step 3

G i+1

target

template



Hits in 
SwissProt E-value Shares 

Fold
Appears in 

G2

SYEC_YEAST 0.027 no ?
EF1B_YEAST 0.036 yes ?
SC14_YEAST 0.83 no ?

PSI-BLAST search of the C-terminal domain of yeast 
Elongation Factor 1g (Ferredoxin like fold)

Example

2. Remote homologs (PSSM)
1. Function association



Hits in 
SwissProt E-value Shares 

Fold
Appears in 

G2

SYEC_YEAST 0.027 no ?
EF1B_YEAST 0.036 yes ?
SC14_YEAST 0.83 no ?

EF1G_YEAST EF1A_YEAST

DIP

PSI-BLAST search of the C-terminal domain of yeast 
Elongation Factor 1g (Ferredoxin like fold)

DIP entry 17026E

Example

2. Remote homologs (PSSM)
1. Function association



Hits in 
SwissProt E-value Shares 

Fold
Appears in 

G2

SYEC_YEAST 0.027 no ?
EF1B_YEAST 0.036 yes ?
SC14_YEAST 0.83 no ?

EF1G_YEAST

TEM1_YEAST

EF1A_YEAST

SCOP

PSI-BLAST search of the C-terminal domain of yeast 
Elongation Factor 1g (Ferredoxin like fold)

G-protein family

Example

2. Remote homologs (PSSM)
1. Function association



EF1G_YEAST

TEM1_YEAST

EF1A_YEAST

EF1B_YEAST

DIP

Hits in 
SwissProt E-value Shares 

Fold
Appears in 

G2

SYEC_YEAST 0.027 no ?
EF1B_YEAST 0.036 yes ?
SC14_YEAST 0.83 no ?

PSI-BLAST search of the C-terminal domain of yeast 
Elongation Factor 1g (Ferredoxin like fold)

DIP entry 13895E

Example

2. Remote homologs (PSSM)
1. Function association



EF1G_YEAST

TEM1_YEAST

EF1A_YEAST

EF1B_YEAST

DIP

Hits in 
SwissProt E-value Shares 

Fold
Appears in 

G2

SYEC_YEAST 0.027 no no
EF1B_YEAST 0.036 yes yes
SC14_YEAST 0.83 no no

PSI-BLAST search of the C-terminal domain of yeast 
Elongation Factor 1g (Ferredoxin like fold)

G1

G2

Example

2. Remote homologs (PSSM)
1. Function association



3. Secondary structure alignment
1. secondary structure prediction (machine learning) 

M = { set of data obtained with a predictive model}
D = { set of data known}

Bayes Theorem



3. Secondary structure alignment
1. secondary structure prediction (machine learning) 

D = { set of data known}

Optimizing Function  F (minimum F)

Maximum a priori

Maximum likelihood

M = { set of data obtained with a predictive model}



Training set
Set of data without redundancies (i.e. a set of non-homologous 
sequences). This is used to optimize the parameters describing the 
model

Test set
Set of data without any element used on the training set or similar to 
some element of the training set (i.e. a set of sequences non-
homologous between them and non-homologous to any of the 
elements of the training set). This set is used to test the approach 
and validate the statistical accuracy of the method.

3. Secondary structure alignment
1. secondary structure prediction (machine learning) 



input = {vi / vi i=1,n}m
output = {ui / ui j=1,m}

v1
v2
v3
v4
v5

u1
u2
u3
u4w

Neuron

3. Secondary structure alignment
1. secondary structure prediction (Neural Network) 

4 samples

v1
v2
v3
v4
v5

v1
v2
v3
v4
v5

v1
v2
v3
v4
v5

1     2     3     4



Parameters for the model: w

We need to optimize the parameters in order to get 
yj as close as possible to uj

3. Secondary structure alignment
1. secondary structure prediction (Neural Network) 
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Working hypothesis:
The error between the expected output values (u) and the 
output obtained with this “neuron” approach follows a 
multiple gaussian distribution. Therefore, the probability to 
obtain the output data, given the parameters of the neuron (w
and function f), is:

3. Secondary structure alignment
1. secondary structure prediction (Neural Network) 

Where m is the number of samples



Maximum Likelihood solution:
This implies we can solve the optimization by means of the 
maximum likelihood approach. It also can be further 
simplified by assuming a constant standard deviation.

3. Secondary structure alignment
1. secondary structure prediction (Neural Network) 
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Neural Network
The protein sequence can be transformed into a set of vectors on 
the space of residues (dimension 20)
Inputs can check by windows of 15 Aa along the sequence
We can use more than one neuron, forming a layer of neurons.
We can add multiple layers formed by neurons.

v1
v2
v3
v4
v5

u1
u2
u3
u4

Single layer

3. Secondary structure alignment
1. secondary structure prediction (Neural Network) 



Neural Network (PHD)

3. Secondary structure alignment
1. secondary structure prediction (Neural Network) 



3. Secondary structure alignment
2. Method of fold recognition TOPITS and THREADER



2. ab initio fold prediction (Rosetta)
1.Revisiting the knowledge-based potential
2.New potential based on conditional probabilities
3.9-Fragment database of structures
4.Simulated Annealing construction
5.Mutual Information
6.Examples

Fold prediction



1. Revisiting the knowledge-based potential

Given the radius of gyration of a protein structure (RG), we 
approximate the probability that this is the structure for a 
given sequence, where the sequence is defined as the 
vector (aa1, aa2,aa3,…..aaN)

Where the term on the right contains the distance dependent knowledge-
based potential: P(rij|aai,aaj) /P(rij)

(Equation 1)



2. New potential based on conditional probabilities

By applying Bayes theorem on a sequence (set of elements 
amino-acids), we can approach the conditional probability 
with respect to the structure in which the sequence is 
folded with the first two terms of the expansion:

Where Ei is the environment (secondary structure, accessibility, etc.) of residue aai

(Equation 2)



2. New potential based on conditional probabilities

Example of differences 
between otentials calclated 
with equation 1 and 
equation 2.

Equation 1 is in continuous 
line

Equation 2 for two buried 
residues is in dotted line

Equation 2 for two exposed 
residues is in dashed line



3. 9-Fragment database of structures

Rosetta splits the sequence in fragments of 9 residues, 
using a window-like method

Rosetta contains a database of 9-residue fragments 
extracted from the total set of protein structures

Rosetta assigns the first 25 most probable 9-fragment 
segments to a 9-residue fragment of the target sequence 
by selecting those with smallest score:

Where S(aa,i) is the frequency of residue aa in position i of the target sequence and  
its homologs in the same 9-residues fragment. Similarly, X(aa,i) is the frequency of 
amino-acid aa in position i for all similar 9-residue fragments (with the same 
structure) 



4. Simulated annealing construction

Rosetta applies small changes in torsional angles for each 
fragment considered in order to join the 9-residue 
fragmented structures assigned to the 9-residue segment 
of the target

A conformation is selected according to the most probable 
structure-score: P(structure|sequence). A Metropolis-
Montecarlo simulation is applied using a simulated 
annealing 

The structure-score is first calculated with equation 1, and 
when the simulation obtains a closer and more definite 
structure equation 2 (with more detailed potential) is 
applied.



5. iTASSER

iTASSER uses LOMETS threading. LOMETS uses the results 
of several threading approaches based on remote 
homology (i.e. FUGUE, HHSEARCH, etc.) and selects the 
common fragment-templates to assemble the target 
structure. Then it follows a similar approach to Rosetta



6. Mutual Information



6. Mutual Information

Marks DS et al.. PLoS One. 2011;6(12):e28766. Epub 2011

Morcos F, et al. . Proc Natl Acad Sci U S A. 2011 Dec 6;108(49):E1293-301.



6. Mutual Information



6. Mutual Information



7. Examples

Rosetta



7. Examples Direct information



8. CASP (Critical Assessment of Structure Prediction)



8. CASP (Critical Assessment of Structure Prediction)

The GDT score is calculated as the largest set of amino acid residues' alpha 
carbon atoms in the model structure falling within a defined distance cutoff of their 
position in the experimental structure, after superimposing two structures. 

By the original design the GDT algorithm calculates 20 GDT scores,i.e. for each of 
20 consecutive distance cutoffs (0.5 Å, 1.0 Å, 1.5 Å, ... 10.0 Å).

For structure similarity assessment it is intended to use the GDT scores from 
several cutoff distances, and scores generally increase with increasing cutoff. 
A plateau in this increase may indicate an extreme divergence between the 
experimental and predicted structures, such that no additional atoms are included 
in any cutoff of a reasonable distance. 

The conventional GDT_TS total score in CASP is the average result of cutoffs at 1, 
2, 4, and 8 Å

GDT_TS was implemented in the Local-Global Alignment (LGA) program.

EVALUATION: GDT_TS

https://en.wikipedia.org/wiki/Amino_acid
https://en.wikipedia.org/wiki/Alpha_carbon
https://en.wikipedia.org/wiki/Angstrom
https://en.wikipedia.org/wiki/CASP


8. CASP (Critical Assessment of Structure Prediction)
EVALUATION: TM_score

The template modeling score or TM-score is a measure of similarity between 
two protein structures. The TM-score indicates their difference: 1 indicates a perfect 
match between two structures (thus the higher the better). Generally, scores below 
0.20 corresponds to randomly chosen unrelated proteins, whereas structures with a 
score higher than 0.5 assume roughly the same fold. 

where
alignment

https://en.wikipedia.org/wiki/Protein_structure


8. CASP (Critical Assessment of Structure Prediction)



8. CASP (Critical Assessment of Structure Prediction)



8. CASP (Critical Assessment of Structure Prediction)



9. AlphaFold 1



9. AlphaFold 1 (Distogram)



9. AlphaFold 1 (Potentials)



9. AlphaFold 1



10. …where the future goes


