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What’s the exosome?

The Exosome is a multiprotein complex with 3’-5’
exonuclease activity which can degradate many types of
celular RNAs. It has a critical role in celular mRNA turnover.

1.1

ARCHAEA BACTERIAEUCARYOTSARCHAEA BACTERIA

PNPase & Rnase PH

EUCARYOTS



The Exosome’s Ribonucleolytic activity1.2

Hydrolytic activity

Uses H2O molecules to cleave

diphosphate bonds.

Nucleotide monophosphates as 

a product of reaction.

Phosphorolytic activity

Uses inorganic phosphates to

cleave diphosphate bonds.

Nucleotide diphosphates as a 

product of reaction.a product of reaction.

EUKARYOTIC EXOSOME

product of reaction.

ARCHAEAL EXOSOME



Cap

Exosome structure in archaeas1.1

CORE CAP



Exosome structure in eukaryots1.1

CAPCORE
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FUNCTION: Select and exclude the RNA substrates. 

The archaeal Exosome CAP2



Csl4 Subunit 2.1

Domains

• N-terminal domain (NTD)• N-terminal domain (NTD)

• RNA binding S1

• Zn-ribbons domains



Csl4 Subunit > Zn-ribbon domain2.1



Csl4 Subunit > Zn-ribbon domain2.1



Rrp4 Subunit2.2

KH domain

NTD 

S1 domain



Rrp4 Subunit > KH domain2.2



Rrp4 Subunit > KH domain2.2



Type I KH-domain � βααββα

Characteristic loop (GxNG) but in 
S.solfataricus we find an AxNG motif

α1

α3

Rrp4 Subunit > KH domain2.2

S.solfataricus we find an AxNG motif

β1

β2

β3α2

α3



Rrp4 Subunit > KH domain2.2



Rrp4 Subunit > KH domain2.2

Sequence-based alignment: CLUSTALW



Rrp4 Subunit > KH domain2.2

Structure-based alignment: STAMP



HYDROGEN

BONDS
DISTANCE ANGLE

ASN181 – ILE69 2.5Å 120.4º

ASN181 – ILE69 2.1Å 192.3º

ASN182 – ILE86
1.6Å

208.9º

Interaction between S1 and KH domain stabilized by hydrogen bonds.

Rrp4 Subunit > KH – S1 interaction2.2



Rrp4 Subunit > S1 domain2.2



Rrp4 Subunit > S1 domain2.2



2.2 Rrp4 Subunit > S1 domain



2.2 Rrp4 Subunit > S1 domain

Pitch 5.47Å



2.2

Hydrophobic Core

Rrp4 Subunit > S1 domain



Rrp4 Subunit > S1 domain2.2

Sequence-based alignment: CLUSTALW



Rrp4 Subunit > S1 domain2.2

Structure-based alignment: STAMP



Rrp4 Subunit > S1 domain2.2

Structure-based alignment: STAMP



Distance ON = 1.84A
Angle OHN = 171º

2.2 Rrp4 Subunit > S1 domain



2.2

RNA interaction

Rrp4 Subunit > S1 domain



RNA interaction

Rrp4 Subunit > S1 domain2.2



RNA interaction

Rrp4 Subunit > S1 domain2.2



RNA interaction

Rrp4 Subunit > S1 domain2.2



RNA entrance

Rrp4 Subunit > S1 pore2.2



RNA entrance

Rrp4 Subunit > S1 pore2.2



Rrp4 Subunit > S1 pore2.2

Rrp4 versus Csl4



Rrp4 Subunit > N-terminal domain2.2



Rrp4 Subunit > N-terminal domain2.2



Rrp4 Subunit > N-terminal domain2.2



Rrp4 Subunit > N-terminal domain2.2

CAP flexibility



Rrp4 Subunit > N-terminal domain2.2

CAP flexibility



Rrp4 Subunit > N-terminal domain2.2

RNA interaction



2.2 Rrp4 Subunit > N-terminal domain



2.2 Rrp4 Subunit > N-terminal domain

NTD / Rrp41



2.2 Rrp4 Subunit > N-terminal domain

NTD / Rrp42



2.3 Rrp4/Csl4 CAP - Core interaction

CAP / Rrp41



2.3 Rrp4/Csl4 CAP - Core interaction

CAP / Rrp42



2.4

Aromatic 
& Polar residues

Rrp4/Csl4 CAP - RNA interaction



2.4

Aromatic & Polar residues

Rrp4/Csl4 CAP - RNA interaction



2.4

Aromatic 
& Polar residues

Rrp4/Csl4 CAP - RNA interaction



2.4 Rrp4/Csl4 CAP - RNA interaction



Rrp4 vs. Csl4 Subunit2.5

Structure-based alignment: STAMP



Rrp4 vs. Csl4 Subunit2.5

Structure-based alignment: STAMP
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Cap Rrp42 Rrp41

The archaeal Exosome CORE3

TOP VIEW BOTTOM VIEW



Rrp41

Exosome Core > Fold3.1

Rrp42



Rrp41

Exosome Core > Fold3.1

Rrp41Rrp41
Rrp42Rrp42Rrp42Rrp42

Rrp41Rrp41
Rrp42Rrp42

Rrp42



First of all, we do a STAMP to study the structural conservation between the two subunits. As you can see at
the image and the ouput, the structure is quite conserved instead the 23% sequence identity

Sc: 6’32

RMSD: 1’51

%ID: 22’96 %

Exosome Core > Fold3.1

Rrp41

Rrp42



The RNAse PH-like domains contain 4 regions implicated in different tasks:
- Region I: Residues interacting with region III of the same polypeptide to the maintenance of the fold
- Region II: Residues involved in the intermolecular contact to establish the heterodimers between Rrp41-Rrp42
- Region III: Residues that form the phosphate binding surface
- Region IV: Residues that are forming the catalitical site

Although the 2 subunits have the same RNAse PH-like domain, they differ in the capacity of develop the phosphorolytic action, so the difference must be in the RIV

Exosome Core > Fold3.1



Hydrogen bonds

ARG40-ASP210 1’93 A 167’40 º

Exosome Core > Fold3.1

ARG40-ASP210 1’83 A 166’03 º

ASP40-ASP210 1’91 A 154’37 º

Salt bridges

ASP32-ARG34 2’87 A

ARG34-ASP210 3’03 A

ARG40-ASP210 2’99 A

Rrp42



Hydrogen bonds

ARG15-ARG11 1’93 A 158’46 º

ARG21-ASP168 1’98 A 166’20 º

Exosome Core > Fold3.1

ARG21-ASP168 1’98 A 166’20 º

ASP13-ARG15 1’93 A 158’67 º

Salt bridges

ASP13-ARG15 2’87 A

ARG11-GLU173 3’03 A

ARG21-ASP168 2’99 A

Rrp41



Hydrogen bonds

LYS97-GLU109 1’65 A 154’07 º

GLU105-GLU109 1’77 A 163’43 º

Exosome Core > Interaction between subunits3.2

GLU105-GLU109 1’77 A 163’43 º

ASG116-GLU94 1’98 A 153’19 º

Salt bridges

ARG116-GLU94 2’84 A

GLU109-LYS97 2’63 A

ARG100-GLU105 2’88 A



Rrp42

Exosome Core > Interaction between subunits3.2

Rrp41

Rrp41-Rrp42



Rrp41

Rrp42

Lenght 273

Zscore -9’38 

Rrp41-rrp42

Rrp41

Lenght 233

Zscore -7’33 

Rrp41-42

Lenght 739

Zscore -11’74 



Rrp41

Rrp42

Exosome Core > Interaction between subunits3.2



Exosome Core > Interaction between subunits3.2

Rrp41

Rrp42



Cap
Rrp41
Rrp42

Exosome Core > Interaction between subunits3.2



Exosome Core > Interaction with RNA3.3

RNA specific Sequence unspecific



RNA specific thanks

to the 2’OH binding

Exosome Core > Interaction with RNA3.3



Sequence inespecific thanks to

phosphate backbone binding

Exosome Core > Interaction with RNA3.3



The pathway of RNA within

the archaeal Exosome

1. Interaction with the CAP

2. 1st interaction surface

3. 2nd interaction surface

Exosome Core > Interaction with RNA3.3

VIDEO 3. 2nd interaction surface

within the central channel

1. Active site: Degradation

2. Removal of monophosphates

VIDEO



1st inteaction surface: The 10A neck of Rrp41 Rrp41

Rrp42

Exosome Core > Interaction with RNA3.3

ssRNA



Rrp41

1st interaction surface

Bond: 1’71 Amstrongs
Angle: 172’28 grades 

Exosome Core > Interaction with RNA3.3

Rrp41

ssRNA



2nd inteaction surface

Exosome Core > Interaction with RNA3.3

Rrp42

Rrp41
ssRNA



Rrp41

2nd inteaction surface

Exosome Core > Interaction with RNA3.3

Rrp42

ssRNA



ACTIVE SITE

Exosome Core > Interaction with RNA3.3

Rrp42

Rrp41

Active Site



Rrp42

Rrp41

ACTIVE

SITE

Exosome Core > Interaction with RNA3.3

ssRNA



Rrp42

Rrp41

ACTIVE 

SITE

Exosome Core > Interaction with RNA3.3

ssRNA



Rrp42

Rrp41

ACTIVE 

SITE

Exosome Core > Interaction with RNA3.3

Rrp41

ssRNA



Rrp41
ssRNA

Exosome Core > Interaction with RNA3.3

ssRNA



H+

Exosome Core > Interaction with RNA3.3

H+



Rrp42

Rrp41

Exosome Core > Interaction with RNA3.3

ssRNA

Cl -



Rrp42

Rrp41

Exosome Core > Interaction with RNA3.3

H+

New 

3’-end

ssRNA

Cl -
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Evolution of the CAP subunits > Csl44.3

Structure-based alignment: STAMP



Zn-ribbon

Evolution of the CAP subunits > Csl44.3



Evolution of the CAP subunits > Rrp44.3

Structure-based alignment: STAMP



Evolution of the CAP subunits > Rrp44.3

Structure-based alignment: STAMP

RMSD: 2’14
Sc: 3’74



Evolution of the CAP subunits > Rrp44.3

Structure-based alignment: STAMP



Evolution of the CAP subunits > Rrp44.3

Structure-based alignment: STAMP

RMSD: 2’33
Sc: 4’19



Evolution of the CAP subunits > Rrp44.3

Structure-based alignment: STAMP

Rrp4eu/Rrp40eu/Rrp4ar



Evolution of the CAP subunits > S1 domain 4.3

Structure-based alignment: STAMP



Evolution of the CAP subunits > S1 domain 4.3

RMSD: 1’66
Sc: 2’49



Evolution of the CAP subunits > S1 domain 4.3

Structure-based alignment: STAMP



Evolution of the CAP subunits > S1 domain 4.3

Structure-based alignment: STAMP



Evolution of the CAP subunits > S1 domain 4.3

Structure-based alignment: STAMP

RMSD: 1’92

Sc: 2’69



Evolution of the CAP subunits > S1 & KH 4.3

Structure-based alignment: STAMP



Evolution of the CAP subunits > S1 & KH 4.3

Structural superimposition: XAM

RMSD: >9



Evolution of the CORE subunits4.2

Conservation among Archaeas

Rrp41

Rrp42



Rrp41

Evolution of the CORE subunits4.2

Rrp41



Evolution of the CORE subunits4.2



What bibliography says… 

• Core eukaryotic subunits derivate from the achaeal
subunits

• Human exosome doesn’t have phosphorolytic

Evolution of the CORE subunits4.2

• Human exosome doesn’t have phosphorolytic
activity

• They conserve the same fold



Archaeal Rrp41 (B) Eukaryotic Rrp46 (D)

Eukaryotic Mtr3 (F)

Eukaryotic Rrp41 (B) 

Archaeal Rrp42 (A) Eukaryotic Rrp43 (C)

Eukaryotic Rrp45 (A)

Eukaryotic Rrp42 (A)

Evolution of the CORE subunits4.2



Evolution of the CORE subunits4.2

Rrp41_Sso vs Rrp41_Hs

Sc: 8’18

RMSD: 1’32 

Rrp41_Sso vs Mtr3_Hs

Sc: 7’33

RMSD: 1’38 

Rrp41_Sso vs Rrp46_Hs

Sc: 7’27

RMSD: 1’26



Evolution of the CORE subunits4.2

Structural alignment with alignfit between archaeal rrp41 and its derivated subunits in eukaryotic



Asp Glu

(Archaea) (Eucaryot)

Evolution of the CORE subunits4.2

(Archaea) (Eucaryot)



Evolution of the CORE subunits4.2

Rrp42_Sso vs Rrp42_Hs

Sc: 5’67

RMSD: 1’58 

Rrp42_Sso vs Rrp43_Hs

Sc: 7’13

RMSD: 1’68 

Rrp42_Sso vs Rrp45_Hs

Sc: 7’11

RMSD: 1’73



Evolution of the CORE subunits4.2



• Why the evolution has allow the lack
of function in the eukaryotic
exosome?

• How interact the eukaryotic
exosome with the subunits that bring
the hydrolitic function?

But some questions remain to be 

investigated…

the hydrolitic function?
• Which is the relationship between

Rrp41-42 and the bacterial analog
PNPase PH?

• Is there any relationship between
the bacterial KH domain and
archaeal KH domain?

• Coevolution of Rrp41 and Rrp42
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