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Addition of a deoxyribonucleotide to the 3'-OH end of a polynucleotide chain, catalyzed by a DNA polymerase.
Modified from Molecular Biology of the Cell, 6th edition by B. Alberts et al.
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The two catalytic sites of the enzyme
are separated by approximately 35 A

¥ Exonuclease 3'-5'



Escherichia coli: Protobacterium

Thermus aquaticus: Dienococcus-thermus

Geobacillus stearothermophilus: Firmicutes
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SCORE = 8,28
RMS = 1,89




DNA polymerase nu Homo Sapiens

DNA polymerase | Escherichia coli

SCORE

= 4,94

RMS = 1,80




2 main regions in Klenow fragment:

Exonuclease 3’-5’ (324 - 547)

Polymerase 5’-3’ domain (548 - 928)
Palm (648 - 717,848 - 928)

Fingers (718-847)
Thumb (548-647)
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Binding of the DNA template and primer
Binding to an incoming dNTP

Phosphodiester bond formation

Release of the pyrophosphate

Translocation to the next 3'-OH primer terminus
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Schematic diagram of DNA polymerase. Modified from Molecular Biology of the Cell, 6th edition by B. Alberts et al.
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Open binary (1L3S)
Closed ternary (1LV5)
“Ajar” (3HP6)
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- Deoxynucle
- Nucleophilic att

(DNA) + dNTP — (DNA) + PP,

n+1 residues i

n residues

Berg, Jeremy M, John L Tymoczko, and Lubert Stryer. Biochemistry. 1st ed. New York: W.H. Freeman and Co., 2002. Print.
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The presence of Ser769,

Arg841 in the Pol | may be prerequisite

for the expression of strand
displacement synthesis.
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e Location: N-terminus
e Length: 225 residues

e Catalytic function: 3' — 5’ nucleotide excision (proofreading)

Source: Berg JM, Tymoczko JL, Stryer L. Biochemistry, 5th edition. New York: W H Freeman; 2002.
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-~»\\ Source: Lamichhane et al. Dynamics of site switching in DNA polymerase. J Am Chem Soc.
W’ 2013; 135 (12): 4735-42.
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Source: Lamichhane et al. Dynamics of site switching in DNA polymerase. J Am Chem Soc.
2013; 135 (12): 4735-42.



3’ —~5*ex I ” 5%‘.1'0main

Source: Lamichhane et al. Dynamics of site switching in DNA polymerase. J Am Chem Soc.
2013; 135 (12): 4735-42.



FRET=~0.8 r’# /E\ FRET = ~0. 65[“!’
i s .

Source: Lamichhane et al. Dynamics of site switching in DNA polymerase. J Am Chem Soc.

2013; 135 (12): 4735-42.

Rate of extension from a
mispaired primer strand
terminus:

0.027 s—1 for KF




3D Structure

Poll 3' Exo

Source: Lovett ST. The DNA polymerases of E. coli.
EcoSal Plus. 2011 Dec:; 4(2)



https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=26442508
https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=26442508
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Excision reaction:

[(DNA)

n residues

+H,0 — (DNA)

RNV

n-1 residues

ASP 501

ASP 355

Source: Beese LS, Steitz TA. Structural basis for the 3’-5’
exonuclease activity of Escherichia coli DNA polymerase I: a
two metal ion mechanism. EMBO J. 1991; 10(1): 25-33.
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There are highly conserved regions in the sequence of DNA polymerase that
play a key role in the development of its function

Structure is also conserved within prokaryotic organisms

Incorporation of dNTPs involves hydrophobic and hydrophilic interactions, two
metallic cations, the 3'-primer OH and W-C base pairing

Apart from open and close states, there is an intermediate state called ajar
conformation that also appears when a mismatch occurs
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1.

2.

3.

4.

Which domains of the DNA polymerase | constitute the Klenow fragment?

a.
b.
c.
d.
e.

Only the 5’ — 3’ polymerase domain.

5" — 3’ polymerase and 3’ — 5’ exonuclease domains.

5’ — 3’ polymerase and 5’ — 3’ exonuclease domains.

3’ — 5’ exonuclease and 5’ — 3’ exonuclease domains.

5’ — 3’ polymerase, 3' — 5’ exonuclease, and 5’ — 3’ exonuclease domains.

Which is the principal function of DNA polymerase I?

a.
b.
C.
d.
e.

Synthesis of DNA in the leading strand.

Untargeted mutagenesis.

Repair of pyrimidine dimers.

Synthesis of RNA primers.

Removal RNA primers and replacement the strand with DNA

Regarding the deoxynucleotides incorporation by DNA polymerase |. Which affirmation is true?

a.

b.
C.
d.
e.

The advancement of the polymerase ternary complex to the closed state (Ec) is energetically favorable.
The ajar conformation appears due to the presence of a mismatch.

A and B are correct.

The catalytic process requires the presence of two atoms of iron.

All of them are correct

Regarding the structure of DNA polymerase |, which affirmation is false?

a.

® Qo0

The 5" — 3’ polymerase domain presents a hand shape.

The 3' — 5’ exonuclease domain is between the 5" — 3’ exonuclease and the 5" — 3’ polymerase domain.
Amino acids involved in deoxynucleotide binding are in the thumb region of the 5" — 3’ polymerase.

It is similar to the structure of human DNA polymerase nu.

The two catalytic sites of the Klenow fragment are separated by approximately 35 A.



. Which ion is important for the nucleophilic attack in DNA polymerization?

a.

b
C.
d.
e

Mn

Zn

A and B are correct
Mg

All of them are correct

. How many exonuclease domains does DNA pol | have?

Qo0 0T Q2

Only 5’-3" exonuclease domain.

Only 3'-5" exonuclease domain.

A and B are correct.

DNA pol | does not have any exonuclease domain.

DNA pol lis in fact only an exonucleolytic enzyme and has 3 exonuclease domains.

. Which is the specific function of DNA pol | 3'-5’ exonuclease domain?

a.
b.
C.
d.
e.

It is a non functional domain in DNA polymerase I.

It recognises primers and eliminates them.

It participates in protein folding.

It eliminates mismatched nucleotides from the primer strand, also known as proofreading.
None of the above.

. Regarding DNA and primer binding, which affirmations are correct?

o0 0T Q2

The thumb subdomain contacts the minor groove of the DNA
Region 2 and region 6 interact with the template strand.
A and B are correct.

There are 4 conserved amino acids involved in the primer binding (Asp705, Asp882, Glu883 and Lys635)
All of them are correct



9. Which elements are important on nucleophilic attack?

a.

b
c.
d.
e

Metal ions

3’0OH of primer

A and B are correct
Incoming triphosphate
All of them are correct

10. Which bond is formed after the nucleophilic attack of polymerase?

®manoTQ

Phosphodiester bond
Salt bridges

A and B are correct.
Hydrogen bond

All of them are correct
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Annex 1. Conformational changes during the binding of polymerase to DNA

Thumb subdomain:

1. It rotates towards the palm subdomain
2. The conserved amino acids residues located at the tip (helices H1 and H2)

rotate in the opposite direction relative to the rest of the thumb such that the
tip is in proximity to the DNA. —






