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(DNA)n residues + dNTP → (DNA)n+1 residues + PPi

Addition of a deoxyribonucleotide to the 3’-OH end of a polynucleotide chain, catalyzed by a DNA polymerase. 
Modified from Molecular Biology of the Cell, 6th edition by B. Alberts et al.

Introduction
Polymerases’ generalities
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The two catalytic sites of the enzyme 
are separated by approximately 35 Å

Klenow fragment
Distance between the two catalytic sites

35,37Å

Polymerase 5’-3’

Exonuclease 3’-5’ 

ASP882

ASP501



Escherichia coli: Protobacterium

Thermus aquaticus: Dienococcus-thermus

Geobacillus stearothermophilus: Firmicutes

Klenow fragment
Conservation

              1L3S Geobacillus stearothermophilus

                      1QTM Thermus aquaticus

2KZM Escherichia coli  
SCORE = 8,28

RMS = 1,89



DNA polymerase nu Homo Sapiens

DNA polymerase I Escherichia coli 

Klenow fragment
Conservation

SCORE = 4,94
RMS = 1,80



2 main regions in Klenow fragment: 

Exonuclease 3’-5’ (324 - 547)

Polymerase 5’-3’ domain (548 - 928)

➔ Palm (648 - 717, 848 - 928) 
➔ Fingers (718-847)
➔ Thumb (548-647) 

Klenow fragment
Domains



Klenow Fragment
Secondary structure 



Polymerase domain
Regions
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Region 2
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Region 1: hxhxSxpQLxxhL

1. M. musculus

2. M. tuberculosis

3. H. sapiens

4. E. coli

5. A. aeolicus

6. R. prowazekii

7. H. pylori

Polymerase domain
Regions

Region 2: xQxxxhTGRhSxxpPNhQ

Region 3: xhhxxDxSQIEhR Region 4: RpxxKxhxxxhhY

Region 6: xxhNxhhQGpxxDhxKx Region 5: hxxhHDEhhhE



1. Binding of the DNA template and primer
2. Binding to an incoming dNTP
3. Phosphodiester bond formation
4. Release of the pyrophosphate
5. Translocation to the next 3'-OH primer terminus

Schematic diagram of DNA polymerase. Modified from Molecular Biology of the Cell, 6th edition by B. Alberts et al.

Replication process



EO + DNA 

EO -DNA 

EPC-DNA·dNTP-Mg2+ 

EPC-DNA*·dNTP-Mg2+ 

EC-DNA*·dNTP-Mg2+ 

EC-DNA*·dNTP-(Mg2+)2

dNTP-Mg2+ 

Fingers closing

            Mg2+ 

EO + DNA 

PPi 

mismatch
Ajar conformation

Open conformation (Eo)

Partially closed (Epc)

Closed conformation (Ec) 

Replication process



Binding of the DNA template and primer

Main regions of primer binding: 

Asp705

Asp882

Glu883

Lys635



Binding of the DNA template and primer

Asp705

Asp882

Glu883

Lys635
Asp882     (Region 5)
Glu883

Lys635

Asp705 (Region 3)



Region 1

Region 2
Region 6

Thr556

Arg 629

Gln612

Binding of the DNA template and primer

1,896



T356, E357, 
T358, S360, 
L361, Q419, 
N420, K422, 
Y423, M443, 
R455, H456, 
D457, M458, 
D459, F473, 
E474, F486, 
Y497, D501, 
E541, Q585, 
T609, S610, 
E611, R631, 
K635, T639, 
S658, Y659, 
H660, Q661, 
V663, T672, 
D673, N675, 
N678

DNA binding site
DISPLAR+ prediction



Deoxynucleotides binding

O-helix

O1-helix
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Asn845

Glu710

Phe762

Lys 758

His 734
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M. musculus

M. tuberculosis

H. sapiens

E. coli

A. aeolicus

R. prowazekii

H. pylori

O-helix

O1-helix
Phe762Arg 754 Lys 758His 734 Tyr766
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CTP

Deoxynucleotides binding
Hydrophobic pocket



His 734
Arg 754

O-helix

Deoxynucleotides binding
Hydrophilic pocket



Deoxynucleotides binding
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O-helix

O1-helix
Arg 754 Lys 758His 734 Tyr766



Deoxynucleotides incorporation
Conformational states

Open binary (1L3S)
Closed ternary (1LV5)
“Ajar” (3HP6)



Asp785
Asp610Tyr611

TTP

TTP

B
A

Asp785 Asp610
Try611

Incoming triphosphate

B
A

Deoxynucleotides incorporation
Nucleophilic attack
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M. tuberculosis

H. sapiens

E. coli

A. aeolicus

R. prowazekii

H. pylori

M. musculus

M. tuberculosis
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R. prowazekii

H. pylori

Asp610
Region 3

Asp785
Region 5

2.215Å

2.249Å

2.893Å

2.215Å
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2.230Å
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2.151Å

2.354Å
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2.151Å
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3’ OH primer

P-alpha TTP

Catalytic site

           3’OH       Nucleophile

      P-alpha       Electrophile

Deoxynucleotides incorporation
Nucleophilic attack

A

B



A
B

(DNA)n residues + dNTP → (DNA)n+1 residues + PPi

Deoxynucleotides incorporation
Nucleophilic attack

Berg, Jeremy M, John L Tymoczko, and Lubert Stryer. Biochemistry. 1st ed. New York: W.H. Freeman and Co., 2002. Print.

1
2



Displacement

The presence of Ser769, Phe771 and 
Arg841 in the Pol I may be prerequisite 
for the expression of strand 
displacement synthesis.

M. musculus

M. tuberculosis

H. sapiens

E. coli

A. aeolicus

R. prowazekii

H. pylori

M. musculus

M. tuberculosis

H. sapiens

E. coli

A. aeolicus

R. prowazekii

H. pylori

Ser769 Phe771

Arg841



3’ → 5’ exonuclease domain

Source: Berg JM, Tymoczko JL, Stryer L. Biochemistry, 5th edition. New York: W H Freeman; 2002.

● Location: N-terminus

● Length: 225 residues

● Catalytic function: 3’ → 5’ nucleotide excision (proofreading)



3’ → 5’ exonuclease domain
Fidelity and site switching

Source: Lamichhane et al. Dynamics of site switching in DNA polymerase. J Am Chem Soc. 
2013; 135 (12): 4735-42.



3’ → 5’ exonuclease domain
Fidelity and site switching

Source: Lamichhane et al. Dynamics of site switching in DNA polymerase. J Am Chem Soc. 
2013; 135 (12): 4735-42.



3’ → 5’ exonuclease domain
Fidelity and site switching

Source: Lamichhane et al. Dynamics of site switching in DNA polymerase. J Am Chem Soc. 
2013; 135 (12): 4735-42.



3’ → 5’ exonuclease domain
Fidelity and site switching

Source: Lamichhane et al. Dynamics of site switching in DNA polymerase. J Am Chem Soc. 
2013; 135 (12): 4735-42.



3’ → 5’ exonuclease domain
Fidelity and site switching

Source: Lamichhane et al. Dynamics of site switching in DNA polymerase. J Am Chem Soc. 
2013; 135 (12): 4735-42.

1

2

Rate of extension from a 
mispaired primer strand 
terminus:
0.027 s−1 for KF 



3’ → 5’ exonuclease domain
Structure: RNAse H-like fold

Source: Lovett ST. The DNA polymerases of E. coli. 
EcoSal Plus. 2011 Dec; 4(2)

Topology scheme 3D Structure

https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=26442508
https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=26442508


Alpha helix 3-10 helix

Beta strand DNA

3’ → 5’ exonuclease domain
Active site structure



Asp355

Glu375

Asp501
A

B

Nucleotides

Zn2+ and Mn2+ binding

The catalytic center is 
characterised by the 
presence of two metallic 
ions.

Two important amino 
acid groups:

- Asp355, Glu357 , 
Asp 424, Asp501

- Leu361, Phe473 
and Tyr497



B

AAsp355

Nucleotides

Glu375
Asp501

Asp424

3’ → 5’ exonuclease domain
Active site structure

Excision reaction:

[(DNA)n residues + H2O → (DNA)n-1 residues + dNMP]



● There are highly conserved regions in the sequence of DNA polymerase that 
play a key role in the development of its function

● Structure is also conserved within prokaryotic organisms

● Incorporation of dNTPs involves hydrophobic and hydrophilic interactions, two 
metallic cations, the 3'-primer OH and W-C base pairing

● Apart from open and close states, there is an intermediate state called ajar 
conformation that also appears when a mismatch occurs

Conclusions
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1. Which domains of the DNA polymerase I constitute the Klenow fragment?
a. Only the 5’ → 3’ polymerase domain.
b. 5’ → 3’ polymerase and 3’ → 5’ exonuclease domains.
c. 5’ → 3’ polymerase and 5’ → 3’ exonuclease domains.
d. 3’ → 5’ exonuclease and 5’ → 3’ exonuclease domains.
e. 5’ → 3’ polymerase, 3’ → 5’ exonuclease, and 5’ → 3’ exonuclease domains.

2. Which is the principal function of DNA polymerase I?
a. Synthesis of DNA in the leading strand.
b. Untargeted mutagenesis.
c. Repair of pyrimidine dimers.
d. Synthesis of RNA primers.
e. Removal RNA primers and replacement the strand with DNA

3. Regarding the deoxynucleotides incorporation by DNA polymerase I. Which affirmation is true?
a. The advancement of the polymerase ternary complex to the closed state (Ec) is energetically favorable. 
b. The ajar conformation appears due to the presence of a mismatch. 
c. A and B are correct.
d. The catalytic process requires the presence of two atoms of iron. 
e. All of them are correct

4. Regarding the structure of DNA polymerase I, which affirmation is false?
a. The 5’ → 3’ polymerase domain presents a hand shape.
b. The 3’ → 5’ exonuclease domain is between the 5’ → 3’ exonuclease and the 5’ → 3’ polymerase domain.
c. Amino acids involved in deoxynucleotide binding are in the thumb region of the 5’ → 3’ polymerase.
d. It is similar to the structure of human DNA polymerase nu. 
e. The two catalytic sites of the Klenow fragment are separated by approximately 35 Å. 

PEM questions



5. Which ion is important for the nucleophilic attack in DNA polymerization?
a. Mn
b. Zn
c. A and B are correct
d. Mg
e. All of them are correct

6. How many exonuclease domains does DNA pol I have?
a. Only 5’-3’ exonuclease domain.
b. Only 3’-5’ exonuclease domain. 
c. A and B are correct. 
d. DNA pol I does not have any exonuclease domain. 
e. DNA pol I is in fact only an exonucleolytic enzyme and has 3 exonuclease domains.

7. Which is the specific function of  DNA pol I 3’-5’ exonuclease domain?
a. It is a non functional domain in DNA polymerase I.
b. It recognises primers and eliminates them.
c. It participates in protein folding.
d. It eliminates mismatched nucleotides from the primer strand, also known as proofreading.
e. None of the above.

8. Regarding DNA and primer binding, which affirmations are correct?

a. The thumb subdomain contacts the minor groove of the DNA
b. Region 2 and region 6 interact with the template strand.
c. A and B are correct. 
d. There are 4 conserved amino acids involved in the primer binding (Asp705, Asp882, Glu883 and Lys635) 
e. All of them are correct 

PEM questions



9. Which elements are important on nucleophilic attack?
a. Metal ions
b. 3’OH of primer
c. A and B are correct
d. Incoming triphosphate
e. All of them are correct

10. Which bond is formed after the nucleophilic attack of polymerase?
a. Phosphodiester bond
b. Salt bridges
c. A and B are correct. 
d. Hydrogen bond
e. All of them are correct

PEM questions
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Annex 1. Conformational changes during the binding of polymerase to DNA

Thumb subdomain:

1. It rotates towards the palm subdomain
2. The conserved amino acids residues located at the tip (helices H1 and H2) 

rotate in the opposite direction relative to the rest of the thumb such that the 
tip is in proximity to the DNA. → 



DNA binding site


