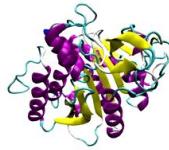

Carboxypeptidases

Carlota Bellot Herrero


Marcel Lucas Sánchez

Irene Ortega González

Clàudia Prat Gibert

Index

Introduction

- ▷ Definition and function
- ▷ Classification

General structure

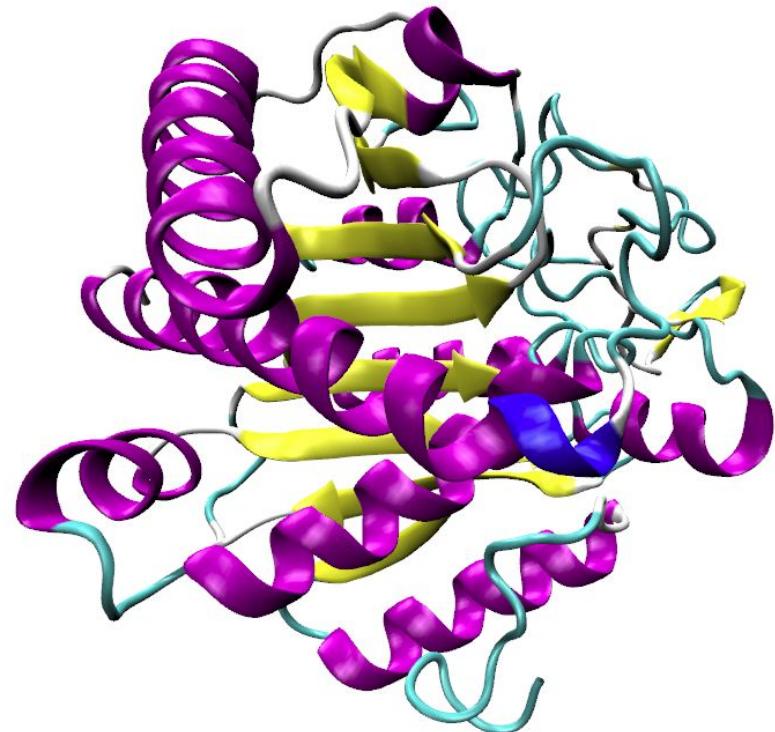
- ▷ Procarboxypeptidase
- ▷ Rossmann Fold-like

Active site

- ▷ Location
- ▷ Zinc-binding residues
- ▷ Subsites

Enzymatic reaction

- ▷ Substrate-binding interactions
- ▷ Catalytic reaction


Human carboxypeptidases

- ▷ Pancreatic
- ▷ Substrate specificity
- ▷ Pancreatic vs Regulatory

Conclusions

What are carboxypeptidases?

- ▷ Exopeptidase
- ▷ Cleavage at C-terminus
- ▷ Widely distributed

Classification

CYSTEINE PEPTIDASES

MIXED PEPTIDASES

UNKNOWN CATALYTIC TYPE

SERINE PEPTIDASES

THREONINE PEPTIDASES

GLUTAMIC PEPTIDASES

ASPARTIC PEPTIDASES

METALLO-PEPTIDASES

ASPARAGINE PEPTIDASES

Classification

CYSTEINE PEPTIDASES

MIXED PEPTIDASES

UNKNOWN CATALYTIC TYPE

SERINE PEPTIDASES

THREONINE PEPTIDASES

GLUTAMIC PEPTIDASES

ASPARTIC PEPTIDASES

METALLO-PEPTIDASES

ASPARAGINE PEPTIDASES

M1 M2 M3 M4 M5 ...

M14 Carboxypeptidases

Classification

CYSTEINE PEPTIDASES MIXED PEPTIDASES UNKNOWN CATALYTIC TYPE
SERINE PEPTIDASES THREONINE PEPTIDASES GLUTAMIC PEPTIDASES
ASPARTIC PEPTIDASES METALLO-PEPTIDASES ASPARAGINE PEPTIDASES

M1 M2 M3 M4 M5 ...

M14 Carboxypeptidases

Carboxypeptidase A	Carboxypeptidase B
Carboxypeptidase M	Carboxypeptidase T
Carboxypeptidase N	Carboxypeptidase Z
Carboxypeptidase E	...

Classification

CYSTEINE PEPTIDASES MIXED PEPTIDASES UNKNOWN CATALYTIC TYPE
SERINE PEPTIDASES THREONINE PEPTIDASES GLUTAMIC PEPTIDASES
ASPARTIC PEPTIDASES METALLO-PEPTIDASES ASPARAGINE PEPTIDASES

M1 M2 M3 M4 M5 ...

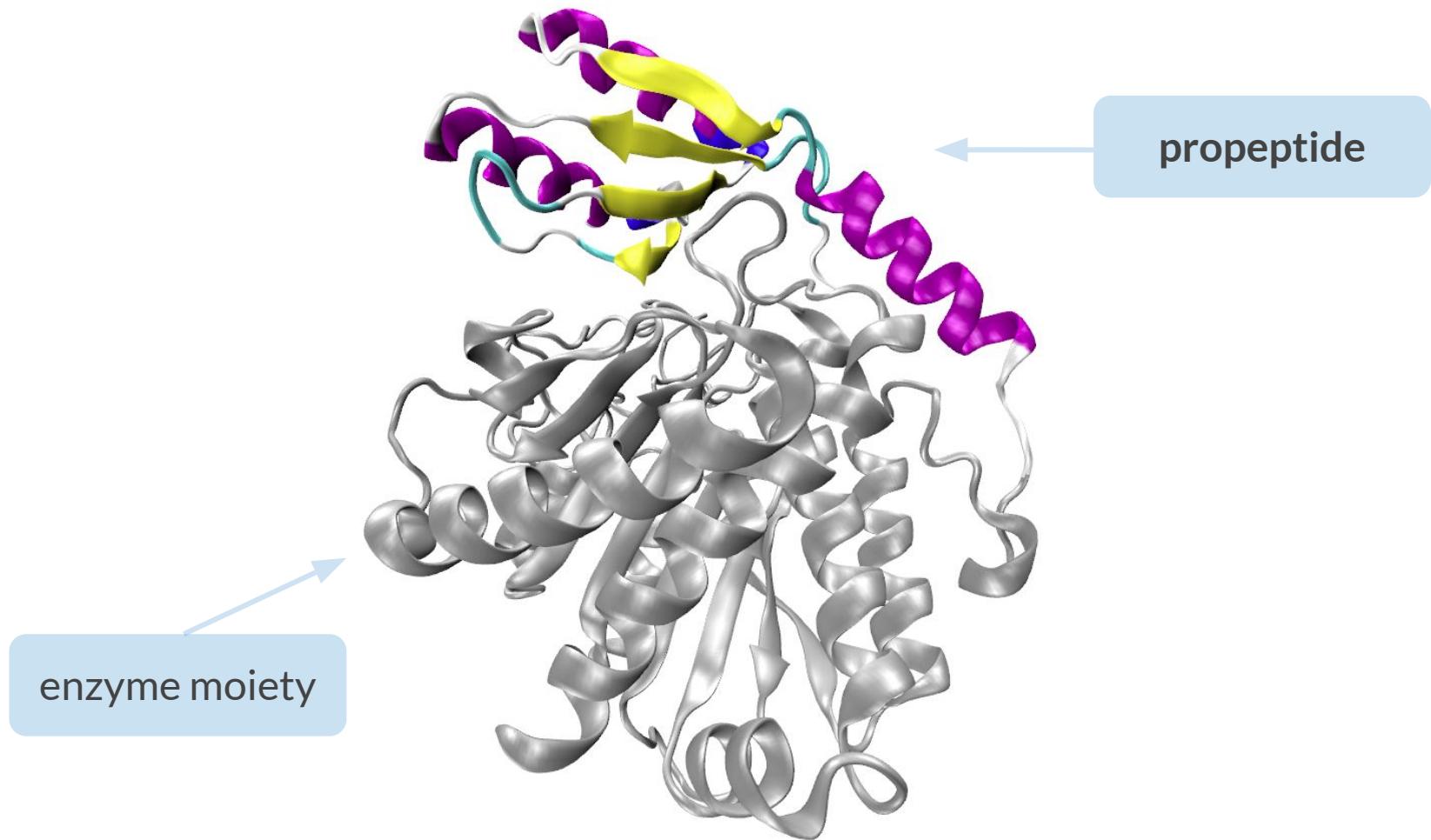
M14 Carboxypeptidases

N/E subfamily	Carboxypeptidase A	Carboxypeptidase B	A/B subfamily
	Carboxypeptidase M	Carboxypeptidase T	
	Carboxypeptidase N	Carboxypeptidase Z	
	Carboxypeptidase E	...	

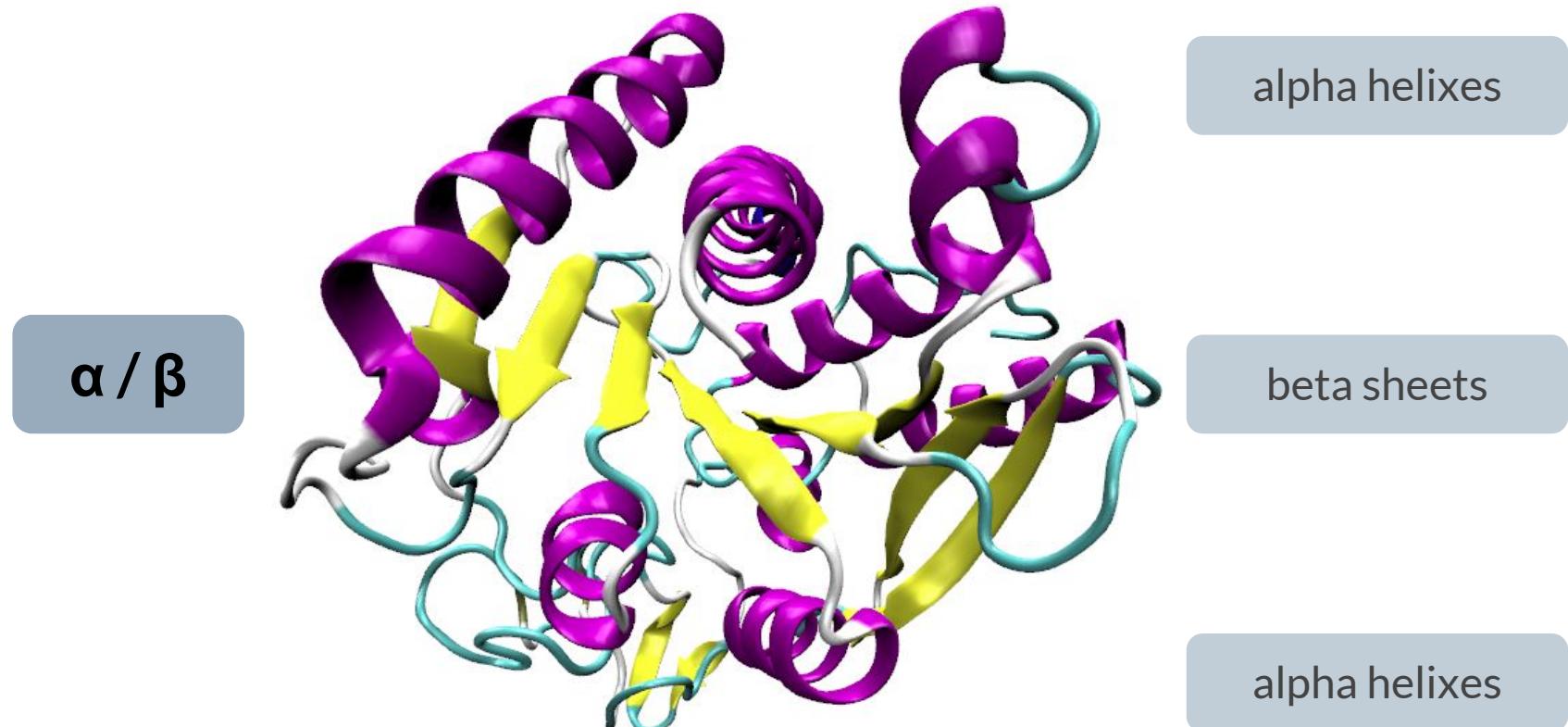
Classification

 SCOP classification

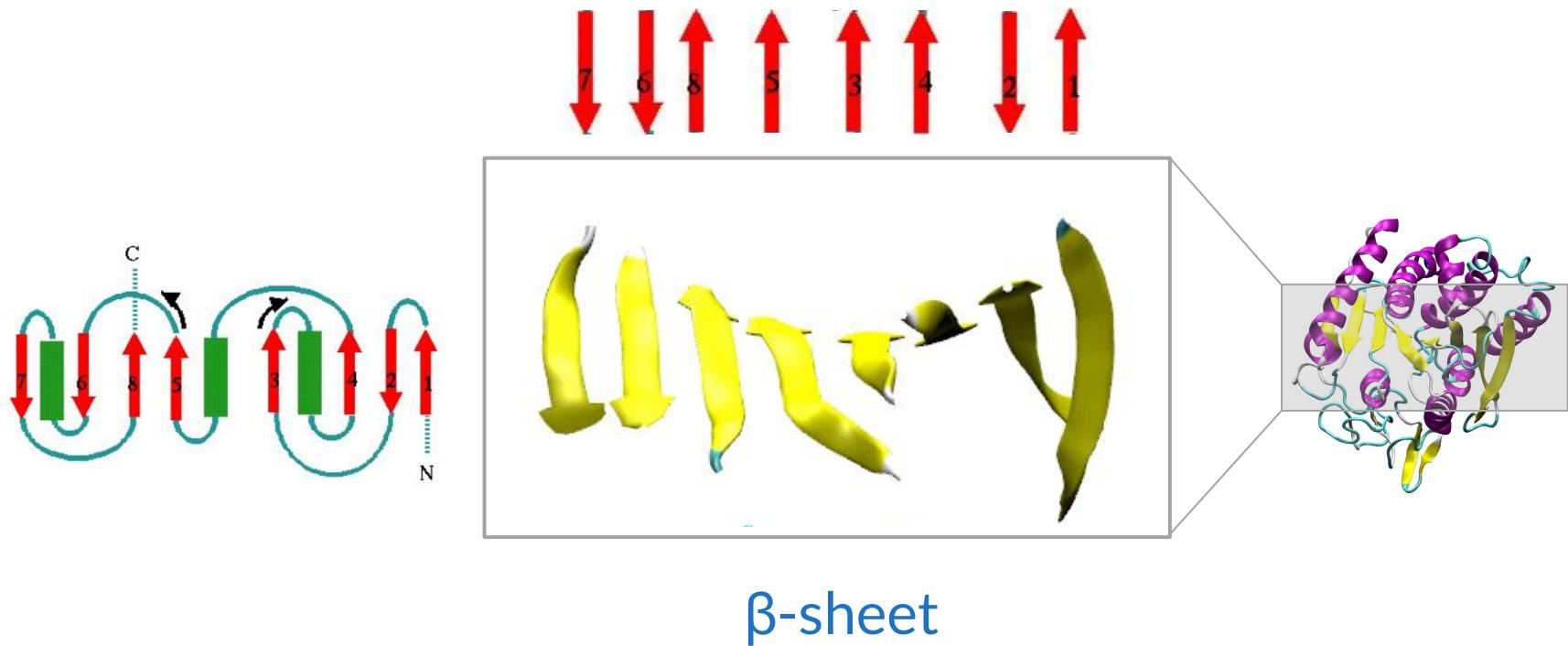
Family: Pancreatic carboxypeptidases

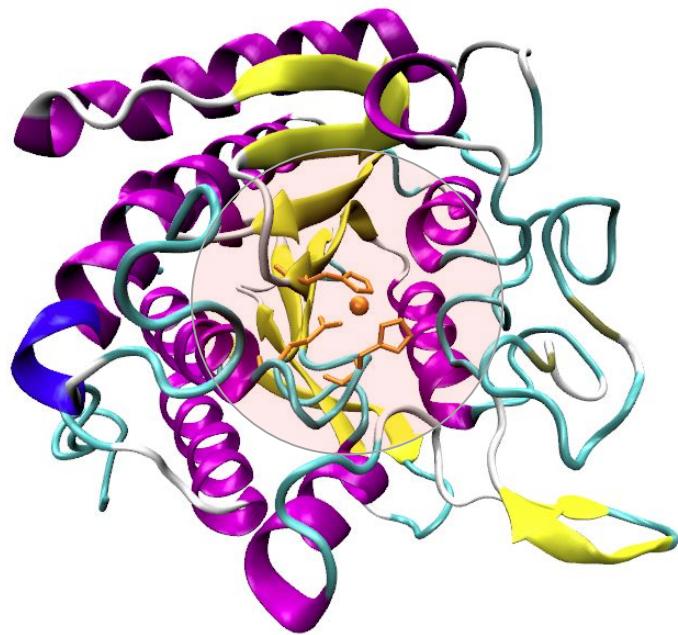
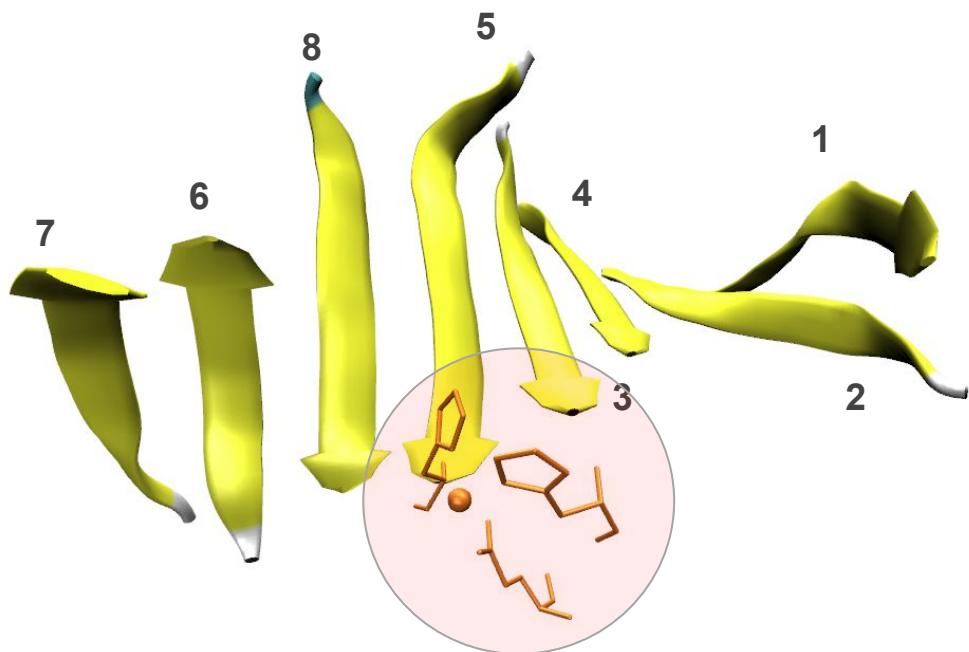

Lineage:

1. Root: [scop](#)
2. Class: [Alpha and beta proteins \(a/b\)](#) [51349]
Mainly parallel beta sheets (beta-alpha-beta units)
3. Fold: [Phosphorylase/hydrolase-like](#) [53162]
core: 3 layers, a/b/a ; mixed sheet of 5 strands: order 21354; strand 4 is antiparallel to the rest; contains crossover loops
4. Superfamily: [Zn-dependent exopeptidases](#) [53187]
core: mixed beta-sheet of 8 strands, order 12435867; strands 2, 6 & 7 are antiparallel to the rest
Superfamily
5. Family: [Pancreatic carboxypeptidases](#) [53188]


Protein Domains:

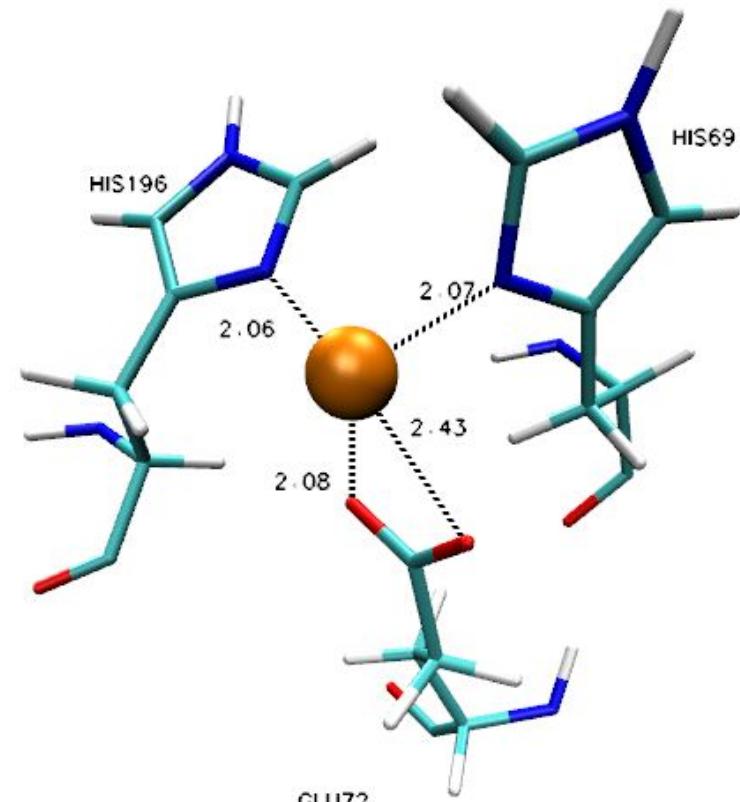
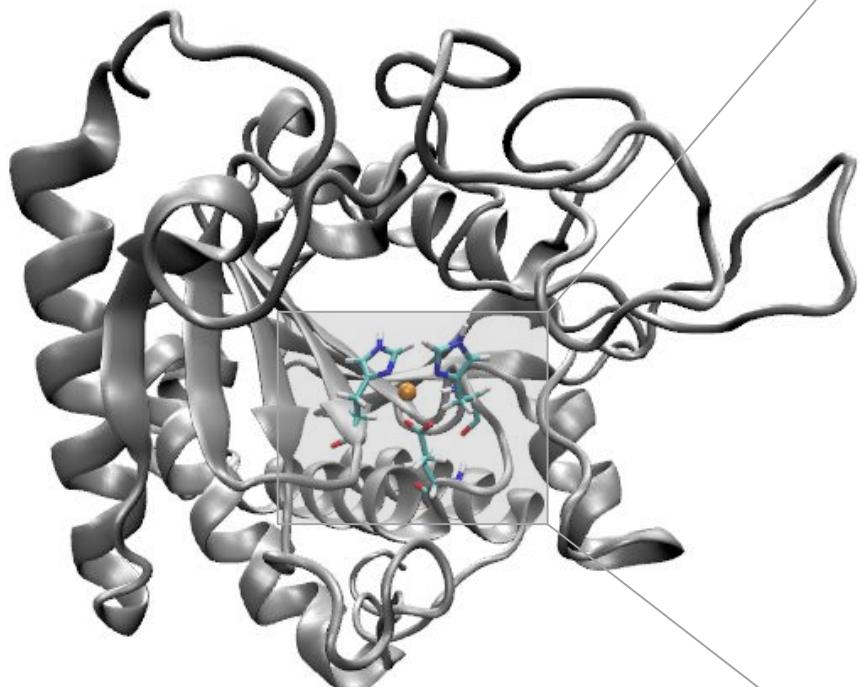
1. Carboxypeptidase A [53189]
 1. Cow (Bos taurus) [TaxId: 9913] [53190] (30)
 2. Pig (Sus scrofa) [TaxId: 9823] [53191] (1)
 3. Human (Homo sapiens) [TaxId: 9606] [53192] (7)
 4. Cotton bollworm (Helicoverpa armigera) [TaxId: 29058] [75247] (1)
2. Carboxypeptidase B [53193]
 1. Pig (Sus scrofa) [TaxId: 9823] [53194] (54)
 2. Human (Homo sapiens) [TaxId: 9606] [75248] (2)
 3. Cow (Bos taurus) [TaxId: 9913] [53195] (1)
 4. Corn earworm (Helicoverpa zea) [TaxId: 7113] [142511] (2)
SQ [Q3T905](#) 117-428
3. Carboxypeptidase D, catalytic domain [53196]
 1. Crested duck (Lophonetta specularioides) [TaxId: 8836] [53197] (2)
4. Carboxypeptidase M, catalytic domain [102504]
 1. Human (Homo sapiens) [TaxId: 9606] [102505] (1)


Procarboxypeptidase



Rossmann fold-like

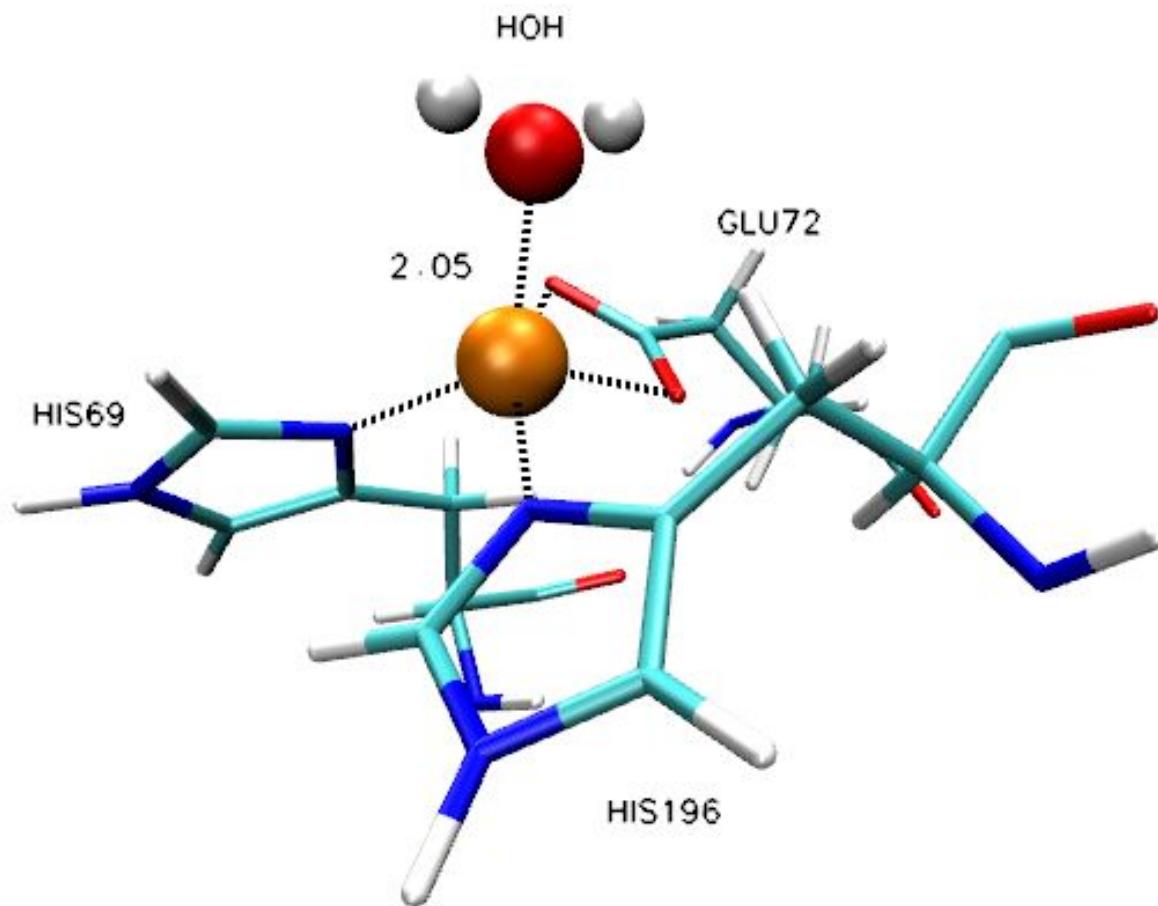
Rossmann fold-like

Active site

Active site

CBPA1_HUMAN_Homo_sapiens
CBPA1_MOUSE_Mus_musculus
CBPA1_BOVIN_Bos_taurus
B6A8G2_HELM_Helicoverpa_armigera
CBPA1_RAT_Rattus_norvegicus
L5LE21_MYODS_Myotis_davidii
M7AG89_CHEMY_Chelonia_mydas
W6TYR4_ECHGR_Echinococcus_granulosus
AOA091GV45_9AVES_Cuculus_canorus
AOA093PIN1_PYGAD_Pygoscelis_adeliae
AOA091G9G5_9AVES_Cuculus_canorus
AOA1A7ZIR4_NOTFU_Nothobranchius_furzeri
AOA1A8ETY9_9TELE_Nothobranchius_korthausae
C3KGU4_ANOFI_Anoplopoma_fimbria
L8WMV6_THACA_Thanatephorus_cucumeris
AOA0B0PAQ9_GOSAR_Gossypium_arboreum
AOA0V1DG89_TRIBR_Trichinella_britovi
K1QTU4_CRAGI_Crassostrea_gigas
L8JCQ3_9GAMM_Photobacterium_marinum
B0WJ40_CULQU_Culex_quinquefasciatus
AOA0K8UDD5_BACLA_Bactrocera_latifrons
AOA0N0PC47_PAPMA_Papilio_machaon
AOA0H5CKL5_9PSEU_Alloactinosynnema_sp.
AOA167BX44_9HYPO_Cordyceps_bronniartii
G3J5Q9_CORMM_Cordyceps_militaris
CBPA1_PIG_Sus_scrofa



Zinc binding residues

Zinc binding residues

Coordination sphere

Zinc binding residues

CBPA1_HUMAN_Homo_sapiens
CBPA1_MOUSE_Mus_musculus
CBPA1_BOVIN_Bos_taurus
B6A8G2_HELM_Helicoverpa_armigera
CBPA1_RAT_Rattus_norvegicus
L5LE21_MYODS_Myotis_davidii
M7AG89_CHEMY_Chelonia_mydas
W6TYR4_ECHGR_Echinococcus_granulosus
AOA091GV45_9AVES_Cuculus_canorus
AOA093PIN1_PYGAD_Pygoscelis_adeliae
AOA091G9G5_9AVES_Cuculus_canorus
AOA1A7ZIR4_NOTFU_Nothobranchius_furzeri
AOA1A8ETY9_9TELE_Nothobranchius_korthausae
C3KGU4_ANOFI_Anoplopoma_fimbria
L8WMV6_THACA_Thanatephorus_cucumeris
AOA0B0PAQ9_GOSAR_Gossypium_arboreum
AOA0V1DG89_TRIBR_Trichinella_britovi
K1Q TU4_CRAGI_Crassostrea_gigas
L8JCQ3_9GAMM_Photobacterium_marinum
B0WJ40_CULQU_Culex_quinquefasciatus
AOA0K8UDD5_BACLA_Bactrocera_latifrons
AOA0N0PC47_PAPMA_Papilio_machaon
AOA0H5CKL5_9PSEU_Alloactinosynnema_sp.
AOA167BX44_9HYPO_Cordyceps_brongniartii
G3J5Q9_CORMM_Cordyceps_militaris
CBPA1_PIG_Sus_scrofa

His 69

-----GSKRPAlWIDTG|H|SREWVTQASGVWFACKITQDY-gQDAAFTA
-----GTRRPAlWIDTG|H|SREWVTQASGVWFACKITKDY-gQEPTLTA
-----GSNRPAlWIDLG|H|SREWITQATGVWFACKFTEDY-gQDPSFTA

-----GTRRPAlWIDTG|H|SREWVTQASGVWFACKITKDY-gQDPTFTA
-----GNNRPAlWIDTG|H|SREWVTQASGIWFACKITQDY-gQNPAFTA
-----GTRRPAlWIDTG|H|SREWVTQASGVWFACKIVDSY-gTDPSTS
-----GNNRPAlWIDTG|H|SREWVTQASGVWFACKITQDY-gHDEVLTS
-----GTRRPAlWIDTG|H|SREWVTQASGVWFACKIVQDH-eNDSELAS
-----GSNRSAIWLDTG|H|SREWITQATGIWTANKIAKEY-gQDPSVTA
-----GSNRPAlWLDTG|H|SREWITQATGIWTANKIAKEY-gQDPSITA
-----GTRRPAlWIDTG|H|SREWVTQASGIWFACKIVKDY-gSDPALTA
-----GTRPAPWIDTG|H|SREWVTQASGIWFACKIVKDY-gSDPALTA
-----GTRRPAlWIDTG|H|SREWVTQASGTWFACKIVTDY-gTDPVLT
-----EQIAYSLLSNY-tTSSTIKS

-----LNASGKKGFWINAGIHAREWASSSTAI--IENCF-----

-----AYADLKPELLYGTIHAREWIGIELAVNFIQHLLDNY-pSNPDVVE
edkdnvkgkrkkkvTKRGQRSAIFVEAGAHGREWIGPSATWILDTLKMvasNDTEL-E

-----FQNNRKPVIVLQSLLHAREWVTLPAALYAIRKLV-----VDITDRD
-----gIADGSRPAVLYSSTQHAREWISTEVNRRLLNHYVDRFkaNDPEIKR
-----SGGGKKPAVVLHGTVHAREWIASMVVEYFINELLSKY-gTDSTITS
-----SGGGKKPAVVFHGTVHAREWIASMVIEYFINELVTKY-gSDQRITS
-----GNNRPAlWIDTG|H|SREWVTQASGVWFACKITEDY-gQDPAFTA

Zinc binding residues

CBPA1_HUMAN_Homo_sapiens
CBPA1_MOUSE_Mus_musculus
CBPA1_BOVIN_Bos_taurus
B6A8G2_HELM_Helicoverpa_armigera
CBPA1_RAT_Rattus_norvegicus
L5LE21_MYODS_Myotis_davidii
M7AG89_CHEMY_Chelonia_mydas
W6TYR4_ECHGR_Echinococcus_granulosus
AOA091GV45_9AVES_Cuculus_canorus
AOA093PIN1_PYGAD_Pygoscelis_adeliae
AOA091G9G5_9AVES_Cuculus_canorus
AOA1A7ZIR4_NOTFU_Nothobranchius_furzeri
AOA1A8ETY9_9TELE_Nothobranchius_korthausae
C3KGU4_ANOFI_Anoplopoma_fimbria
L8WMV6_THACA_Thanatephorus_cucumeris
AOA0B0PAQ9_GOSAR_Gossypium_arboreum
AOA0V1DG89_TRIBR_Trichinella_britovi
K1QTU4_CRAGI_Crassostrea_gigas
L8JCQ3_9GAMM_Photobacterium_marinum
B0WJ40_CULQU_Culex_quinquefasciatus
AOA0K8UDD5_BACLA_Bactrocera_latifrons
AOA0N0PC47_PAPMA_Papilio_machaon
AOA0H5CKL5_9PSEU_Alloactinosynnema_sp.
AOA167BX44_9HYPO_Cordyceps_brongniartii
G3J5Q9_CORMM_Cordyceps_militaris
CBPA1_PIG_Sus_scrofa

Glu 72

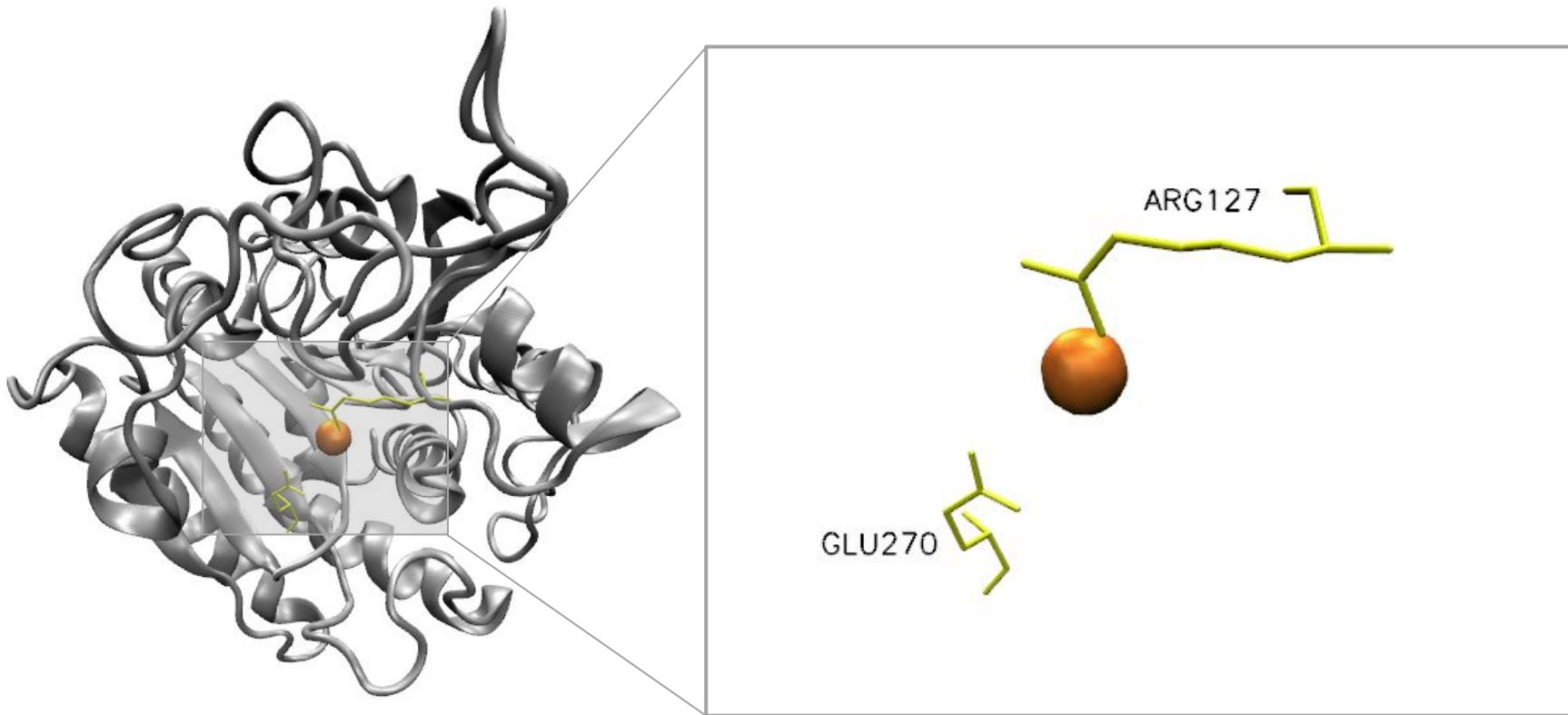
-----GSKRPAlWIDTGIHSRENVQTQASGVWFACKITQDY-gQDAAFTA
-----GTRPAlWIDTGIHSRENVQTQASGVWFACKITKDY-gQEPTLTA
-----GSNRPAlWIDLGIHSRENVITQATGVWFACKFTEDY-gQDPSFTA

-----GTNRPAlWIDTGIHSRENVQTQASGVWFACKITKDY-gQDPTFTA
-----GNNRPAlWIDTGIHSRENVQTQASGIWFACKITQDY-gQNPAFTA
-----GTRPAlWIDTGIHSRENVQTQASGVWFACKIVDSY-gTDPSTS
-----GNNRPAlWIDTGIHSRENVQTQASGVWFACKITQDY-gHDEVLTS
-----GTNRPAlWIDTGIHSRENVQTQASGVWFACKIVQDH-eNDSELAS
-----GSNRSAlWLDTGIHSRENVITQATGIWTANKIAKEY-gQDPSVTA
-----GSNRPAlWLDTGIHSRENVITQATGIWTANKIAKEY-gQDPSITA
-----GTNRPAlWIDTGIHSRENVQTQASGIWFACKIVKDY-gSDPALTA
-----GTNRPAVWIDTGIHSRENVQTQASGIWFACKIVKDY-gSDPALTA
-----GTNRPAlWIDTGIHSRENVQTQASGTWFACKIVTDY-gTDPVLTA
-----EQIAYSLLSNY-tTSSTIKS

-----LNASGKKGFWINAGIHAREWASSSTAI--IENCF-----
-----AYADLKPELLTGTIHAREWIGIELAVNFIQHLLDNY-pSNPDVVE
edkdnvkgkrkkkvTKRGQRSAIFVEAGAHGREWIGPSVATWILDTLKMWasNDTEL-E

-----FQNNRKPVIVLQSLLHARENVTLPAALYAIRKLV----VDITDRD
-----gIADGSRPAVLYSSTQHAREWISTEVNRRLLNHYVDRFkaNDPEIKR
-----SGGGKKPAVVLHGTVHAREWIASMVVEYFINELLSKY-gTDSTITS
-----SGGGKKPAVVFHGTVHAREWIASMVIEYFINELVTKY-gSDQRITS
-----GNNRPAlWIDTGIHSRENVQTQASGVWFACKITEDY-gQDPAFTA

Zinc binding residues


His 196

CBPA1_HUMAN_Homo_sapiens
CBPA1_MOUSE_Mus_musculus
CBPA1_BOVIN_Bos_taurus
B6A8G2_HELM_Helicoverpa_armigera
CBPA1_RAT_Rattus_norvegicus
L5LE21_MYODS_Myotis_davidii
M7AG89_CHEMY_Chelonia_mydas
W6TYR4_ECHGR_Echinococcus_granulosus
A0A091GV45_9AVES_Cuculus_canorus
A0A093PIN1_PYGAD_Pygoscelis_adeliae
A0A091G9G5_9AVES_Cuculus_canorus
A0A1A7ZIR4_NOTFU_Nothobranchius_furzeri
A0A1A8ETY9_9TELE_=Nothobranchius_korthausae
C3KGU4_ANOFI_Anoplopoma_fimbria
L8WMV6_THACA_Thanatephorus_cucumeris
A0A0B0PAQ9_GOSAR_Gossypium_arboreum
A0A0V1DG89_TRIBR_Trichinella_britovi
K1QTU4_CRAGI_Crassostrea_gigas
L8JCQ3_9GAMM_Photobacterium_marinum
B0WJ40_CULQU_Culex_quinquefasciatus
A0A0K8UDD5_BACLA_Bactrocera_latifrons
A0A0N0PC47_PAPMA_Papilio_machaon
A0A0H5CKL5_9PSEU_Alloactinosynnema_sp.
A0A167BX44_9HYPO_Cordyceps_bronniartii
G3J5Q9_CORMM_Cordyceps_militaris
CBPA1_PIG_Sus_scrofa

FANSEVEVKSIIVDF-VKD----hGNIKAFISIHSYSQLLMYPYGYKT-EPVPDQDELDQL
FPNSEVEVKSIIVDFvTSH----GNIKAFISIHSYSQLLLYPYGYTS-EPAPDKEELDQL
YANSEVEVKSIIVDF-VKD----hGNFKAFLSIHSYSQLLLYPYGYTT-QSIPDKTELNQV
-----YLTHSYGQYLLYPWGYDN-ALPPDHKNLETV
FPNSEVEVKSIIVDFvTSH----GNIKAFISIHSYSQLLLYPYGYTS-EPAPDQAELDQL
FANSETEVKSIIVDF-VKS----hGNIKAFISIHSYSQLLLYPYGYTT-DPAKDQAELDEL
YANSEREVKAIVDF-VKS----hGNIKTFISIHSYSQLLLYPYGYTK-TRASDYQELDNI
FANSEVEVKSIIVDF-VKN----hGNIKAFISIHSYSQLLLYPYGYKE-EPASDQKELDQL
YANSEPEVKAIvDFvTNH----GNIKAFISIHSYSQLLLYPYGYTT-TPVPDQEELHEI
YANSEPEVKAIvDF-VKN----hGNIKAFVSIHSYSQLLFYPYGYTS-TPVPDQKELDQI
YAHSEREVKAIVDFILGH----GNVKSVISIHSYSQMLLYPYGYKT-APAPDHQELNEL
SAHSESEVKSIIVDF-VKS----hGNFKAFISIHSYSQLLLYPYGYTR-TPVKDQAELHQL
SAHSESEVKSIIVDF-VKS----hGNFKAFISIHSYSQMLMYPYGYTR-TPVKDQAELHQL
RANSESEVKSIIVDF-AKS----hGNLKFVSIHSYSQMLLYPYGYTN-TPAKDQVELHNL
SAGDSPEFKALSAF-LNAransaAGAKLYIDFHAYGLYFMGPYGYSCSTANAADKTEHTKM
-----FPFSYSAAYLAQGSTEVLDI
FAFSEPESR AVRDF-VLAh---kNHLGAFIDLHTYSQ LWIHPYGH RPD TYPADV DDLKMT

EAFSEPETQA IKRF-VES----hDNIRIALDYHSQGNVF-FPAHKFNHEAEIEGTDLNIL
RAFSEPEAKALSKF-LQNs---rRN1QIFVSLHSYQQTISYPGEKRSQTNDQFSNVHEM
KAFSEPETFYISKF-ISNy--prDTFKAFLSFHSYQYILYPWGYDY-QPTADKADLDRV
GPFSEPETVVL RNI-IQQf---rNRIELFIDHSFGSMILYAYG-TG-DLPANALT NVA
NAASEPETRAMAGL-LDR----IKPKFQSNWHSAGEWILYPQGWQTGTPEADNP--IYV
SAGDAPETKSLSGF-LQKvk-naQGLKLYIDYHSYSQIIMTPYGYSCSARPVNDGELQL
SAGDAPETKSLSAF-LQRik-saQGLKLYIDYHSYSQLFMTPYGYSCSALPANNAELQL
FPNSEVEVKSIIVDF-VND----hGNIKAFISIHSYSQLLLYPYGYKT-EAPADKDELDQI

Active site

Subsite 1

S1

Arg 127
Glu 270

Active site Subsite 1

CBPA1_HUMAN_Homo_sapiens
CBPA1_MOUSE_Mus_musculus
CBPA1_BOVIN_Bos_taurus
B6A8G2_HELM_Helicoverpa_armigera
CBPA1_RAT_Rattus_norvegicus
L5LE21_MYODS_Myotis_davidii
M7AG89_CHEMY_Chelonia_mydas
W6TYR4_ECHGR_Echinococcus_granulosus
A0A091GV45_9AVES_Cuculus_canorus
A0A093PIN1_PYGAD_Pygoscelis_adeliae
A0A091G9G5_9AVES_Cuculus_canorus
A0A1A7ZIR4_NOTFU_Nothobranchius_furzeri
A0A1A8ETY9_9TELE_Nothobranchius_korthausae
C3KGU4_ANOFI_Anoplopoma_fimbria
L8WMV6_THACA_Thanatophorus_cucumeris
A0A0B0PAQ9_GOSAR_Gossypium_arboreum
A0A0V1DG89_TRIBR_Trichinella_britovi
K1QTU4_CRAGI_Crassostrea_gigas
L8JCQ3_9GAMM_Photobacterium_marinum
B0WJ40_CULQU_Culex_quinquefasciatus
A0A0K8UDD5_BACLA_Bactrocera_latifrons
A0A0N0PC47_PAPMA_Papilio_machaon
A0A0H5CKL5_9PSEU_Alloactinosynnema_sp.
A0A167BX44_9HYPO_Cordyceps_brongniartii
G3J5Q9_CORMM_Cordyceps_militaris
CBPA1_PIG_Sus_scrofa

ILDTLDIFLEIVTNPDGFATHST-----NRMWIKT-RSHTags-----
ILDNMDIFLEIVTNPDGFVYTHKT-----NRMWIKT-RSHTEgs-----
ILDSMDIFLEIVTNPDGFATHSQ-----NRLWIKT-RSNTSSS-----

VLDNMDIFLEIVTNPDGFAYTHKT-----NRMWIKT-RSHTQgs-----
ILDKMDIFLEIVTNPDGFATHSK-----NRLWIKT-RSITags-----
ILDNLIDIFLEIVTNPDGFATHTK-----NRMWIKT-RSINSGs-----
VLNTMDIFLEIVTNPDGFAYTQST-----NRLWIKT-RSHGTgs-----
ILDKMDIFLEIVTNPDGFATTQTK-----NRMWIKT-RSKQSGs-----
ILDSMDIFFEIVTNPDGFATHSS-----NRMWIKT-RSINPSS-----
ILDSMDIFFEIVTNPDGFATHSS-----NRMWIKT-RSINAGs-----
ILNNMDIFLEIATNPDGYHYTHTS-----NRMWIKT-RKPNPgs-----
ILNNMDIFLEIATNPDGYYYTHTS-----NRMWIKT-RKPNPgs-----
ILNKMDIFIEIVTNPDGFYYTHNS-----XRMWIKT-RKPNSGs-----
YVDKYDFYIFPIVNPDGFAYTQSS-----DRLWIKN-RQPPPsgs-----

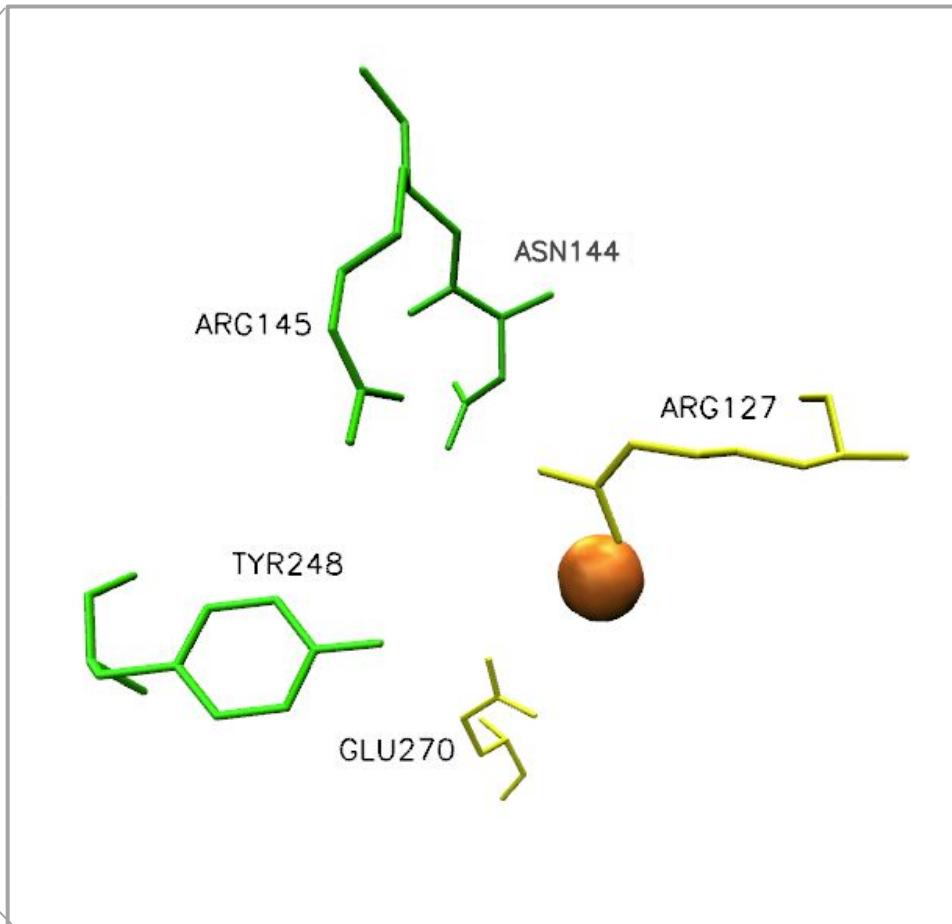
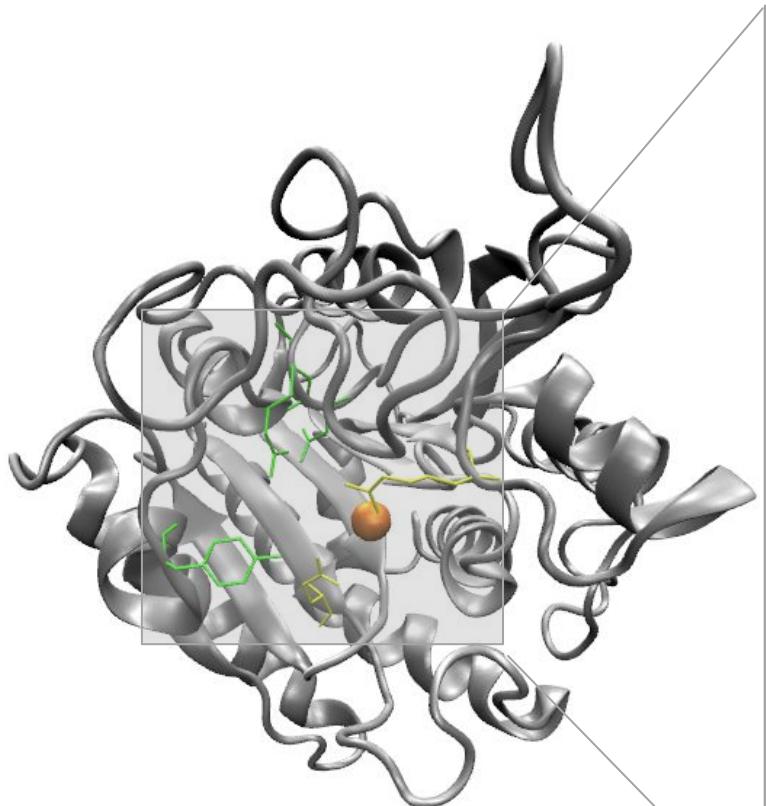
FLGLI-WYIVPLLNVDGYEFTRRNthpdvsylniltvntiVRLWIKN-RSPAElnn-----

ALTRNTLYMVPCLNPDGFEYSRQH-----FSFWIKN-RRDNGdg-----
NMKAMDWYILPVLPNPDGYEYSHEY-----DRMWIKT-RSRHSeahvpgi-----

LVDNIDWIILPIANPDGYEFSHTN-----TRFWIKN-RSTGHmig-----
LLKDTELWFILVANPDGYQYSFDA-----ERLWIKNlRDNDNngvt-----
FVDKYDFYLFPIVN-----TS-----NRMWIKN-RQTTSGs-----
FVDKYDFYLFPIVNVDGKFQVLA-----GV-----QPNCL-----
ILDNLDIFLEIVTNPDGFATHSE-----NRMWIKT-RSRTSGs-----

Arg 127

Active site Subsite 1



Glu 270

CBPA1_HUMAN_Homo_sapiens
CBPA1_MOUSE_Mus_musculus
CBPA1_BOVIN_Bos_taurus
B6A8G2_HELAM_Helicoverpa_armigera
CBPA1_RAT_Rattus_norvegicus
L5LE21_MYODS_Myotis_davidii
M7AG89_CHEMY_Chelonia_mydas
W6TYR4_ECHGR_Echinococcus_granulosus
A0A091GV45_9AVES_Cuculus_canorus
A0A093PIN1_PYGAD_Pygoscelis_adeliae
A0A091G9G5_9AVES_Cuculus_canorus
A0A1A7ZIR4_NOTFU_Nothobranchius_furzeri
A0A1A8ETY9_9TELE_Nothobranchius_korthausae
C3KGU4_ANOFI_Anoplopoma_fimbria
L8WMV6_THACA_Thanatophorus_cucumeris
A0A0B0PAQ9_GOSAR_Gossypium_arboreum
A0A0V1DG89_TRIBR_Trichinella_britovi
K1QTU4_CRAGI_Crassostrea_gigas
L8JCQ3_9GAMM_Photobacterium_marinum
B0WJ40_CULQU_Culex_quinquefasciatus
A0A0K8UDD5_BACLA_Bactrocera_latifrons
A0A0N0PC47_PAPMA_Papilio_machaon
A0A0H5CKL5_9PSEU_Alloactinosynnema_sp.
A0A167BX44_9HYPO_Cordyceps_bronniartii
G3J5Q9_CORMM_Cordyceps_militaris
CBPA1_PIG_Sus_scrofa

SKAAVTALAS-LYGTK--F--NYG-SIIKAIYQAS-GSTIDWTY-SQGIKYSFTPELRDT
AKSAVTALTS-LHGTK--F--KYG-SIIDTIYQAS-GSTIDWTY-SQGIKYSFTPELRDT
AKSAVEALKS-LYGTS--Y--KYG-SIITTIYQAS-GGSIDWSY-NQGIKYSFTPELRDT
GKMMQAQAIQK-TGGSE--Y--KVGSSSGL-LYPAAGGSDDWAK-SLNI-----
AKSAVTALTS-LHGTK--F--KYG-SIIDTIYQAS-GSTIDWTY-SQGIKYSFTPELRDT
AKSAVTALAS-LYGTK--F--KYG-SIIKAIYRAS-GGTIDWTY-NQGIKYSYTFPELRDT
AKAAVTALSS-LYDTQ--Y--RYG-SIITTIYQAS-GGTVDWTY-NQGIKYSFTPELRDR
AQSAVTALAS-LYGTK--Y--KYG-SIIKAIYQAS-GSSIDWAY-NQGIKYSFTPELRDT
SEKAVAALSS-LYGTK--Y--KYG-SIITTIYQAS-GGTIDWTY-NQGIKYSFTPELRDT
SKKAVAALSS-LYGTN--Y--KYG-SIITTIYQAS-GGTIDWTY-NQGIKYSFTPELRDT
AKKAVSDLAA-VYGTK--Y--TYG-SIVDTIYKAD-GTTVDWAY-DNGVKYSFTPELRDT
AQKAITDLAS-LYGTR--Y--RYG-SIIDTIYQAS-GGTIDWTY-NQGIKYSYTFPELRDT
AQKAITDLAS-LYGTN--Y--RYG-SIIDTIYQAS-GGTIDWTY-NQGIKYSYTFPELRDT
AKKAITDLAS-LYGTS--Y--RFG-SIIHTIYKAS-GCTSDWTY-NQGIKYSYTFPELRDT
EQGFAAFKA-PYGKT--L--KTG-PICQTIYQAS-GSSVDYAYGYSKIKYSFTPELRGA
DYTINRSIRYSLI-----YIFEY-----
GIQAINELYS-LYGTR--Y--KVG-SGADTLYPAS-GGMADWVKSATKIKYTYLPELRPD
-----D-----
CANMANEIHKVTK-----RQYGIHRGKPPANLihGSGREYYY-DRGI-LSSVVEVGSR
ATVAVETLRGSGSLAA--Y--RVD-SQHEMSYVSS-GTSTQYARFEAGIKYSYTAELPDT
ARQA-----
GVRMAQAIDAVKWASKpnY--QVGNSALVLSYRDS-GSANDYVQ-AVGVPLAYTPELRPAR
ALAGTDANPAIAG-----FDPGISSDE-LYVTN-GETTDYADTSAGT-VAFTPELSEG
AKGAVDAIYR-IHGTK--Y--RYG-PICSTIYPAT-GSSVDYVADVVKADYTFTAELRDT
AKGAVDAMYK-VYGTS--F--RYG-PICTTIYPAT-GSSVDYVADVVRGDTFTAEELRDT
SKSAVAALTS-LYGTK--F--QYG-SIITTIYQAS-GGTIDWTY-NQGIKYSFSPELRDT

Active site

Subsite 1'

S1

Arg 127
Glu 270

S1'

Asn 144
Arg 145
Tyr 248

Active site Subsite 1'

Asn 144

CBPA1_HUMAN_Homo_sapiens
CBPA1_MOUSE_Mus_musculus
CBPA1_BOVIN_Bos_taurus
B6A8G2_HELM_Helicoverpa_armigera
CBPA1_RAT_Rattus_norvegicus
L5LE21_MYODS_Myotis_davidii
M7AG89_CHEMY_Chelonia_mydas
W6TYR4_ECHGR_Echinococcus_granulosus
A0A091GV45_9AVES_Cuculus_canorus
A0A093PIN1_PYGAD_Pygoscelis_adeliae
A0A091G9G5_9AVES_Cuculus_canorus
A0A1A7ZIR4_NOTFU_Nothobranchius_furzeri
A0A1A8ETY9_9TELE_Nothobranchius_korthausae
C3KGU4_ANOFI_Anoplopoma_fimbria
L8WMV6_THACA_Thanatephorus_cucumeris
A0A0B0PAQ9_GOSAR_Gossypium_arboreum
A0A0V1DG89_TRIBR_Trichinella_britovi
K1QTU4_CRAGI_Crassostrea_gigas
L8JCQ3_9GAMM_Photobacterium_marinum
B0WJ40_CULQU_Culex_quinquefasciatus
A0A0K8UDD5_BACLA_Bactrocera_latifrons
A0A0N0PC47_PAPMA_Papilio_machaon
A0A0H5CKL5_9PSEU_Alloactinosynnema_sp.
A0A167BX44_9HYPO_Cordyceps_brongniartii
G3J5Q9_CORMM_Cordyceps_militaris
CBPA1_PIG_Sus_scrofa

-----lciGVDPNRNWDAFGGLS--GASSNPCSETYHGK
-----lcvGVDPNRNWDAFGMP--GASSNPCSETYRGK
-----lcvGVDNRNWDAFGKA--GASSSPCSETYHGK

-----lcvGVDPNRNWDAFGMA--GASSNPCSETYRGK
-----scvGVDPNRNWDAFGKA--GASSNPCSETYHGK
-----aciGVDPNRNWDAFGGS--GASSNPCSETYRGP
-----icvGVDPNRNWDAFGLT--GASSNPCSETYHGS
-----vcvGVDPNRNWDAFGGS--GASKNPCSDTYHGP
-----hcvGVDPNRNWDAFGGP--GASGNPCSETYHGP
-----lcvGVDPNRNWDAFGGS--GSSSNPCSETYHGP
-----scvGVDPNRNWDAFGGP--GASSSPCSETYRGP
-----scvGVDPNRNWDAFGGG--GASSNPCSETYRGP
-----scvGVDPNRNWDAFGGG--GASGNPCSETFRGP
-----tcyGRDINRNWAQWGTG--GSSTSPCAEDYRGA

-----gqccrGVDLNRNFNFNGGQ--GSSTDPCDETQGP

-----tfGVDLNRNFGINF----RQSKDTRSNIYGGP
lnsawmsctplswlqshsslsvntdqhciGTDLNRNWDYRWNEE--GVSRSACSEHYAGY
-----cpGVDLNRNFGYKWGGK--GTSANPCAQTYRGS
-----niclGVDLNRNYDYKWGT--LSSNSPCSDTYHGK
-----tvgdGVDPNRNFNEHWNYDaeGSSSATSSETYRGA
-----sclGHDINRNWPYKWDVS-gGSSDNPCAEDFRGR
-----GHDINRNWPYKWDLS-gGASDNPCAEDFRGI
-----fcvGVDPNRNWDAFGGA--GASSNPCSETYHGK

Active site Subsite 1'

CBPA1_HUMAN_Homo_sapiens
CBPA1_MOUSE_Mus_musculus
CBPA1_BOVIN_Bos_taurus
B6A8G2_HELM_Helicoverpa_armigera
CBPA1_RAT_Rattus_norvegicus
L5LE21_MYODS_Myotis_davidii
M7AG89_CHEMY_Chelonia_mydas
W6TYR4_ECHGR_Echinococcus_granulosus
A0A091GV45_9AVES_Cuculus_canorus
A0A093PIN1_PYGAD_Pygoscelis_adeliae
A0A091G9G5_9AVES_Cuculus_canorus
A0A1A7ZIR4_NOTFU_Nothobranchius_furzeri
A0A1A8ETY9_9TELE_Nothobranchius_korthausae
C3KGU4_ANOFI_Anoplopoma_fimbria
L8WMV6_THACA_Thanatephorus_cucumeris
A0A0B0PAQ9_GOSAR_Gossypium_arboreum
A0A0V1DG89_TRIBR_Trichinella_britovi
K1QTU4_CRAGI_Crassostrea_gigas
L8JCQ3_9GAMM_Photobacterium_marinum
B0WJ40_CULQU_Culex_quinquefasciatus
A0A0K8UDD5_BACLA_Bactrocera_latifrons
A0A0N0PC47_PAPMA_Papilio_machaon
A0A0H5CKL5_9PSEU_Alloactinosynnema_sp.
A0A167BX44_9HYPO_Cordyceps_brongniartii
G3J5Q9_CORMM_Cordyceps_militaris
CBPA1_PIG_Sus_scrofa

Arg 145

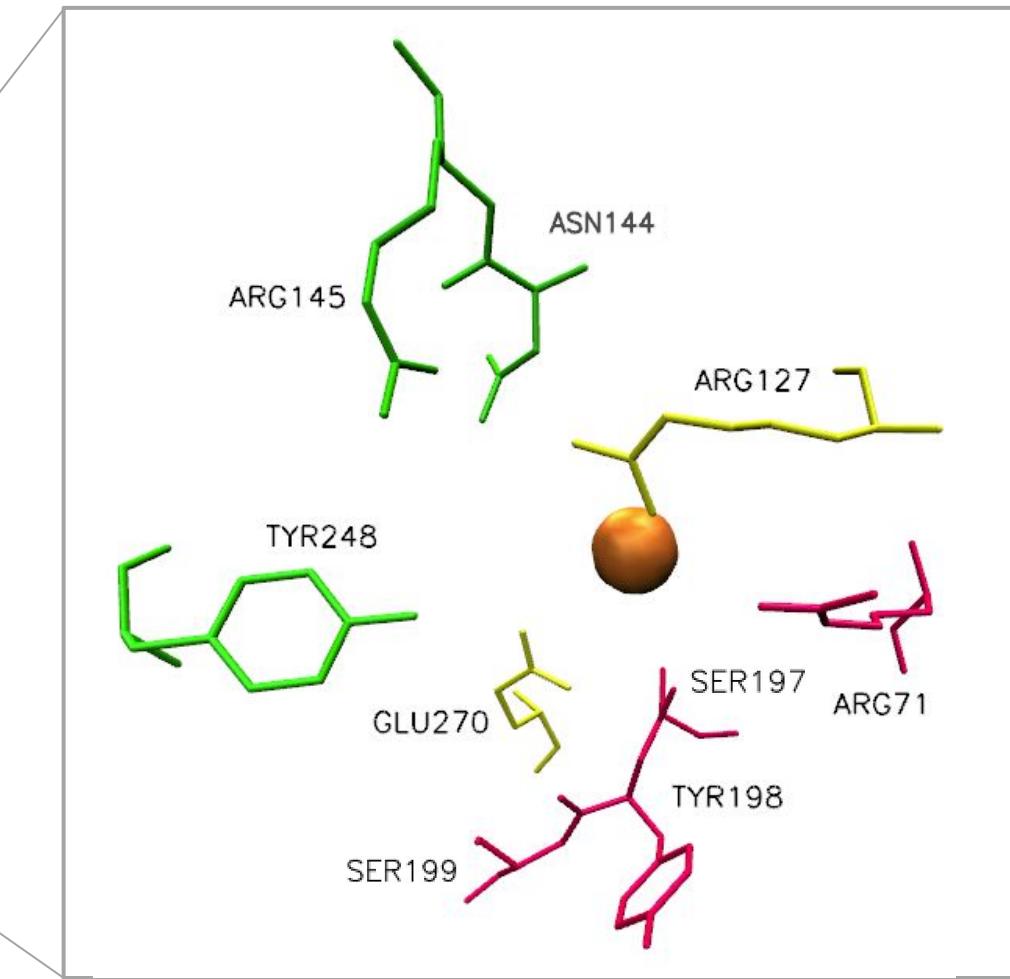
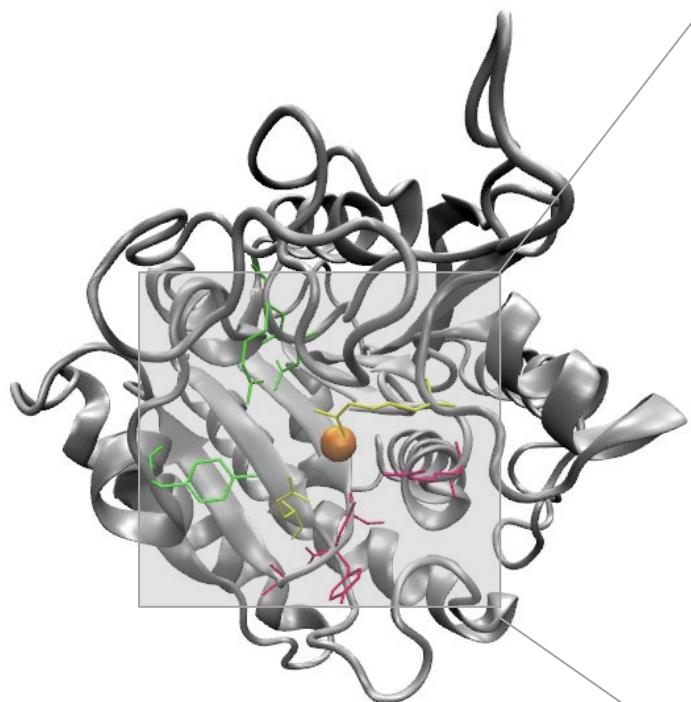
-----lciGVDPNRNWDAFGGLS--GASSNPCSETYHGK
-----lcvGVDPNRNWDAAFGMP--GASSNPCSETYRGK
-----lcvGVDANRNWDAFGKA--GASSSPCSETYHGK

-----lcvGVDPNRNWDAFGMA--GASSNPCSETYRGK
-----scvGVDPNRNWDAFGKA--GASSNPCSETYHGK
-----aciGVDPNRNWDAFGGGS--GASSNPCSETYRGP
-----icvGVDPNRNWDAFGLT--GASSNPCSETYHGS
-----vcvGVDPNRNWDAFGGGS--GASKNPCSDTYHGP
-----hcvGVDPNRNWDAFGGP--GASGNPCSETYHGP
-----lcvGVDPNRNWDAFGGGS--GSSSNPCSETYHGP
-----scvGVDPNRNWDAFGGP--GASSSPCSETYRGP
-----scvGVDPNRNWDAFGGG--GASSSPCSETYRGP
-----scvGVDPNRNWDAFGGA--GASGNPCSETFRGP
-----tcyGRDINRNWAWQWGTG--GSSTSPCAEDYRGA

-----gqccrGVDLNRNFNFNFGQQ--GSSTDPCDETQGP

-----tfGVDLNRNFGINF----RQSKDTRSNIYGGP
lnsawmsctplswlqshsslsvntdqhciGTDLNRNWDRWNEE--GVSRSACSEHYAGY
-----cpGVDLNRNFGYKWGGK--GTSANPCAQTYRGS
-----niclGVDLRNHYDYKWGT--LSSNSPCSDTYHGK
-----tvgdGVDPNRNFNEHWNYDaeGSSSATSSETYRGA
-----sclGHDINRNWPYKWDVS-gGSSDNPCAEDFRGR
-----GHDINRNWPYKWDLS-gGASDNPCAEDFRGI
-----fcvGVDPNRNWDAFGGA--GASSNPCSETYHGK

Active site Subsite 1'



CBPA1_HUMAN_Homo_sapiens
CBPA1_MOUSE_Mus_musculus
CBPA1_BOVIN_Bos_taurus
B6A8G2_HELAM_Helicoverpa_armigera
CBPA1_RAT_Rattus_norvegicus
L5LE21_MYODS_Myotis_davidii
M7AG89_CHEMY_Chelonia_mydas
W6TYR4_ECHGR_Echinococcus_granulosus
A0A091GV45_9AVES_Cuculus_canorus
A0A093PIN1_PYGAD_Pygoscelis_adeliae
A0A091G9G5_9AVES_Cuculus_canorus
A0A1A7ZIR4_NOTFU_Nothobranchius_furzeri
A0A1A8ETY9_9TELE_Nothobranchius_korthausae
C3KGU4_ANOFI_Anoplopoma_fimbria
L8WMV6_THACA_Thanatophorus_cucumeris
A0A0B0PAQ9_GOSAR_Gossypium_arboreum
A0A0V1DG89_TRIBR_Trichinella_britovi
K1QTU4_CRAGI_Crassostrea_gigas
L8JCQ3_9GAMM_Photobacterium_marinum
B0WJ40_CULQU_Culex_quinquefasciatus
A0A0K8UDD5_BACLA_Bactrocera_latifrons
A0A0N0PC47_PAPMA_Papilio_machaon
A0A0H5CKL5_9PSEU_Alloactinosynnema_sp.
A0A167BX44_9HYPO_Cordyceps_brongniartii
G3J5Q9_CORMM_Cordyceps_militaris
CBPA1_PIG_Sus_scrofa

Tyr 248

SKAAVTALAS-LYGTK--F--NYG-SIIKAIYQAS-GSTIDWTY-SQGIKYSFTFELRDT
AKSAVTALTS-LHGTK--F--KYG-SIIDTIYQAS-GSTIDWTY-SQGIKYSFTFELRDT
AKSAVEALKS-LYGTS--Y--KYG-SIITTIYQAS-GGSIDWSY-NQGIKYSFTFELRDT
GKMMQAQAIQK-TGGSE--Y--KVGSSSGL-LYPAAC-GGSDDWAK-SLNI-----
AKSAVTALTS-LHGTK--F--KYG-SIIDTIYQAS-GSTIDWTY-SQGIKYSFTFELRDT
AKSAVTALAS-LYGTK--F--KYG-SIIKAIYRAS-GGTIDWTY-NQGIKYSFTFELRDT
AKAAVTALSS-LYDTQ--Y--RYG-SIITTIYQAS-GGTVWDWTY-NQGIKYSFTFELRDR
AQSAVTALAS-LYGTK--Y--KYG-SIIKAIYQAS-GSSIDWAY-NQGIKYSFTFELRDT
SEKAVAALSS-LYGTK--Y--KYG-SIITTIYQAS-GGTIDWTY-NQGIKYSFTFELRDT
SKKAVAALSS-LYGTN--Y--KYG-SIITTIYQAS-GGTIDWTY-NQGIKYSFTFELRDT
AKKAVSDLAA-VYGTK--Y--TYG-SIVDTIYKAD-GTTVDWAY-DNGVKYSFTFELRDT
AQKAITDLAS-LYGTR--Y--RYG-SIIDTIYQAS-GGTIDWTY-NQGIKYSFTFELRDT
AQKAITDLAS-LYGTTR--Y--RYG-SIIDTIYQAS-GGTIDWTY-NQGIKYSFTFELRDT
AKKAITDLAS-LYGTS--Y--RFG-SIIHTIYKAS-GCTSDWTY-NQGIKYSFTFELRDT
EQGFAAAFKP-PYGKT--L--KTG-PICQTIYQAS-GSSVDYAYGYSKIKYSFTPELRGA
DYTINRSIRYSLI-----YIFEY-----
GIQAINELYS-LYGTR--Y--KVG-SGADTLYPAS-GGMADWVKSATKIKYTYLIELRPD
-----D-----
CANMANEIHVKTK-----RQYGIHRGKPPANLIhGSGREYYYY-DRGI-LSSVVEGSR
ATVAVETLRGSGSLAA--Y--RVD-SQHEMSYSS-GTSTQYARFEAGIKYSYTAELPDT
ARQA-----
GVRMAQAIDAVKWAQKpnY--QVGNSALVLSYRDS-GSANDYVQ-AVGVPLAYTYELPAR
ALAGTDANPAIAG-----FDPGISSLDE-LYTN-GETTDYADTSAGT-VAFTPELSEG
AKGAVDAIYR-IHGTK--Y--RYG-PICSTIYPAT-GSSVDYVADVVKADYTFALRDT
AKGAVDAMYK-VYGTS--F--RYG-PICTTIYPAT-GSSVDYVADVVVRGDYTFALRDT
SKSAVAALTS-LYGTK--F--QYG-SIITTIYQAS-GGTIDWTY-NQGIKYSFSFELRDT

Active site

Subsite 2

S1

Arg 127
Glu 270

S1'

Asn 144
Arg 145
Tyr 248

S2

Arg 71
Ser 197

Tyr 198
Ser 199

Active site Subsite 2

Arg 71

CBPA1_HUMAN_Homo_sapiens
CBPA1_MOUSE_Mus_musculus
CBPA1_BOVIN_Bos_taurus
B6A8G2_HELM_Helicoverpa_armigera
CBPA1_RAT_Rattus_norvegicus
L5LE21_MYODS_Myotis_davidii
M7AG89_CHEMY_Chelonia_mydas
W6TYR4_ECHGR_Echinococcus_granulosus
A0A091GV45_9AVES_Cuculus_canorus
A0A093PIN1_PYGAD_Pygoscelis_adeliae
A0A091G9G5_9AVES_Cuculus_canorus
A0A1A7ZIR4_NOTFU_Nothobranchius_furzeri
A0A1A8ETY9_9TELE_Nothobranchius_korthausae
C3KGU4_ANOFI_Anoplopoma_fimbria
L8WMV6_THACA_Thanatophorus_cucumeris
A0A0B0PAQ9_GOSAR_Gossypium_arboreum
A0A0V1DG89_TRIBR_Trichinella_britovi
K1QTU4_CRAGI_Crassostrea_gigas
L8JCQ3_9GAMM_Photobacterium_marinum
B0WJ40_CULQU_Culex_quinquefasciatus
A0A0K8UDD5_BACLA_Bactrocera_latifrons
A0A0N0PC47_PAPMA_Papilio_machaon
A0A0H5CKL5_9PSEU_Alloactinosynnema_sp.
A0A167BX44_9HYPO_Cordyceps_brongniartii
G3J5Q9_CORMM_Cordyceps_militaris
CBPA1_PIG_Sus_scrofa

-----GSKRPAlWIDTGIHSREWVTQASGVWFAKKITQDY-gQDAAFTA
-----GTNRPAIWI DTGIHSREWVTQASGVWFAKKITKDY-gQEPTLTA
-----GSNRPAlWIDLGIHSREWITQATGVWFAKKFTEDY-gQDPSFTA

-----GTNRPAIWI DTGIHSREWVTQASGVWFAKKITKDY-gQDPTFTA
-----GNNRPAlWIDLGIHSREWVTQASGIWFAKKIQDY-gQNPAFTA
-----GTRPAIWI DTGIHSREWVTQASGVWFAKKIVDSY-gTDP SLTS
-----GNNRPAlWIDLGIHSREWVTQASGVWFAKKITQDY-gHDEVLTS
-----GTNRPAIWI DTGIHSREWVTQASGVWFAKKIVQDH-eNDSELAS
-----GSNRSAlWLDTGIHSREWITQATGIWTANKIAKEY-gQDPSVTA
-----GSNRPAlWLDTGIHSREWITQATGIWTANKIAKEY-gQDPSITA
-----GTNRPAIWI DTGIHSREWVTQASGIWFAKKIVKDY-gSDPALTA
-----GTNRPAVWIDTGIHSREWVTQASGIWFAKKIVKDY-gSDPALTA
-----GTNRPAIWI DTGIHSREWVTQASGTWFAKKIVTDY-gTDPVLTA
-----EQIAYSLLSNY-tTSSTIKS

-----LNASGKKGFWINAGIHAREWASSSTAI--IENCF-----

-----AYADLKPA LYTGTHAREWIGIELAVNFIQHLLDNY-pSNPDVVE
edkdnvkgkrkkvTKRGQRSAIFVEAGAHOREWIGPSVATWILDLT KMVasNDTEL-E

-----FQNNRKPVIVLQSLLHAREWVTPAALYAIRKLV----VDITDRD
-----gIADGSRPAVLYSSTQHAREWISTEVNRRLLNHYVDRFkaNDPEIKR
-----SGGGKKPAVVLHGTVHAREWIASMVVEYFINELLSKY-gTDSTITS
-----SGGGKKPAVVFHGTVHAREWIASMVIEYFINELVTKY-gSDQRITS
-----GNNRPAlWIDLGIHSREWVTQASGVWFAKKITEDY-gQDPAFTA

Active site Subsite 2

Ser 197

CBPA1_HUMAN_Homo_sapiens
CBPA1_MOUSE_Mus_musculus
CBPA1_BOVIN_Bos_taurus
B6A8G2_HELM_Helicoverpa_armigera
CBPA1_RAT_Rattus_norvegicus
L5LE21_MYODS_Myotis_davidii
M7AG89_CHEMY_Chelonia_mydas
W6TYR4_ECHGR_Echinococcus_granulosus
A0A091GV45_9AVES_Cuculus_canorus
A0A093PIN1_PYGAD_Pygoscelis_adeliae
A0A091G9G5_9AVES_Cuculus_canorus
A0A1A7ZIR4_NOTFU_Nothobranchius_furzeri
A0A1A8ETY9_9TELE_Nothobranchius_korthausae
C3KGU4_ANOFI_Anoplopoma_fimbria
L8WMV6_THACA_Thanatophorus_cucumeris
A0A0B0PAQ9_GOSAR_Gossypium_arboreum
A0A0V1DG89_TRIBR_Trichinella_britovi
K1QTU4_CRAGI_Crassostrea_gigas
L8JCQ3_9GAMM_Photobacterium_marinum
B0WJ40_CULQU_Culex_quinquefasciatus
A0A0K8UDD5_BACLA_Bactrocera_latifrons
A0A0N0PC47_PAPMA_Papilio_machaon
A0A0H5CKL5_9PSEU_Alloactinosynnema_sp.
A0A167BX44_9HYPO_Cordyceps_bronniartii
G3J5Q9_CORMM_Cordyceps_militaris
CBPA1_PIG_Sus_scrofa

FANSEVEVKSIVDF-VKD----hGNIKAFISIHSYSQLLMYPYGYKT-EPVPDQDELDQL
FPNSEVEVKSIVDFvTSH----GNIKAFISIHSYSQLLLYPYGYTS-EPAPDKEELDQL
YANSEVEVKSIVDF-VKD----hGNFKAFLSIHSYSQLLLYPYGYTT-QSIPDKTELNVQV
-----YLTYHSYGQYLLYPWGYDN-ALPPDHKNLETV
FPNSEVEVKSIVDFvTSH----GNIKAFISIHSYSQLLLYPYGYTS-EPAPDQAELDQL
FANSETEVKSIVDF-VKS----hGNIKAFISIHSYSQLLLYPYGYTT-DPAKDQAELDEL
YANSEREVKAIVDF-VKS----hGNIKTFISIHSYSQLLLYPYGYTK-TRASDYQELDNI
FANSEVEVKSIVDF-VKN----hGNIKAFISIHSYSQLLLYPYGYKE-EPASDQKELDQL
YANSEPEVKAIVDFvTNH----GNIKAFISIHSYSQLLLYPYGYTT-TPVPDQEELHEI
YANSEPEVKAIVDF-VKN----hGNIKAFVSIHSYSQLLFYPYGYTS-TPVPDQKELDQI
YAHSEREVKAIVDFILGH----GNVKSVISIHSYSQMLLYPYGYKT-APAPDHQELNEL
SAHSESEVKSIVDF-VKS----hGNFKAFISIHSYSQLLLYPYGYTR-TPVKDQAELHQL
SAHSESEVKSIVDF-VKS----hGNFKAFISIHSYSQMLMYPYGYTR-TPVKDQAEHLQL
RANSESEVKSIVDF-AKS----hGNLKFVSIHSYSQMLLYPYGYTN-TPAKDQVELHNL
SAGDSPEFKALSAF-LNAransaAGAKLYIDFHAYGLYFMGPYGYSTANAADKTEHTKM
-----FPFSYSAAAYLAQGSTEVRI
FAFSEPESRAVRDF-VLAh---kNHLGAFIDLHTYSQQLWIHPYGHRPDTYPADVDDLKMT

EAFSEPETQAIKRF-VES----hDNIRIALDYHSQGNVF-FPAHKFNHEAEIEGTDLNIL
RAFSEPEAKALSKF-LQNs---rRNQIIFVSLHSYGQTISYPGEKRSQTNDQFSNVHEM
KAFSEPETFYISKF-ISNy--prDTFKAFLSFHSYGQYILYPWGYDY-QPTADKADLDRV
GPFSEPETVVLRNI-IQQf---rNRIELFIDIHSFGSMILYAYG-TG-DLPANALTLNVA
NAASEPETRAMAGL-LDR----IKPKFQSNWHSAGEWILYPQGWQTGTPEADNP--IYV
SAGDAPETKSLSGF-LQKvk-naQGLKLYIDYHSYSQIIMTPYGYSCSARPVNQELQSL
SAGDAPETKSLSAF-LQRik-saQGLKLYIDYHSYSQLFMTPYGYSCSALPANNAELQSL
FPNSEVEVKSIVDF-VND----hGNIKAFISIHSYSQLLLYPYGYKT-EAPADKDELDQI

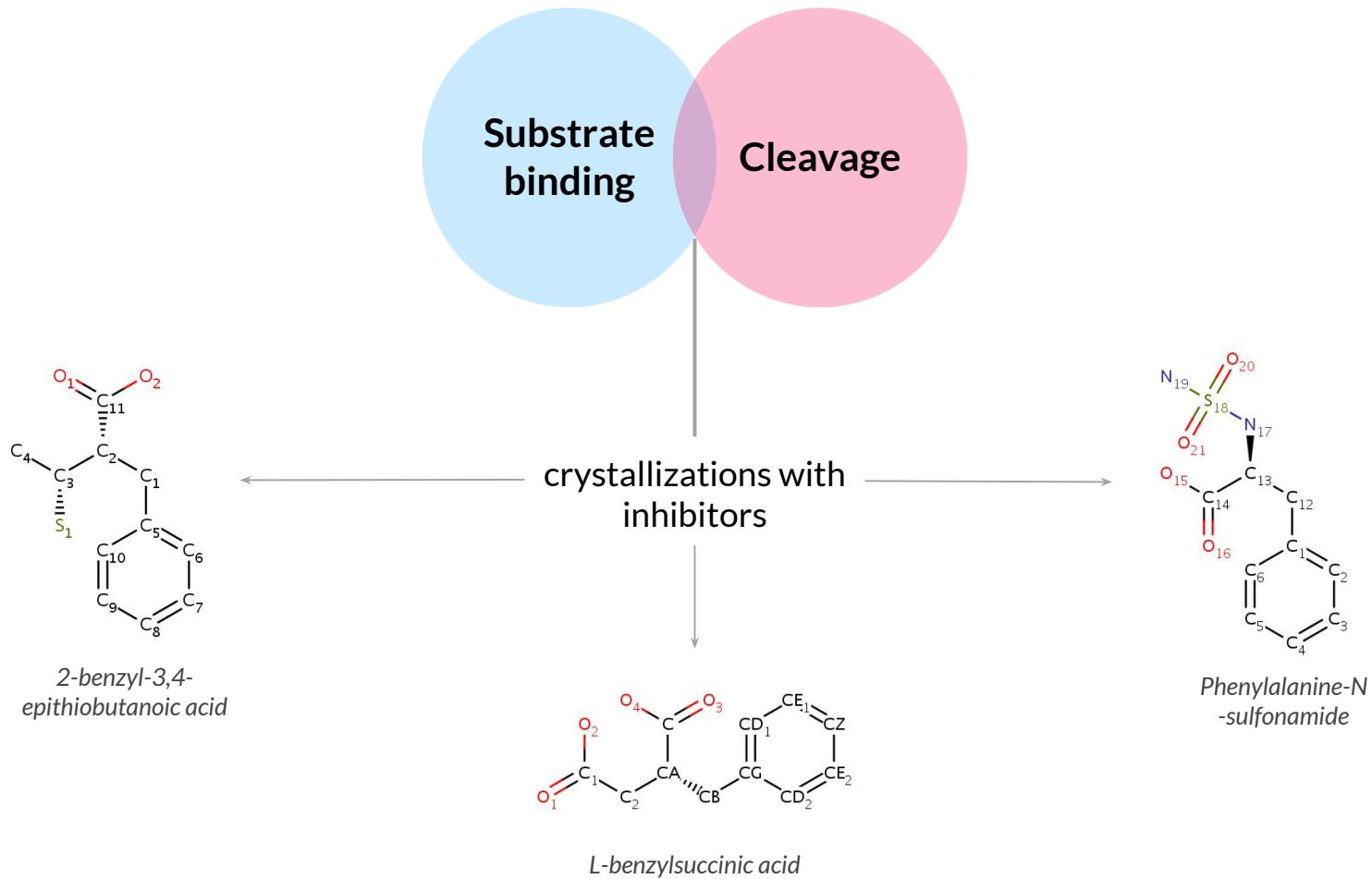
Active site Subsite 2

Tyr 198

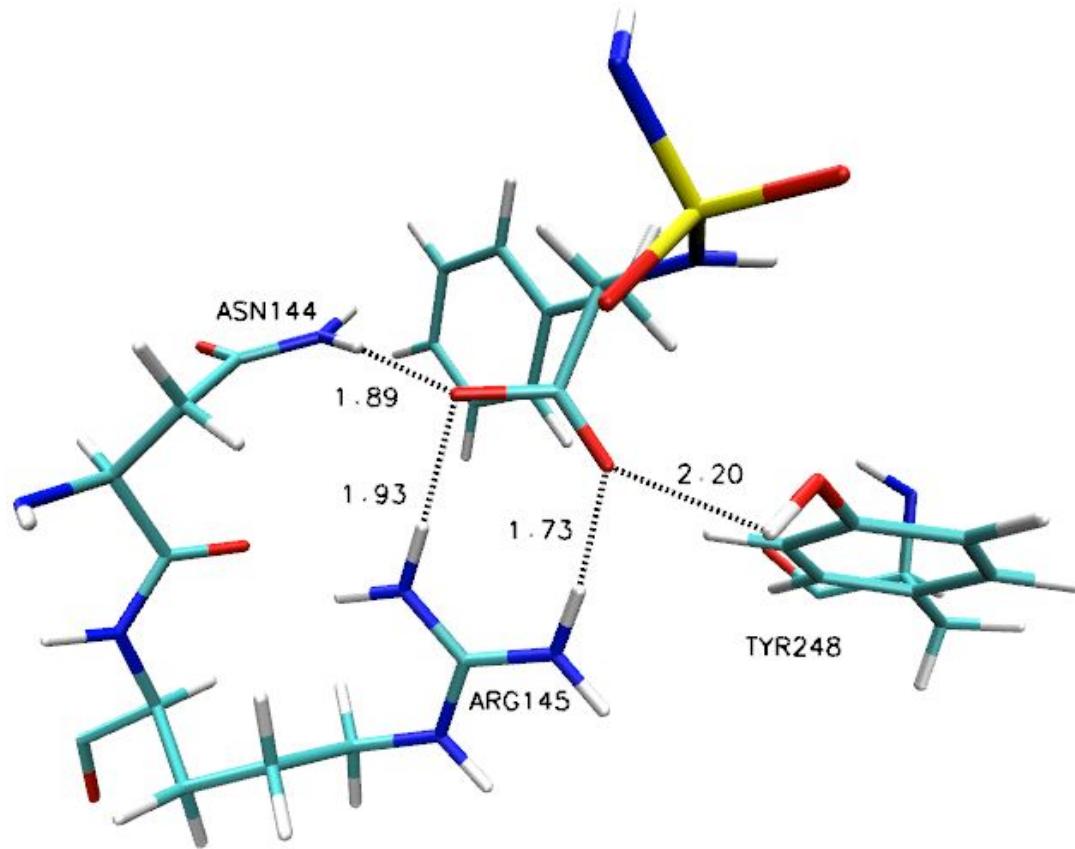
CBPA1_HUMAN_Homo_sapiens
CBPA1_MOUSE_Mus_musculus
CBPA1_BOVIN_Bos_taurus
B6A8G2_HELM_Helicoverpa_armigera
CBPA1_RAT_Rattus_norvegicus
L5LE21_MYODS_Myotis_davidii
M7AG89_CHEMY_Chelonia_mydas
W6TYR4_ECHGR_Echinococcus_granulosus
A0A091GV45_9AVES_Cuculus_canorus
A0A093PIN1_PYGAD_Pygoscelis_adeliae
A0A091G9G5_9AVES_Cuculus_canorus
A0A1A7ZIR4_NOTFU_Nothobranchius_furzeri
A0A1A8ETY9_9TELE_=Nothobranchius_korthausae
C3KGU4_ANOFI_Anoplopoma_fimbria
L8WMV6_THACA_Thanatophorus_cucumeris
A0A0B0PAQ9_GOSAR_Gossypium_arboreum
A0A0V1DG89_TRIBR_Trichinella_britovi
K1QTU4_CRAGI_Crassostrea_gigas
L8JCQ3_9GAMM_Photobacterium_marinum
B0WJ40_CULQU_Culex_quinquefasciatus
A0A0K8UDD5_BACLA_Bactrocera_latifrons
A0A0N0PC47_PAPMA_Papilio_machaon
A0A0H5CKL5_9PSEU_Alloactinosynnema_sp.
A0A167BX44_9HYPO_Cordyceps_bronniartii
G3J5Q9_CORMM_Cordyceps_militaris
CBPA1_PIG_Sus_scrofa

FANSEVEVKSI VDF-VKD----hGNIKAFISIHSYSQLLMYPYGYKT-EPVPDQDELDQL
FPNSEVEVKSI VDFvTSH----GNIKAFISIHSYSQLLLYPYGYTS-EPAPDKEELDQL
YANSEVEVKSI VDF-VKD----hGNFKAFLSIHSYSQLLLYPYGYTT-QSIPDKTELNVQV
-----YLTYHSYGQYLLYPWGYDN-ALPPDHKNLETV
FPNSEVEVKSI VDFvTSH----GNIKAFISIHSYSQLLLYPYGYTS-EPAPDQAELDQL
FANSETEVKSI VDF-VKS----hGNIKAFISIHSYSQLLLYPYGYTT-DPAKDQAELDEL
YANSEREVKAIVDF-VKS----hGNIKTFISIHSYSQLLLYPYGYTK-TRASDYQELDNI
FANSEVEVKSI VDF-VKN----hGNIKAFISIHSYSQLLLYPYGYKE-EPASDQKELDQL
YANSEPEVKAI VDFvTNH----GNIKAFISIHSYSQLLLYPYGYTT-TPVPDQEELHEI
YANSEPEVKAI VDF-VKN----hGNIKAFVSIHSYSQLLFYPYGYTS-TPVPDQKELDQI
YAHSEREVKAIVDFiLGH----GNVKSVISIHSYSQLLLYPYGYKT-APAPDHQELNEL
SAHSEEVKSIVDF-VKS----hGNFKAFISIHSYSQLLLYPYGYTR-TPVKDQAELHQL
SAHSEEVKSIVDF-VKS----hGNFKAFISIHSYSQLMLMYPYGYTR-TPVKDQAEHLQL
RANSEEVKSIVDF-AKS----hGNLKAFVSIHSYSQLLLYPYGYTN-TPAKDQVELHNL
SAGDSPEFKALSAF-LNaransaAGAKLYIDFHAYGLYFMGPYGYSTANAADKTEHTKM
-----FPFSYSAA YLAQGSTEV RDI
FAFSEPESRAVRDF-VLAh---kNHLGAFIDLHTYSQLWIHPYGH RPD TYPADVDDLKMT

EAFSEPETQAIKRF-VES----hDNIRIALDYHSQGNVF-FPAHKFNHEAEIEGTDLNIL
RAFSEPEAKALSKF-LQNs---rRNQIIFVSLHSYQQTISYPGEKRSQTND EQFSNVHEM
KAFSEPETFYISKF-ISNy--prDTFKAFLSFHSYQYIILYPWGYDY-QPTADKADLDRV
GPFSEPETVVLRNI-IQQf---rNRIELFIDIHSFGSMILYAYG-TG-DLPANALT LNVA
NAASEPETRAMAGL-LDR----IKPKFQSNWHSAGEWILYLPQGWQTGTPEADNP--IYV
SAGDAPETKSLSGF-LQKvk-naQGLKLYIDYHSY5QIIMTPYGYSCSARPVN DGE LQSL
SAGDAPETKSLSAF-LQrik-saQGLKLYIDYHSY5QLFMTPYGYSCSALPANNAELQSL
FPNSEVEVKSI VDF-VND----hGNIKAFISIHSYSQLLLYPYGYKT-EAPADKDELDQI


Active site Subsite 2

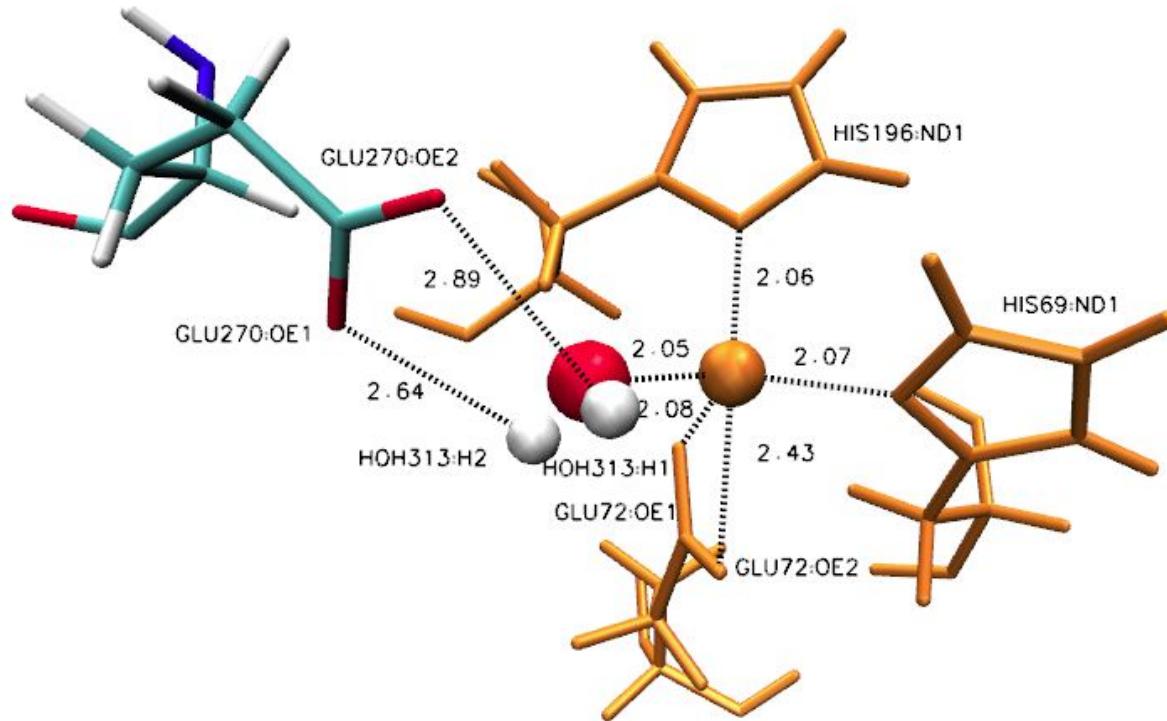
Ser 199


CBPA1_HUMAN_Homo_sapiens
CBPA1_MOUSE_Mus_musculus
CBPA1_BOVIN_Bos_taurus
B6A8G2_HELM_Helicoverpa_armigera
CBPA1_RAT_Rattus_norvegicus
L5LE21_MYODS_Myotis_davidii
M7AG89_CHEMY_Chelonia_mydas
W6TYR4_ECHGR_Echinococcus_granulosus
A0A091GV45_9AVES_Cuculus_canorus
A0A093PIN1_PYGAD_Pygoscelis_adeliae
A0A091G9G5_9AVES_Cuculus_canorus
A0A1A7ZIR4_NOTFU_Nothobranchius_furzeri
A0A1A8ETY9_9TELE_Nothobranchius_korthausae
C3KGU4_ANOFI_Anoplopoma_fimbria
L8WMV6_THACA_Thanatophorus_cucumeris
A0A0B0PAQ9_GOSAR_Gossypium_arboreum
A0A0V1DG89_TRIBR_Trichinella_britovi
K1QTU4_CRAGI_Crassostrea_gigas
L8JCQ3_9GAMM_Photobacterium_marinum
B0WJ40_CULQU_Culex_quinquefasciatus
A0A0K8UDD5_BACLA_Bactrocera_latifrons
A0A0N0PC47_PAPMA_Papilio_machaon
A0A0H5CKL5_9PSEU_Alloactinosynnema_sp.
A0A167BX44_9HYPO_Cordyceps_bronniartii
G3J5Q9_CORMM_Cordyceps_militaris
CBPA1_PIG_Sus_scrofa

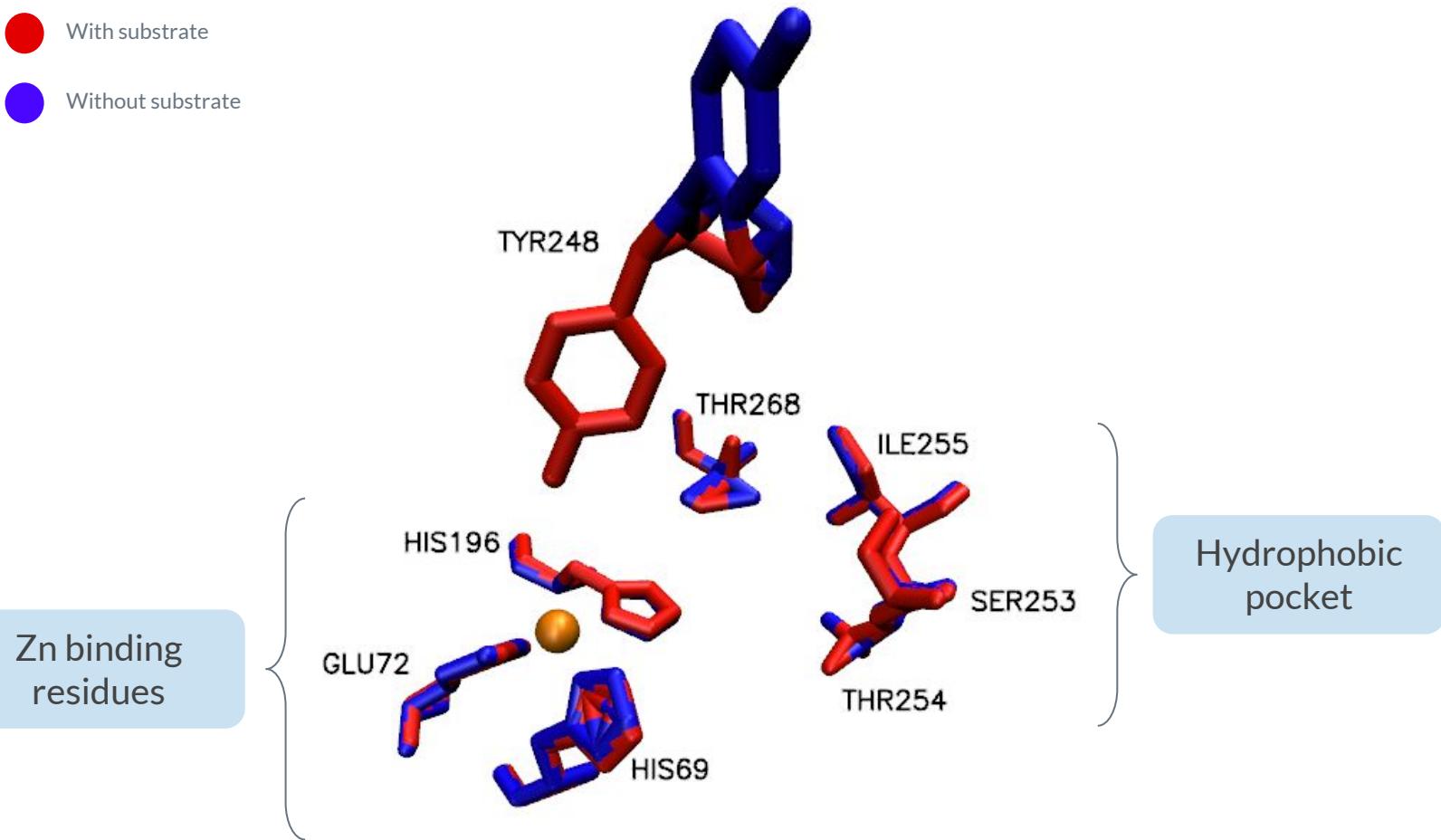
FANSEVEVKSIVDF-VKD---hGNIKAFISIHSYSQLLMYPYGYKT-EPVPDQDELDQL
FPNSEVEVKSIVDFvTSH----GNIKAFISIHSYSQLLLYPYGYTS-EPAPDKEELDQL
YANSEVEVKSIVDF-VKD---hGNFKAFLSIHSYSQLLLYPYGYTT-QSIPDKTELNVQV
-----YLTYHSYQGQYLPPWGYDN-ALPPDHKNLETV
FPNSEVEVKSIVDFvTSH----GNIKAFISIHSYSQLLLYPYGYTS-EPAPDQAELDQL
FANSETEVKSIVDF-VKS---hGNIKAFISIHSYSQLLLYPYGYTT-DPAKDQAELDEL
YANSEREVKAIVDF-VKS---hGNIKTFISIHSYSQLLLYPYGYTK-TRASDYQELDNI
FANSEVEVKSIVDF-VKN---hGNIKAFISIHSYSQLLLYPYGYKE-EPASDQKELDQL
YANSEPEVKAIIVDFvTNH----GNIKAFISIHSYSQLLLYPYGYTT-TPVPDQEELHEI
YANSEPEVKAIIVDF-VKN---hGNIKAFVSIHSYSQLLFYPYGYTS-TPVPDQKELDQI
YAHSEREVKAIVDFILGH----GNVKSVISIHSYSQMLLYPYGYKT-APAPDHQELNEL
SAHSESEVKSIVDF-VKS---hGNFKAFISIHSYSQLLLYPYGYTR-TPVKDQAELHQL
SAHSESEVKSIVDF-VKS---hGNFKAFISIHSYSQMLMYPYGYTR-TPVKDQAEHLQL
RANSESEVKSIVDF-AKS---hGNLKAFVSIHSYSQMLLYPYGYTN-TPAKDQVELHNL
SAGDSPEFKALSAF-LNaransaAGAKLYIDFHAYGLYFMGPYGYSTANAADKTEHTKM
-----FPFSYSAAAYLAQGSTEVRI
FAFSEPESRAVRDF-VLAh---kNHLGAFIDLHTYSQWIHPYGHRPDTYPADVDDLKMT

EAFSEPETQAIKRF-VES---hDNIRIALDYHSQGNVF-FPAHKFNHEAEIEGTDLNIL
RAFSEPEAKALSKF-LQNs---rRNIQIFVSLHSYQQTISYPGEKRSQTNDQFSNVHEM
KAFSEPETFYISKF-ISNy---prDTFKAFLSFHSGYQYILYPWGYDY-QPTADKADLDRV
GPFSEPETVVLRNI-IQQf---rNRIELFIDIHSFGSMILYAYG-TG-DLPANALTLNVA
NAASEPETRAMAGL-LDR---IKPKFQSNWHSAGEWILYPQGWQTGTPEADNP--IYV
SAGDAPETKSLSGF-LQKvk-naQGLKLYIDYHSYSQIIMTPYGYSCSARPVNDELQSL
SAGDAPETKSLSAF-LQRik-saQGLKLYIDYHSYSQLFMTPYGYSCSALPANNAELQSL
FPNSEVEVKSIVDF-VND---hGNIKAFISIHSYSQLLLYPYGYKT-EAPADKDELDQI

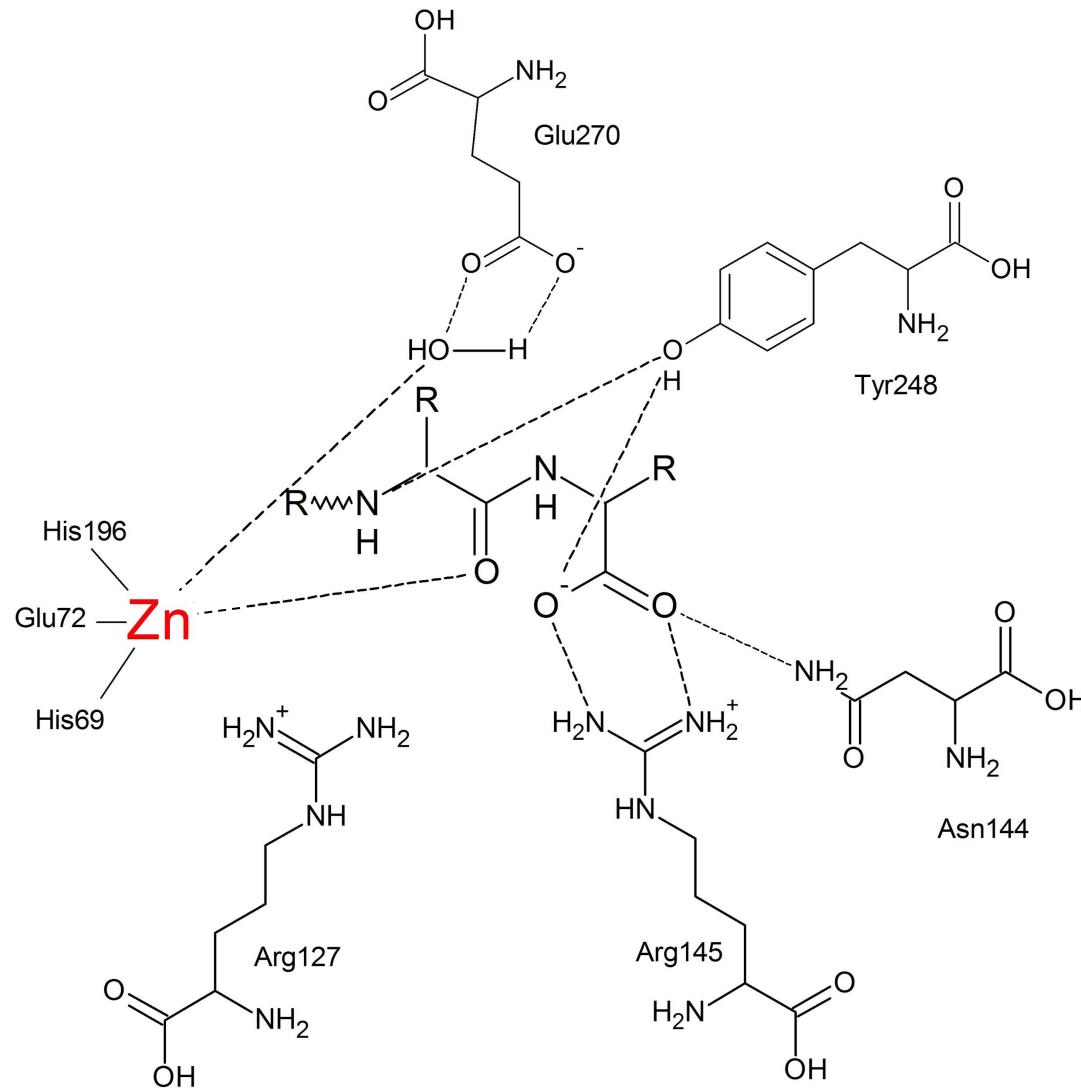
Enzymatic reaction



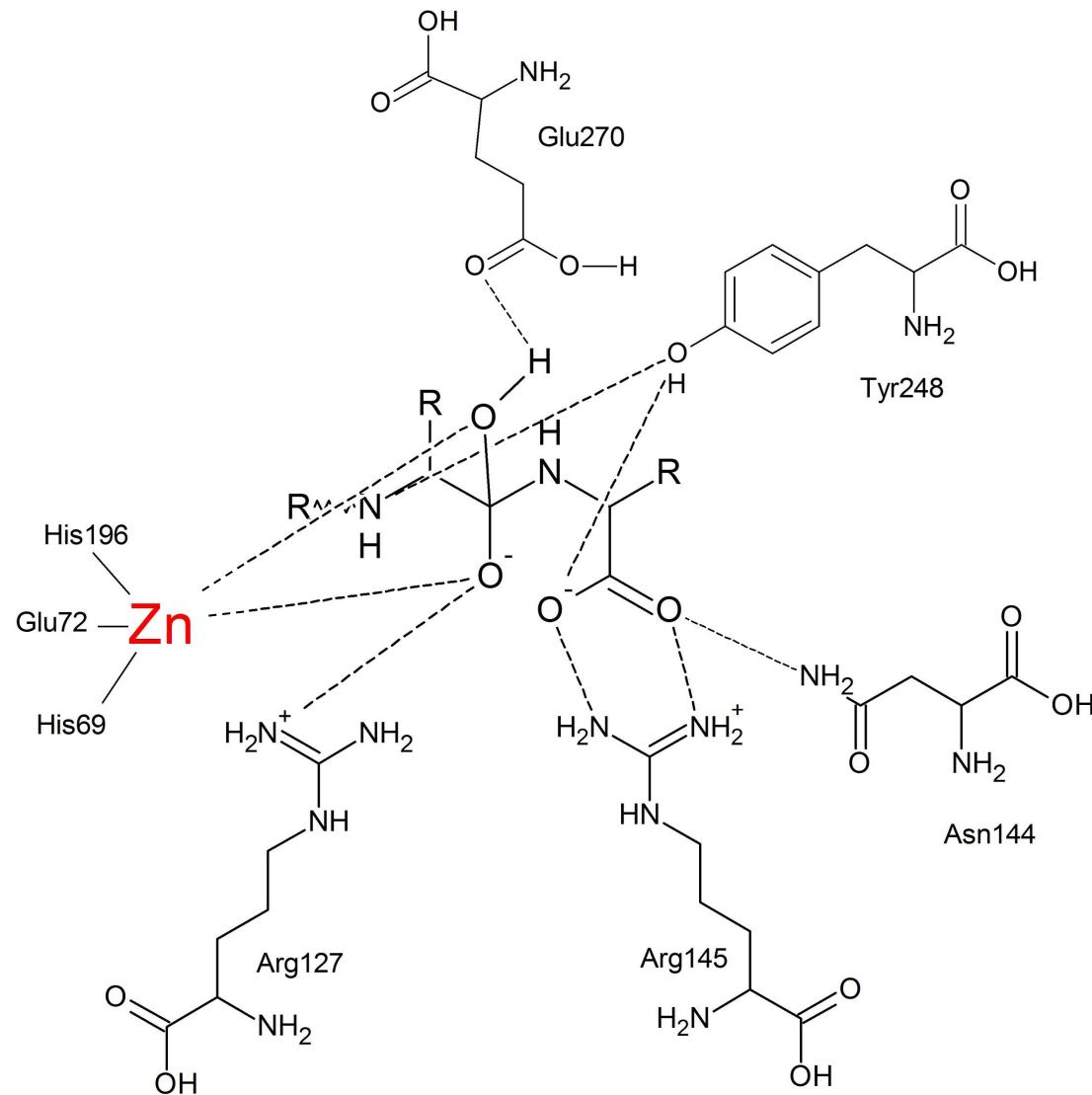
Substrate binding

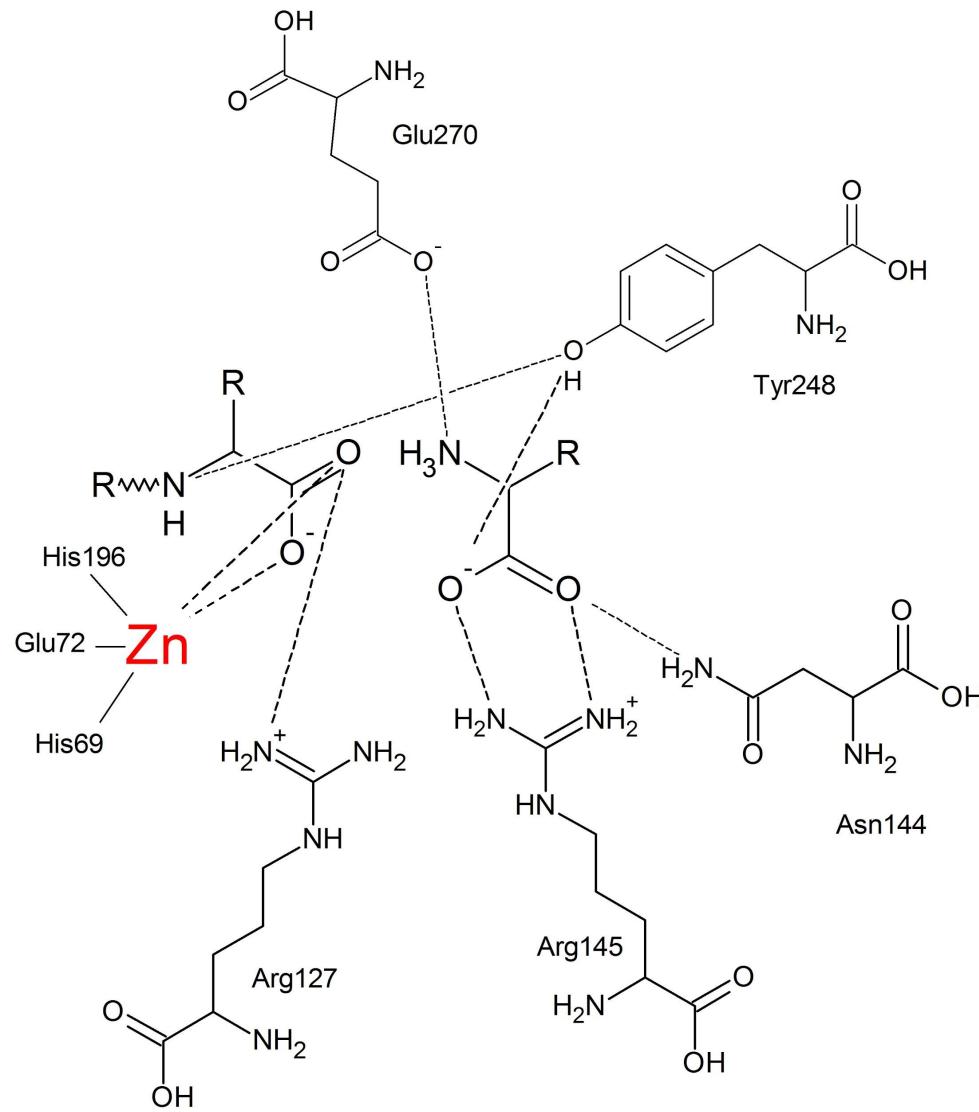

Phenylalanine-N
-sulfonamide

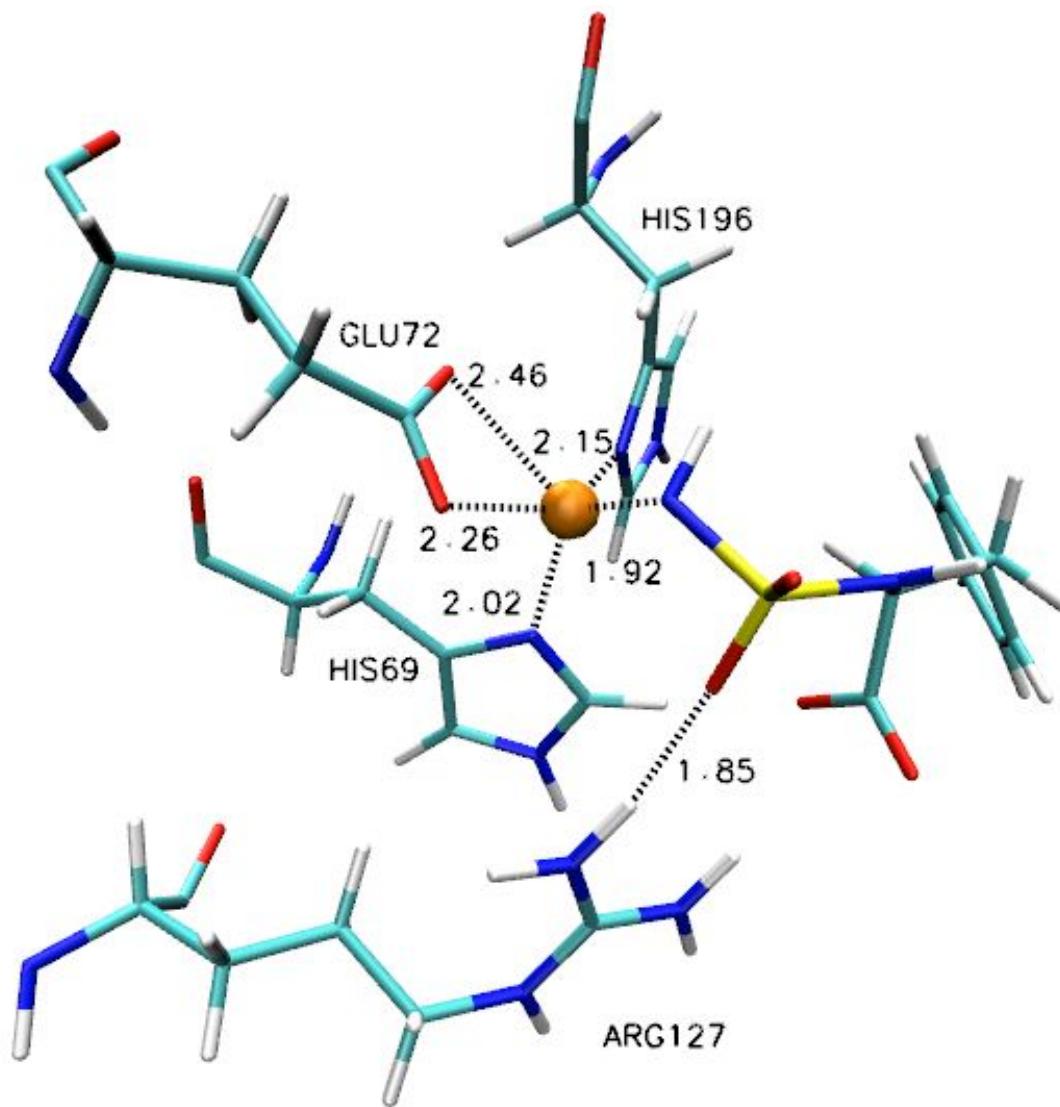
Substrate binding

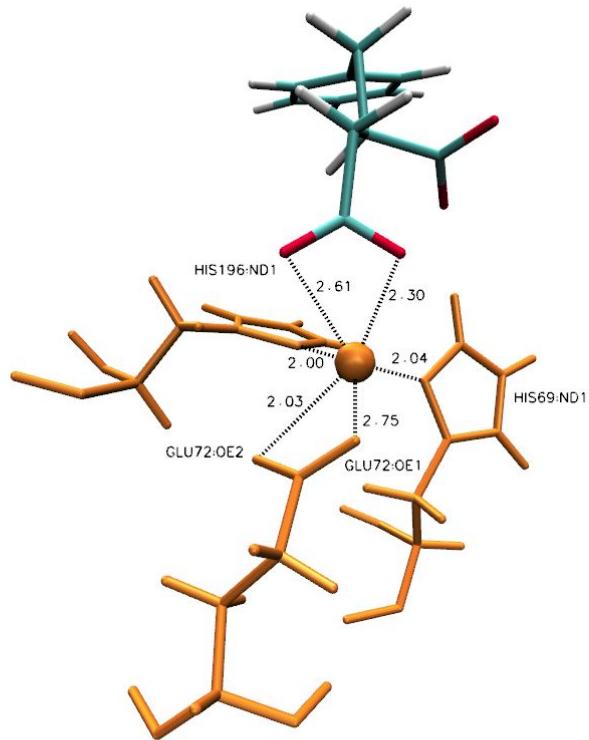


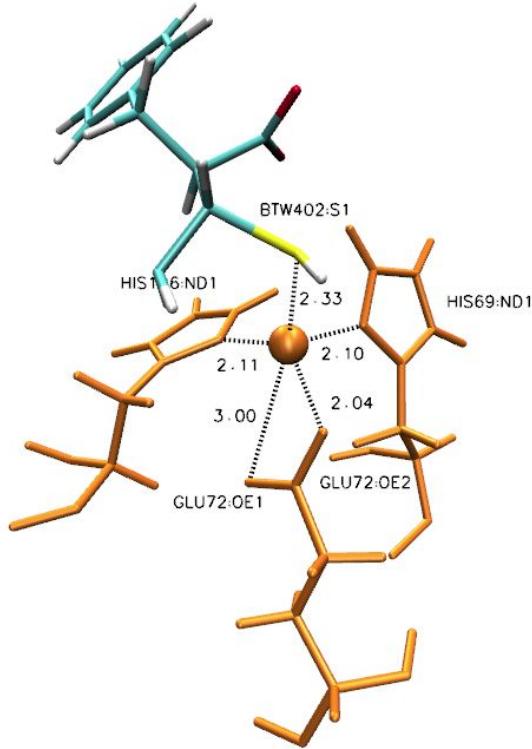
Substrate binding Conformational changes


- With substrate
- Without substrate

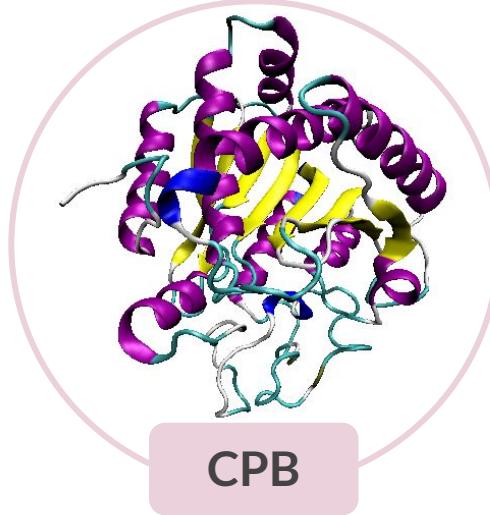
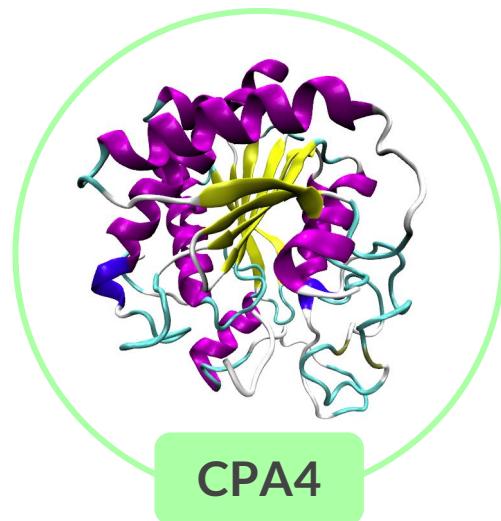
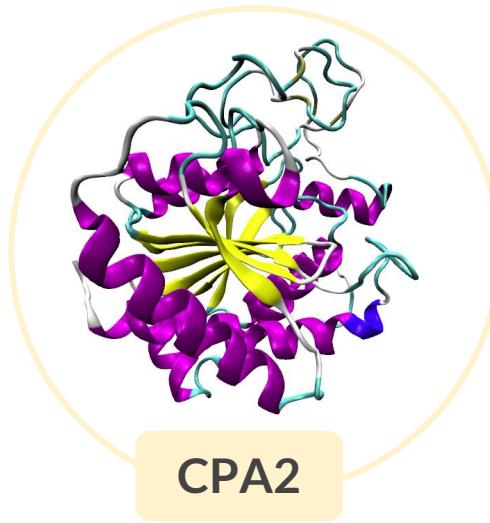
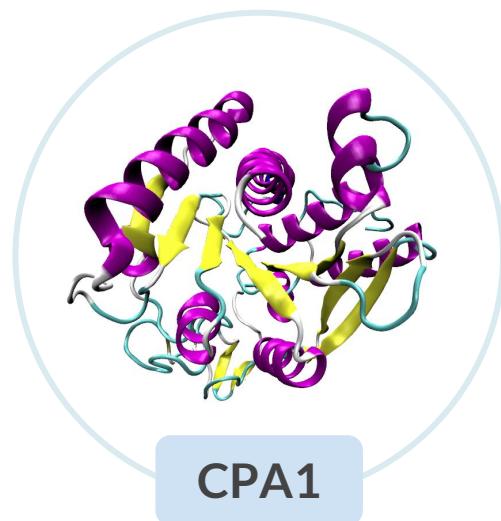

Reaction


Reaction


Reaction


Reaction inhibition

Reaction inhibition

L-benzylsuccinic acid

2-benzyl-3,4-epithiobutanoic acid

Pancreatic CBP

Pancreatic CBP Sequence Alignment

LEGEND: 2PCU→CPA4 / 4UEE→CPA1 / 1DTD→CPA2 / 1ZLI→CPB

Zn binding residues

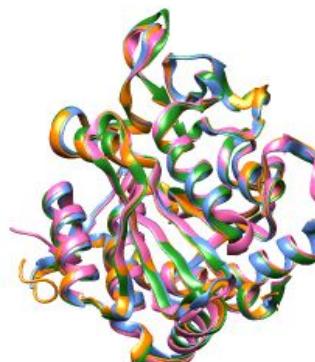
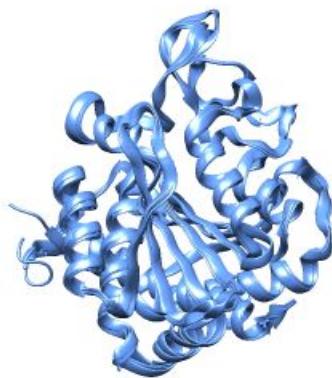
Subsite 1

Subsite 1'

2PCU:A PDBID CHAIN SEQUENCE	..nnfnygayhsleaiy--HEMDNIAADFPDLARRVKIGHSFENRPMYVLKFSTGKGVR
4UEE:A PDBID CHAIN SEQUENCE	arstdtfnyatyhtleeIYDFLDLLVAENPHLVSKIQIGNTYEGRPIYVLKFSTG-GSKR
1DTD:A PDBID CHAIN SEQUENCEfnfgayhtleei-SQEMDNLVAEHPGLVSKVNIGSSFENRPMNVLFSTG--GDK
1ZLI:A PDBID CHAIN SEQUENCE	.vratghsyekynnwetIEAWTQQVATENPALISRSGVTTFEGRAIYLLKVGKA-GQNK
	69 72
2PCU:A PDBID CHAIN SEQUENCE	PAWLNAGIHSREWISQATAIWARKIVSDYqRDPAlTSILEKMDIFLLPVANPDGYVYT
4UEE:A PDBID CHAIN SEQUENCE	PAIWIDTGIHSREWVTQASCVWFAKKITQDYgQDAAFTAILDTLDIFLEIVTNPDGFAFT
1DTD:A PDBID CHAIN SEQUENCE	PAIWLDAGIHSREWVTQATALWTANKIVSDYgKDPSTSILDALDIFLLPVTPNPDGYVFS
1ZLI:A PDBID CHAIN SEQUENCE	PAIFMDCGFHAREWISPAFCQWFVREAVRTYgREIQVTELLNKLDFYVLPVLNIDGYIYT
	127 144-145
2PCU:A PDBID CHAIN SEQUENCE	QTQNRLWRKTRSRNPgs.sciGADPNRWNASFAGKGASDNPCSEVYHGPANSEVEVKS
4UEE:A PDBID CHAIN SEQUENCE	HSTNRMWRKTRSRHTAg.s.lciGVDPNWNWDAGFGLSGASSNPSETYHGFANSEVEVKS
1DTD:A PDBID CHAIN SEQUENCE	QTKNRMWRKTRSKVSagslcvGVDPNWNWDAGFGGPGASSNPSCSDSYHGPSANSEVEVKS
1ZLI:A PDBID CHAIN SEQUENCE	WTKSRFWRKTRSTHTgs.sciGTDPNRFDAGWCEIGASRNPCDETYCGPAESEKETKA
	196
2PCU:A PDBID CHAIN SEQUENCE	VVDFIQK.hGNFKGFIDLHSYSQLLMYPYGYSVKKAPDAEELDKVARLAAKALASVSGTE
4UEE:A PDBID CHAIN SEQUENCE	IVDFVKD.hGNIKAFISIHSYSQLLMYPYGYKTEPVDPQDELDQLSKAAVTALASLYGKT
1DTD:A PDBID CHAIN SEQUENCE	IVDFIKS.hGKVKAIFIILHSYSQLMFYGYKCTKLDFFDELSEVAQKAAQSLSRHGKT
1ZLI:A PDBID CHAIN SEQUENCE	LADFIRNkLSSIKAYLTHSYSQMMIYPYSYAYKLGENNAELNALAKATVKELASLHGKT
	248 270
2PCU:A PDBID CHAIN SEQUENCE	YQVGPTCTTVPASGSSIDWAY-DNGIKFAFTFELRDTGTygFLLPANQIIPTAETWLg
4UEE:A PDBID CHAIN SEQUENCE	FNYGSIIKAIYQASGSTIDWTY-SQGIKYSFTFELRDTGRygFLLPASQIIPTAKETWL
1DTD:A PDBID CHAIN SEQUENCE	YKVGPICSVIIYQASGGSIDWSY-DYGIKYSFAFELRDTGRygFLLPARQILPTAETWLg
1ZLI:A PDBID CHAIN SEQUENCE	TYYGPAGATTIYPAAGGSDDWAYDQ-GIRYSFTFELRDTGRygFLLPESQIRATCEETFLa
2PCU:A PDBID CHAIN SEQUENCE	lktimehvrdnl.
4UEE:A PDBID CHAIN SEQUENCE	lltimethlnhpy
1DTD:A PDBID CHAIN SEQUENCE	lkaimehvrhpy
1ZLI:A PDBID CHAIN SEQUENCE	ikyvasyvlehly

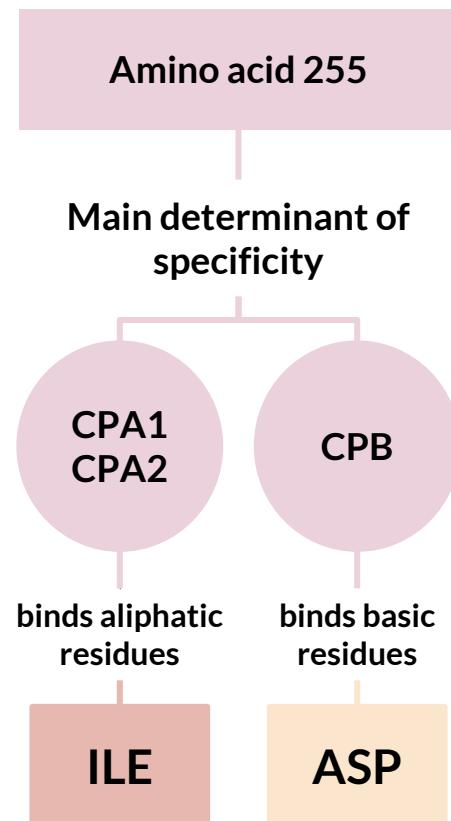
Pancreatic CBP

Sequence Alignment

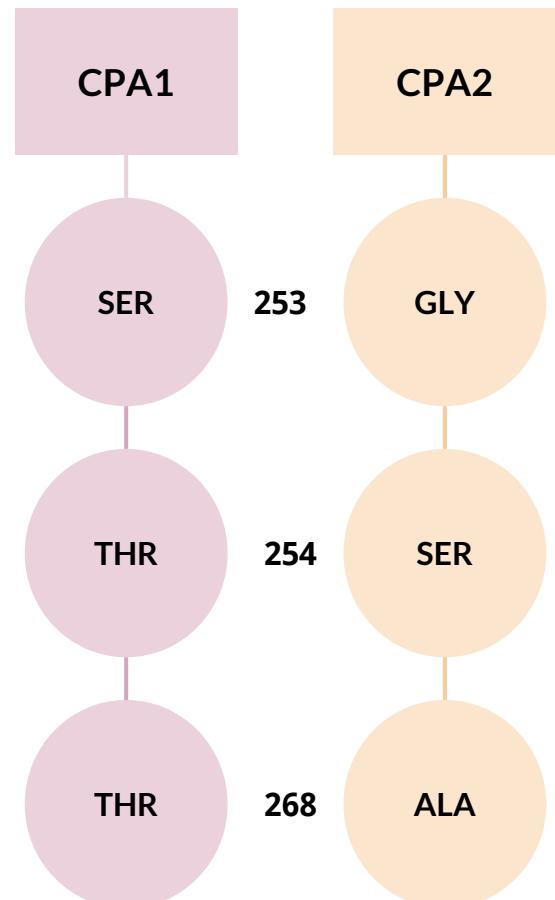


LEGEND: 2PCU → CPA4 / 4UEE → CPA1 / 1DTD → CPA2 / 1ZLI → CPB

2PCU:A PDBID CHAIN SEQUENCE	..nnfnaygayhsleaiy--HEMDNIAADFPDLARRVKIGHSFENRPMYVLKFSTGKVRR
4UEE:A PDBID CHAIN SEQUENCE	arstdtfnayatyhtleeIYDFFLLLLVAENPHLVLVSKIQIGNTYEGRPIYVLKFSTG-GSKR
1DTD:A PDBID CHAIN SEQUENCEfnfgayhtleei-SQEMDNLVAEHPLGLVSKVNIGSSFENRPMNVLKSTG--GDK
1ZLI:A PDBID CHAIN SEQUENCE	.vratghsyekynnwetIEAWTQQVATENPALISRSGVATFEGRAIYLLKVGKA-GQNK
	71
2PCU:A PDBID CHAIN SEQUENCE	PAVWLNAIGIHSREWISQATAIWARKIVSDYqRDPAlTSILEKMDIFLLPVANPDGYVYT
4UEE:A PDBID CHAIN SEQUENCE	PAIWIDTGIHSREWVTQASGVWFAKKITQDYgQDAFTAILDLDIFLEIVTNPDGFAFT
1DTD:A PDBID CHAIN SEQUENCE	PAIWLDAGIHAReWVTQATALWTANKIVSDYgKDPSITSILDALDIFLLPVTPNDGYVFS
1ZLI:A PDBID CHAIN SEQUENCE	PAIFMDCCGFHAREWISPAFCQWFVREAVRTYgREIQVTELLNKLDFYVLPVLNIDGYIYT
2PCU:A PDBID CHAIN SEQUENCE	QTQNRLWRKTRSRNPGs.sciGADPNRWNASFAGKGASDNPCSEVYHGPANSEVEVKS
4UEE:A PDBID CHAIN SEQUENCE	HSTNRMWRKTRSHTAg.sciGDPNRNWDAGFGLSGASSNPCSETYHGKFANSEVEVKS
1DTD:A PDBID CHAIN SEQUENCE	QTKNRMWRKTRSRSVagslcvGDPNRNWDAGFGGPGASSNPCSDSYHGPSANSEVEVKS
1ZLI:A PDBID CHAIN SEQUENCE	WTKSRFWRKTRSTHTgs.sciGDPNRNFDAGWCEIGASRNPCDETYCGPAAESEKETKA
	197-199
2PCU:A PDBID CHAIN SEQUENCE	VVDFIQK.hGNFKGFIDLHSYSQLLMYPYGYSVKKAPDAEELDKVARLAAKALASVSGTE
4UEE:A PDBID CHAIN SEQUENCE	IVDFVKD.hGNIKAFISIHSYSQLLMYPYGYKTEPVPDQDELDQLSKAAVTALASLYGTK
1DTD:A PDBID CHAIN SEQUENCE	IVDFIKS.hGKVKAIFIILHSYSQLLMFPYGYKCTKDDFDELSEVAQKAAQSLSRLHGTK
1ZLI:A PDBID CHAIN SEQUENCE	LADFIRNKLSSSIKAYLTIHSYSQMMIYPYSAYKLGENNAAELNALAKATVKELASLHGTK
2PCU:A PDBID CHAIN SEQUENCE	YQVGPTCTTVYPASGSSIDWAY-DNGIKFAFTFELRTDTGygFLLPANQIIPTAETWLg
4UEE:A PDBID CHAIN SEQUENCE	FNYGSIKIYQASGSTIDWTY-SQGIKYSFTFELRTDTGRygFLLPASQIIPATAETWLg
1DTD:A PDBID CHAIN SEQUENCE	YKVGPICSVYQASGGSIDWSY-DYGIKYSFAFELRTDTGRygFLLPARQILPTAEETWLg
1ZLI:A PDBID CHAIN SEQUENCE	YTGYPGATTIYPAAGGSDDWAYDQ-GIRYSFTFELRTDTGRygFLLPESQIRATCEETFLa
2PCU:A PDBID CHAIN SEQUENCE	lktimehvrdnl.
4UEE:A PDBID CHAIN SEQUENCE	lltimehtlnhpy
1DTD:A PDBID CHAIN SEQUENCE	lkaimehvrhdhy
1ZLI:A PDBID CHAIN SEQUENCE	ikyvasyvlehly

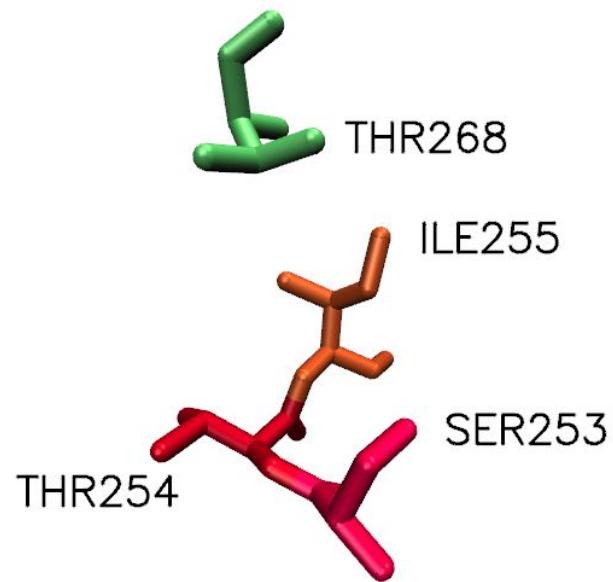
Subsite 2

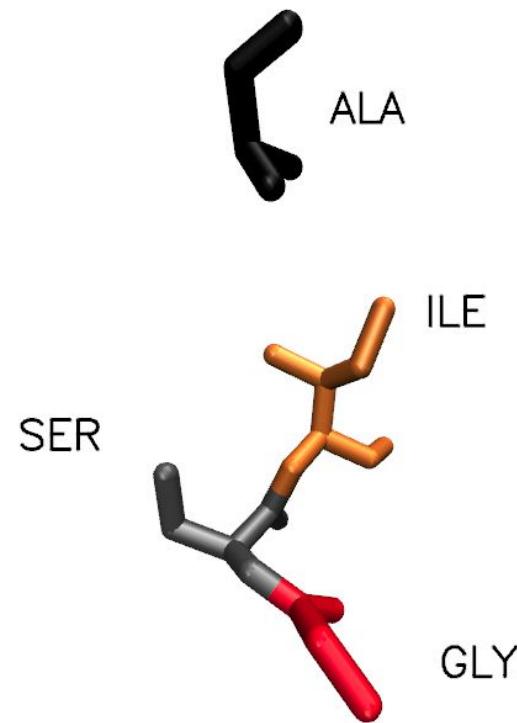

Pancreatic CBP Superimposition

No.	Domain1	Domain2	Sc	RMS	Len1	Len2	Align	NFit	Eq.	Secs.	%I
Pair 1	1zli_CPB	CPA1	9.19	0.71	306	308	309	300	300	0	48.67
Pair 2	1zli_CPB	1tdt1_CPA2	9.26	0.78	306	303	305	301	301	0	46.51
Pair 3	1zli_CPB	2cpu_CPA4	9.19	0.87	306	305	305	302	302	0	47.68
Pair 4	CPA1	1tdt1_CPA2	9.35	0.50	308	303	303	301	301	0	66.45
Pair 5	CPA1	2cpu_CPA4	9.39	0.68	308	305	305	304	304	0	59.54
Pair 6	1tdt1_CPA2	2cpu_CPA4	9.41	0.55	303	305	304	301	299	0	68.90



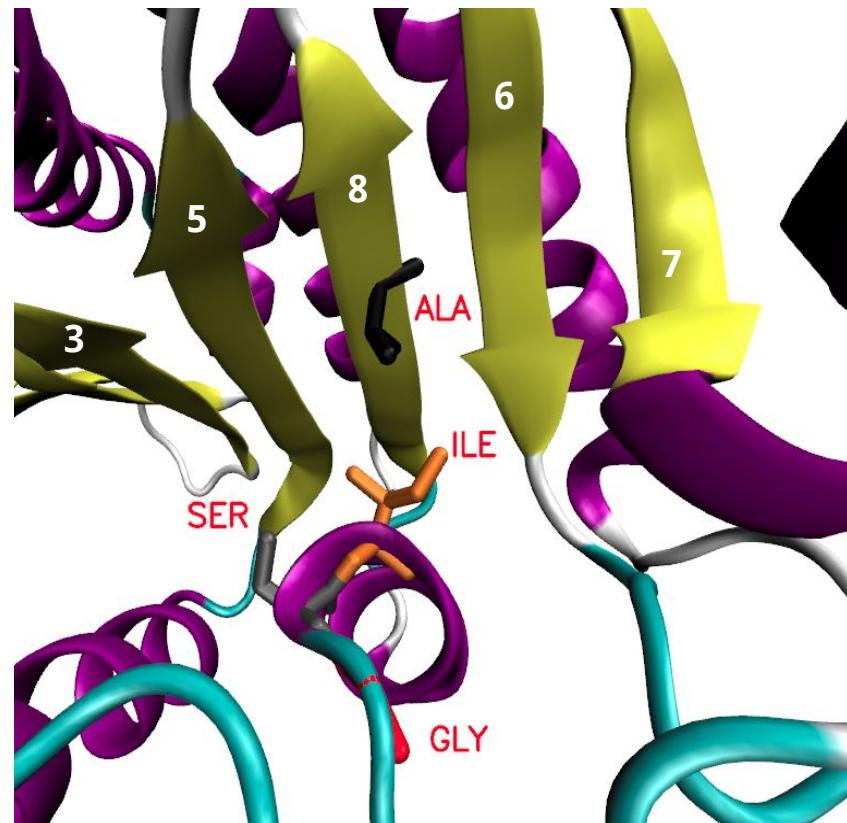
Substrate specificity A/B subfamily


4UEE_CPA1	arstdtfnyatyhtleeIYDFLDLLVAENPHLVSKIQIGNTYEGRPIYVLKFSTGGSKRP
1DTD_CPA2	-----fnfgayhtleei-SQEMDNLVAEHPGLVSKVNIGSSFENRPMNVLFSTG-GDKP
1ZLI_CPB	-vratghsyekynnwetIEAWTQQVATENPALISRSGVIGTFEGRAIYLLKVGKAGQNKP
4UEE_CPA1	AIWIDTGIHSREWVTQASGVWFAKKITQDYgQDAAFTAILDTLDIFLEIVTNPDGFAFTH
1DTD_CPA2	AIWLDAGIHAREWVTQATALWTANKIVSDYgKDPSITSILDALDIFLLPVTPNDGYVFSQ
1ZLI_CPB	AIFMDCGFHAREWISPAFCQWFVREAVRTYgREIQVTELLNKLDFYVLPVLNIDGYIYTW
4UEE_CPA1	STNRMWRKTRSHTAgslciGVDPNRNWDAFGFLSGASSNPCSETYHGKFANSEVEVKSI
1DTD_CPA2	TKNRMWRKTRSKVSSagslcvGVDPNRNWDAFGGGPGASSNPCSDSYHGPSANSEVEVKSI
1ZLI_CPB	TKSRFWRKTRSTHTgssciGTDPNRNFADAGWCEIGASRNPCDETYCGPAAESEKETKAL
4UEE_CPA1	VDFVKD-hGNIKAFISIHSYSQLLMYPYGYKTEPVDPDQELDQLSKAAVTALASLYGTKF
1DTD_CPA2	VDFIKS-hGKVKAIFIILHSYSQLLMFPYGYKCTKLDDFDELSEVAQKAAQSLSLRGHTKY
1ZLI_CPB	ADFIRNkLSSIKAYLTIHYSQMMIYPYSYAKLGENNAELNALAKATVKELASLHGHTKY
4UEE_CPA1	255 NYGSIIKAIYQASGSTIDWTY-SQGIKYSFTFELRDTGRygFLLPASQIIPATAETWLal
1DTD_CPA2	KVGPICSVIYQASGGSDWSY-DYGIKYSFAFELRDTGRygFLLPARQILPTAEETWLgl
1ZLI_CPB	TYGPGATTIYPAAGGSDWAYDQ-GIRYSFTFELRDTGRygFLLPESQIRATCEETFLai
4UEE_CPA1	ltimehtlnhpy
1DTD_CPA2	kaimehvrdrhpy
1ZLI_CPB	kyvasyvlehly


Substrate specificity A/B subfamily

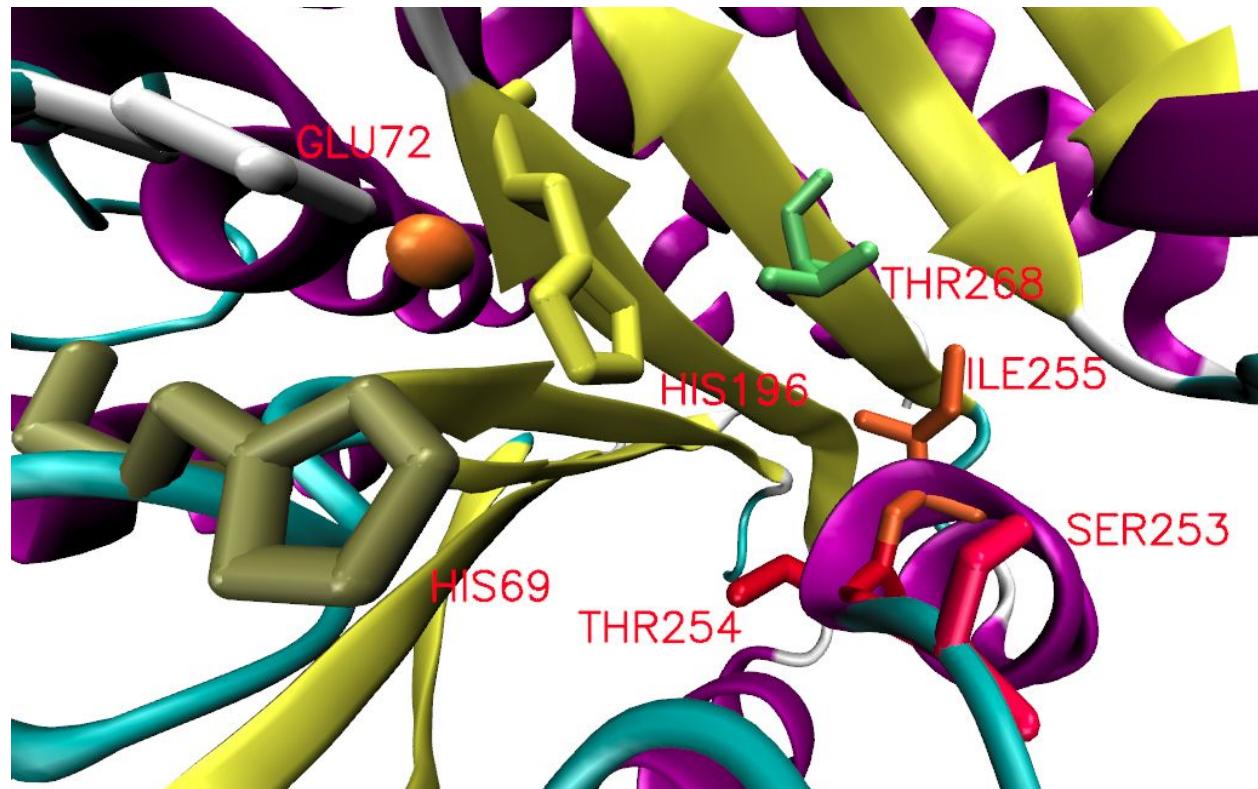
Substrate specificity A/B subfamily

CPA1

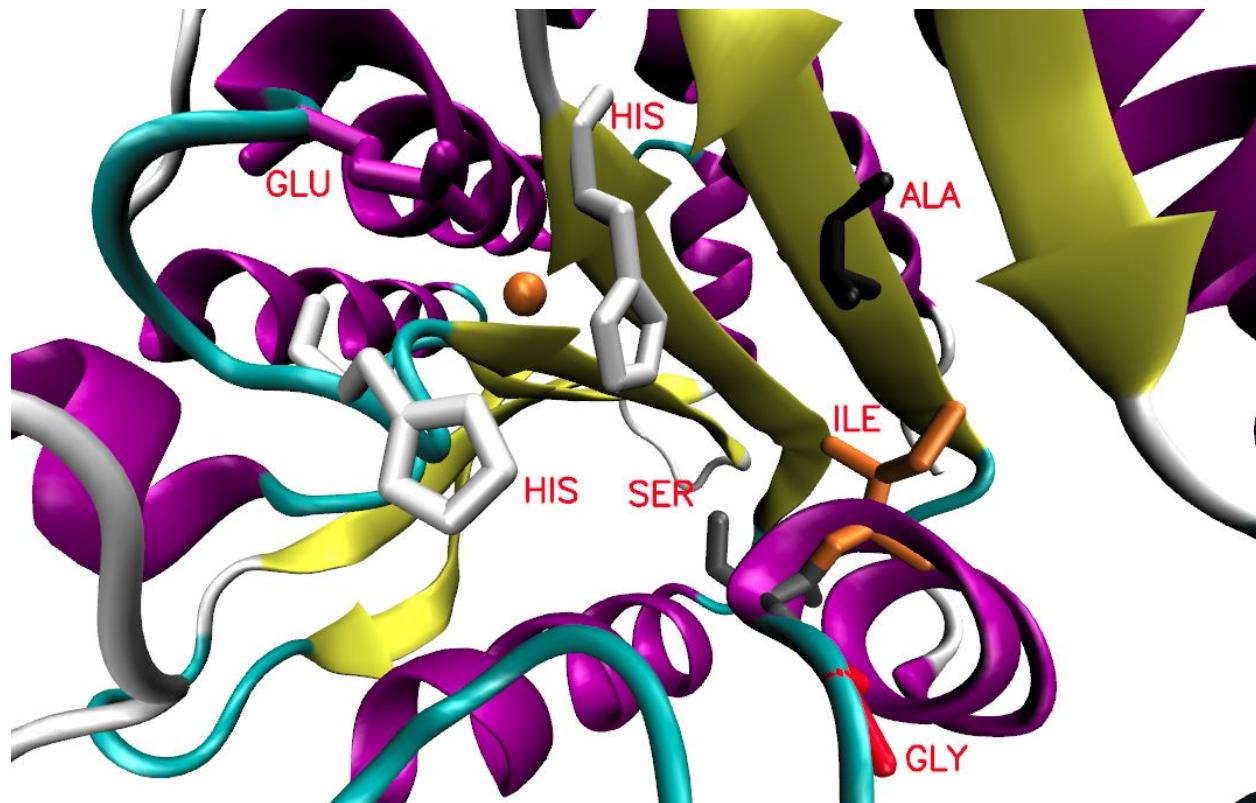


CPA2

Substrate specificity A/B subfamily



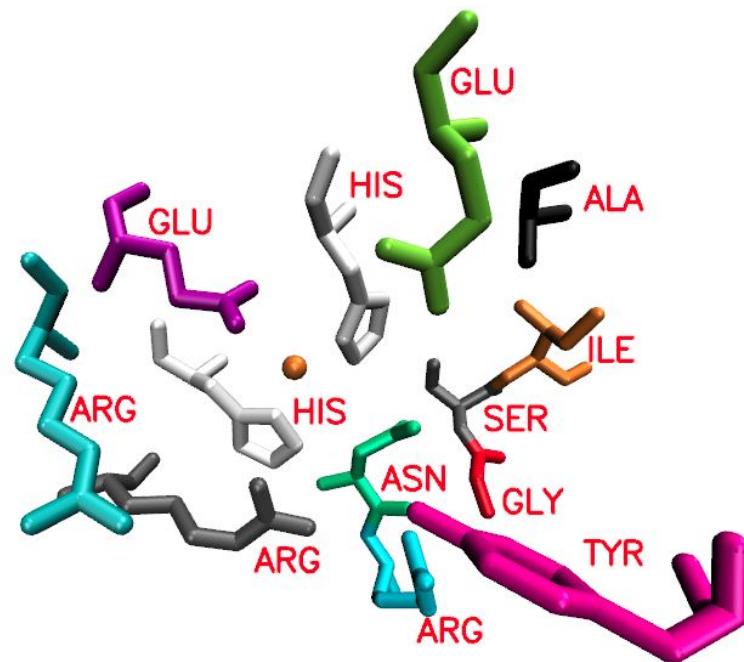
CPA1


CPA2

Substrate specificity A/B subfamily

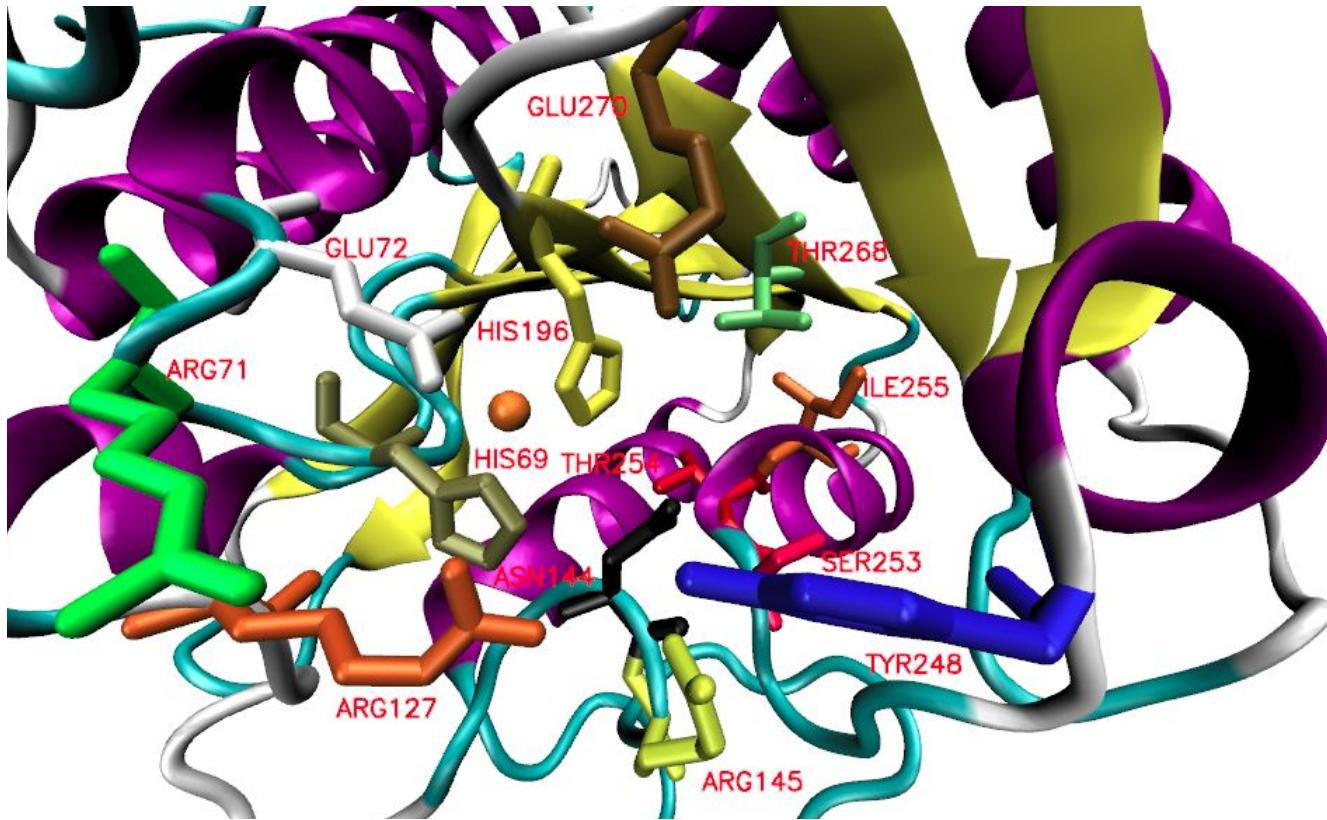
CPA1: specificity pocket + Zn binding residues

Substrate specificity A/B subfamily

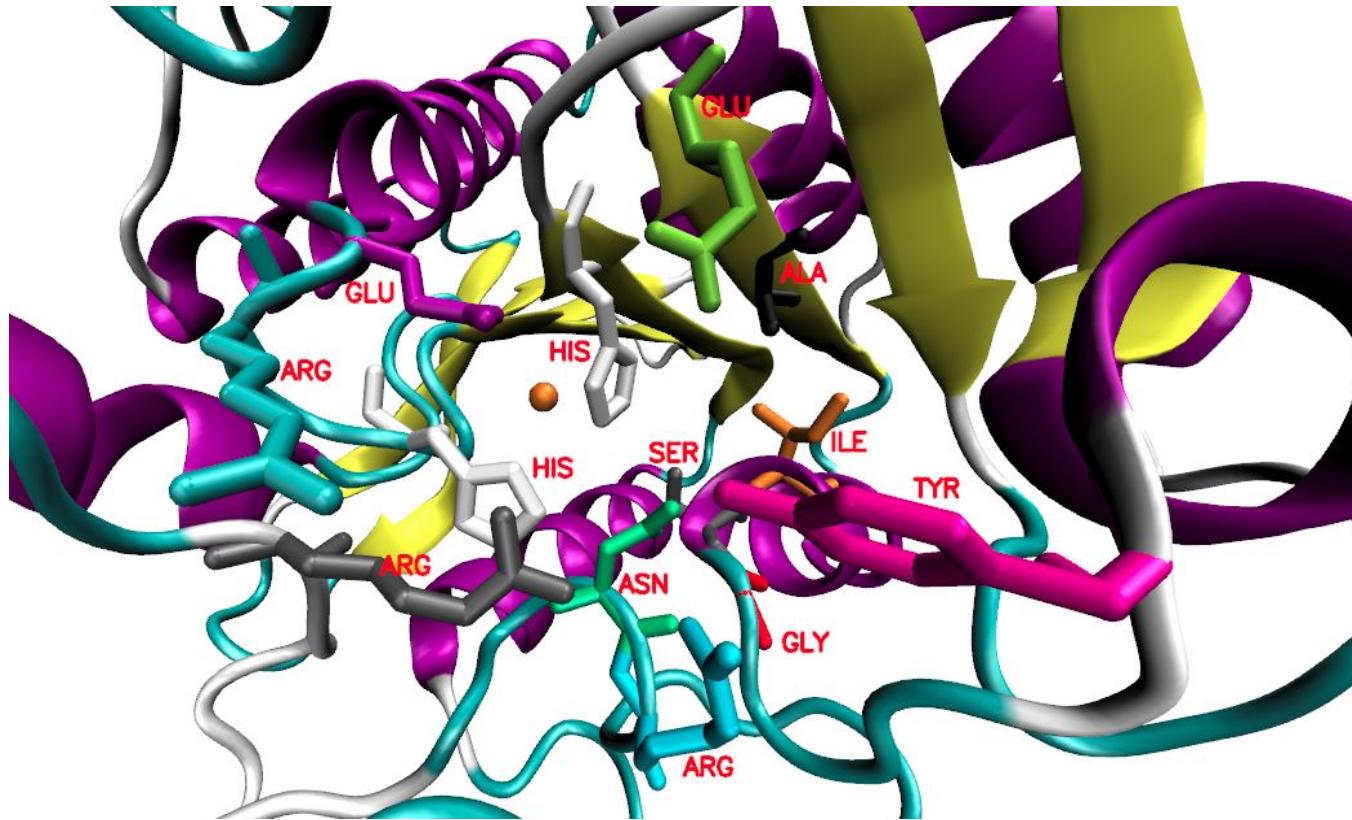


CPA2: specificity pocket + Zn binding residues

Substrate specificity A/B subfamily



CPA1


CPA2

Substrate specificity A/B subfamily

CPA1: specificity pocket + Zn binding residues + active site

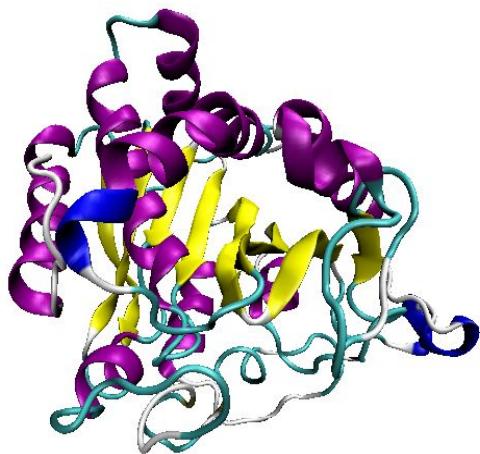
Substrate specificity A/B subfamily

CPA2: specificity pocket + Zn binding residues + active site

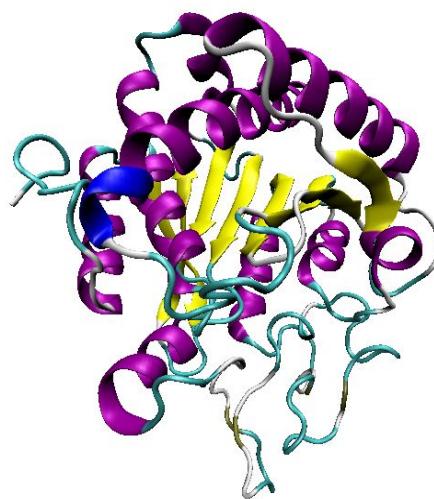
Regulatory CBP vs Pancreatic CBP

CLUSTAL FORMAT for T-COFFEE Version_11.00.8cbe486 [<http://www.tcoffee.org>]
[MODE:], CPU=0.00 sec, SCORE=811, Nseq=2, Len=434

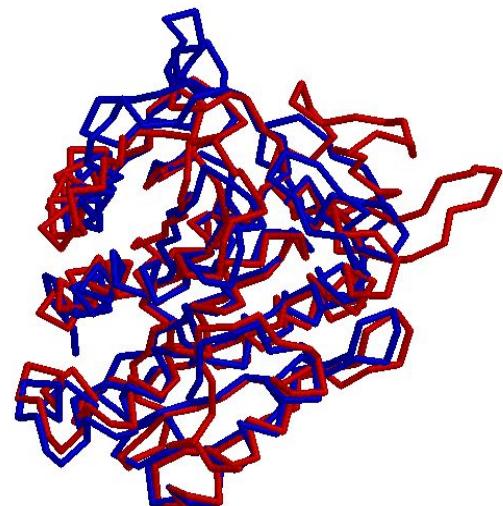
111-419-hCPA1 18-423-hCPM	ARSTDTFNYATYHTLEIYDFLDLVAENPHLVSKI-QIGNTYEGRPIYV L----DF---NYHRQEGMEAFLKT-VAQNYSSVTHLHSIGKSVKGRNLWV * . ** * : **. **: *:: . *:: :** ::* 69 72
111-419-hCPA1 18-423-hCPM	LKFSTGGSK---RPAIWIDTGT ¹⁷⁹ PEI ¹⁸⁰ IVTQASGVWFAKKITQDYGQDA ¹⁸¹ LVVGRFPKEHRIGIPEFKYVANM ¹⁸² H ¹⁸³ DETVGRELLLHLD ¹⁸⁴ YLVTS ¹⁸⁵ SDGKDPE * . . * : . . * * : . . * : * **.
111-419-hCPA1 18-423-hCPM	FTAILDTLDIFLEIVTNPDGF ¹⁸⁶ FAFTHSTNR ¹⁸⁷ MWRK ¹⁸⁸ TRSHTAG ¹⁸⁹ SLCIGVDPNR ITNL ¹⁹⁰ INSTR ¹⁹¹ HIMPS ¹⁹² MNPDGF ¹⁹³ EA ¹⁹⁴ VKKPDC ¹⁹⁵ YYSIGREN ¹⁹⁶ YN---QYD ¹⁹⁷ LNR *: . . * * : * . . . * . .
111-419-hCPA1 18-423-hCPM	NWDAGFGLSGASSN ¹⁹⁸ PCSETYHGK ¹⁹⁹ FANSEVEVKS ²⁰⁰ I ²⁰¹ DFVKD ²⁰² HGN ²⁰³ IKAFISI NFPDAFEYNN ²⁰⁴ NSRQ ²⁰⁵ PETVAV ²⁰⁶ -MKWLKTET ²⁰⁷ TFVLS ²⁰⁸ -----ANL *: . * . . * . . : . . * * 196
111-419-hCPA1 18-423-hCPM	²⁰⁹ HYSQLLM ²¹⁰ YPG-----YKTEPV ²¹¹ PQD ²¹² ELD ²¹³ QLSKAA ²¹⁴ V ²¹⁵ TALASL ²¹⁶ -- HGGALV ²¹⁷ ASY ²¹⁸ PF ²¹⁹ DNG ²²⁰ VQAT ²²¹ GALY ²²² RS ²²³ L ²²⁴ TP ²²⁵ DD ²²⁶ D ²²⁷ V ²²⁸ FQ ²²⁹ Y ²³⁰ LAHTY ²³¹ ASRNP ²³² NMK ²³³ G *: . . * * * 248
111-419-hCPA1 18-423-hCPM	--YGT ²³⁴ KFNYGSI ²³⁵ IK---A ²³⁶ IY ²³⁷ QASG ²³⁸ ST ²³⁹ ID ²⁴⁰ WT ²⁴¹ Y ²⁴² SQG ²⁴³ I ²⁴⁴ KY ²⁴⁵ S ²⁴⁶ F ²⁴⁷ T ²⁴⁸ H ²⁴⁹ E ²⁵⁰ L ²⁵¹ R ²⁵² ----- DECK ²⁵³ KNM ²⁵⁴ N ²⁵⁵ F ²⁵⁶ P ²⁵⁷ G ²⁵⁸ V ²⁵⁹ T ²⁶⁰ N ²⁶¹ G ²⁶² Y ²⁶³ W ²⁶⁴ Y ²⁶⁵ L ²⁶⁶ Q ²⁶⁷ G ²⁶⁸ M ²⁶⁹ Q ²⁷⁰ D ²⁷¹ Y ²⁷² N ²⁷³ I ²⁷⁴ W ²⁷⁵ A ²⁷⁶ Q ²⁷⁷ C ²⁷⁸ F ²⁷⁹ E ²⁸⁰ I ²⁸¹ T ²⁸² L ²⁸³ E ²⁸⁴ L ²⁸⁵ S ²⁸⁶ C ²⁸⁷ K ²⁸⁸ Y ²⁸⁹ P ²⁹⁰ R ²⁹¹ . . * . : . . : . * . . * : . . * . . 248 270
111-419-hCPA1 18-423-hCPM	----- EEKLPSFWNNNKASLIEYIKQVH ²⁹² LGV ²⁹³ GQV ²⁹⁴ F ²⁹⁵ D ²⁹⁶ Q ²⁹⁷ N ²⁹⁸ PL ²⁹⁹ P ³⁰⁰ N ³⁰¹ V ³⁰² I ³⁰³ E ³⁰⁴ V ³⁰⁵ Q ³⁰⁶ DR ³⁰⁷ K ³⁰⁸ H ³⁰⁹
111-419-hCPA1 18-423-hCPM	-----DTGRY-GFLLPASQI ³¹⁰ IPTA---KETWLALL ³¹² T ³¹³ I ³¹⁴ M ³¹⁵ E ³¹⁶ H ³¹⁷ T ³¹⁸ L ³¹⁹ N ³²⁰ H ³²¹ P ³²² Y ³²³ ----- ICPYRTN ³²⁴ KY ³²⁵ GEY ³²⁶ Y ³²⁷ L ³²⁸ L ³²⁹ P ³³⁰ G ³³¹ Y ³³² I ³³³ N ³³⁴ V ³³⁵ T ³³⁶ P ³³⁷ G ³³⁸ H ³³⁹ D ³⁴⁰ P ³⁴¹ H ³⁴² I ³⁴³ T ³⁴⁴ K ³⁴⁵ V ³⁴⁶ I ³⁴⁷ E ³⁴⁸ K ³⁴⁹ S ³⁵⁰ Q ³⁵¹ N ³⁵² F ³⁵³ A ³⁵⁴ L ³⁵⁵ K ³⁵⁶ . . * . : . . * . . * : *
111-419-hCPA1 18-423-hCPM	----- KDILLP ³⁵⁷ F ³⁵⁸ Q ³⁵⁹ G ³⁶⁰ Q ³⁶¹ L ³⁶² D ³⁶³ S ³⁶⁴ I ³⁶⁵ P ³⁶⁶ V ³⁶⁷ S ³⁶⁸ N ³⁶⁹ P ³⁷⁰ C ³⁷¹ S ³⁷² P ³⁷³ M ³⁷⁴ I ³⁷⁵ P ³⁷⁶ Y ³⁷⁷ R ³⁷⁸ N ³⁷⁹ L ³⁸⁰ P ³⁸¹ D ³⁸² H ³⁸³ S ³⁸⁴


CLUSTAL FORMAT for T-COFFEE Version_11.00.8cbe486 [<http://www.tcoffee.org>]
[MODE:], CPU=0.00 sec, SCORE=836, Nseq=2, Len=455

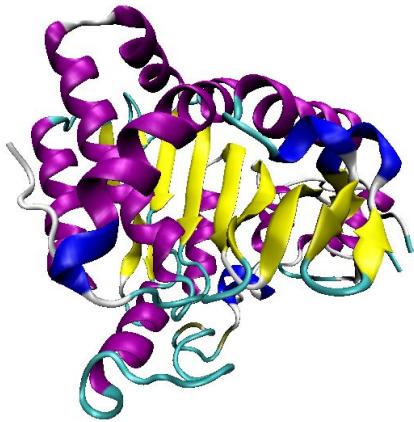
%ID: 15,9

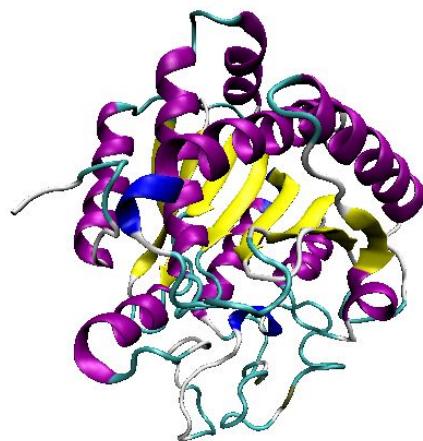

%ID: 16,04

Regulatory CBP vs Pancreatic CBP

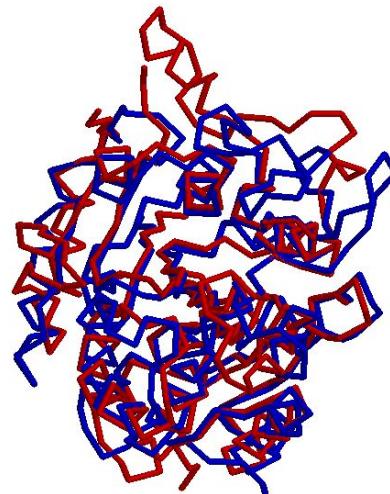

Pair	No.	Domain1	Domain2	Sc	RMS	Len1	Len2	Align	NFit	Eq.	Secs.	%I	%S	P(m)
	1	1uwy_CPM	4uee_CPA1	6.17	1.49	300	307	335	241	232	0	19.83	100.00	3.04e-06

CPM


CPA1


CPM vs CPA1

Regulatory CBP vs Pancreatic CBP


No.	Domain1	Domain2	Sc	RMS	Len1	Len2	Align	NFit	Eq.	Secs.	%I	%S	P(m)
Pair 1	2nsm_hCPN	1zli_CPB	5.88	1.34	310	306	348	236	232	0	21.98	100.00	3.85e-08

CPN

CPB

CPN vs CPB

Conclusions

Overall sequence is poorly maintained among M14 carboxypeptidase subfamilies

Important functional residues are highly conserved along evolution in CPA1 and maintained among M14 carboxypeptidases

Structure is mostly maintained in M14 carboxypeptidases

Functional differences between M14 carboxypeptidases are correlated with changes in sequence and active site properties

Bibliography

Articles

Avilés FX, Vendrell J, Guasch A, Coll M, Huber R. Advances in metallo-procarboxypeptidases. Emerging details on the inhibition mechanism and on the activation process. *Eur J Biochem.* 1993;211(3):381-389.

Catasus L, Vendrell J, Avilés FX, Carreira S, Puigserver A, Billeter M. The sequence and conformation of human pancreatic procarboxypeptidase A2. cDNA cloning, sequence analysis, and three-dimensional model. *J Biol Chem.* 1995;270(12):6651-7.

Fernández D, Boix E, Pallarès I, Avilés F, Vendrell J. Structural and Functional Analysis of the Complex between Citrate and the Zinc Peptidase Carboxypeptidase A. *Enzyme Res.* 2011;2011:1-8.

Fernández D, Pallares I, Covaleda G, Aviles FX, Vendrell J. Metallocarboxypeptidases and their inhibitors: recent developments in biomedically relevant protein and organic ligands. *Curr Med Chem.* 2013;20(12):1595-608.

Folk JE, Piez KA, Carroll WR, Gladner JA. Carboxypeptidase B. Purification and characterization of the porcine enzyme. *J Biol Chem.* 1960;235:2272-7

García-Sáez I, Reverter D, Vendrell J, Avilés FX, Coll M. The three-dimensional structure of human procarboxypeptidase A2. Deciphering the basis of the inhibition, activation and intrinsic activity of the zymogen. *EMBO J.* 1997;16(23):6906-13.

Gomez-Ortiz M, Gomis-Rüth F, Huber R, Avilés F. Inhibition of carboxypeptidase A by excess zinc: analysis of the structural determinants by X-ray crystallography. *FEBS Letters.* 1997;400(3):336-340.

Gomis-Rüth F. Structure and Mechanism of Metallocarboxypeptidases. *Crit Rev Bioch Mol Biol.* 2008;43(5):319-45.

Pallarès I, Fernández D, Comellas-Bigler M, Fernández-Recio J, Ventura S, Avilés F et al. Direct interaction between a human digestive protease and the mucoadhesive poly(acrylic acid). *Acta Crystallogr Section D Biol Crystallogr.* 2008;64(7):784-791.

Bibliography

Rees DC, Lipscomb WN. Binding of ligands to the active site of carboxypeptidase A. *Proc Natl Acad Sci U S A*. 1981;78(9):5455-9.

Szmola R, Bence M, Carpentieri A, Szabo A, Costello C, Samuelson J et al. Chymotrypsin C Is a Co-activator of Human Pancreatic Procarboxypeptidases A1 and A2. *J Biol Chem*. 2011;286(3):1819-1827.

Valdez CE, Morgenstern A, Eberhart ME, Alexandrova AN. Predictive methods for computational metalloenzyme redesign - a test case with carboxypeptidase A. *Phys Chem Chem Phys*. 2016;18(46):31744-31756.

Vendrell J, Querol E, Avile FX. Metallocarboxypeptidases and their protein inhibitors: Structure, function and biomedical properties. *Biochim Biophys Acta*. 2000;1477(1-2):284-98.

Wu S, Zhang C, Xu D, Guo H. Catalysis of Carboxypeptidase A: Promoted-Water versus Nucleophilic Pathways. *J Phys Chem B*. 2010;114(28):9259-67.

Gomis-Rüth F. Structure and Mechanism of Metallocarboxypeptidases. *Crit Rev Biochem Mol Biomol*. 2008 Sep-Oct;43(5):319-45

Fernández D, Boix E, Pallarès I, Avilés FX, Vendrell J. Structural and Functional Analysis of the Complex between Citrate and the Zinc Peptidase Carboxypeptidase A. *Enzyme Res*. 2011;2011:128676

Lee KJ, Kim DH. Design of mechanism-based carboxypeptidase A inactivators on the basis of the X-ray crystal structure and catalytic reaction pathway. *Bioorg Med Chem*. 1998 Sep;6(9):1613-22

Fernández D, Pallarès I, Vendrell J, Avilés FX. Progress in metallocarboxypeptidases and their small molecular weight inhibitors. *Biochimie*. 2010 Nov;92(11):1484-500.

Bibliography

Fernández D, Testero S, Vendrell J, Avilés FX, Mobashery S. The X-ray structure of carboxypeptidase A inhibited by a thirane mechanism-based inhibitor. *Chem Biol Drug Des.* 2010 Jan;75(1):29-34

Park JD, Kim DH, Kim SJ, Woo JR, Ryu SE. Sulfamide-based inhibitors for carboxypeptidase A. Novel type transition state analogue inhibitors for zinc proteases. *J Med Chem.* 2002 Nov 21;45(24):55295-302

Books

Berg J, Tymoczko J, Stryer L. *Biochemistry*. 1st ed. New York: W.H. Freeman and Co.; 2002.

Boyer P. *Hydrolysis*. 1st ed. New York: Academic Press; 1971.

Walker J. *The Protein Protocols Handbook*. 1st ed. Totowa, NJ: Humana Press; 2009.

Web sites

Carboxypeptidases A - MeSH - NCBI [Internet]. Ncbi.nlm.nih.gov. 2017 [cited 23 February 2017]. Available from: <https://www.ncbi.nlm.nih.gov/mesh/68043422>

EMBL-EBI I. Peptidase M14, carboxypeptidase A (IPR000834) < InterPro < EMBL-EBI [Internet]. Ebi.ac.uk. 2017 [cited 23 February 2017]. Available from: <http://www.ebi.ac.uk/interpro/entry/IPR000834>

MEROPS - the Peptidase Database [Internet]. Merops.sanger.ac.uk. 2017 [cited 23 February 2017]. Available from: <http://merops.sanger.ac.uk/cgi-bin/famsum?family=m14>

Bibliography

MeSH Browser [Internet]. Meshb.nlm.nih.gov. 2017 [cited 23 February 2017]. Available from: <https://meshb.nlm.nih.gov/#/record/ui?name=Carboxypeptidases%20A>

Metalloproteases [Internet]. Chemistry LibreTexts. 2017 [cited 23 February 2017]. Available from: https://chem.libretexts.org/Core/Biological_Chemistry/Catalysts/Metalloproteases

NCBI CDD Conserved Protein Domain M14_CPA [Internet]. Ncbi.nlm.nih.gov. 2017 [cited 23 February 2017]. Available from: <https://www.ncbi.nlm.nih.gov/Structure/cdd/cddsrv.cgi?uid=cd03870>

SCOP: Family: Pancreatic carboxypeptidases [Internet]. Scop.mrc-lmb.cam.ac.uk. 2017 [cited 23 February 2017]. Available from: <http://scop.mrc-lmb.cam.ac.uk/scop/data/scop.b.d.hi.f.b.html>

Multiple choice questions

Which characteristic is attributed to metallo-peptidases?

- a. They have a metal element at the active site
- b. They are endopeptidases
- c. Both a and b are correct
- d. They are exopeptidases
- e. Both a and d are correct.

What is the difference between a pancreatic and a regulatory carboxypeptidase?

- a. Regulatory carboxypeptidases are the digestive ones
- b. Pancreatic carboxypeptidases are endopeptidases
- c. Regulatory carboxypeptidases have zinc at their active site and pancreatic don't
- d. Pancreatic carboxypeptidases cleave proteins from diet
- e. None of them is correct

Why are residues 69, 72 and 196 highly conserved?

- a. Because they are acid residues
- b. Because they are basic residues
- c. Because they coordinate Zinc atom
- d. Because they have long side chains
- e. Because they are sulfur containing residues

How is Glu270 able to cleave the peptide bond?

- a. Because it is able to act as a general acid allowing nucleophilic attack on the scissile amide carbon of the substrate
- b. Because of its phosphate group
- c. Because it binds to the substrate
- d. Because it is a basic amino acid
- e. Because it is an apolar amino acid

Multiple choice questions

About carboxypeptidase classification:

- a. There is only one way to classify them, and it is very strict
- b. There are different classifications, according to the criteria used**
- c. Both a and b are correct
- d. A carboxypeptidase is always an endopeptidase
- e. All of them are correct

When is a carboxypeptidase enzyme active?

- a. When it is binded to the propeptide which blocks the active site
- b. When the propeptide is a globular domain
- c. Both a and b are correct
- d. When it is not binded to the propetide which blocks the active site**
- e. None of them is correct

In which species carboxypeptidases are found?

- a. Only in humans
- b. Only in mammals
- c. Only in vertebrates
- d. Only in eukaryotes
- e. In eukaryotes and prokaryotes**

How is Tyr 248 able to establish an hydrogen bond with the substrate?

- a. Because it is an amino acid from the substrate
- b. Because only aromatic amino acids perform hydrogen bonds
- c. Both a and b are correct
- d. Because it suffers a conformational change when the binding to the substrate occurs**
- e. All of them are correct

Multiple choice questions

About carboxypeptidases specificity:

1. Carboxypeptidase B has preference for basic residues.
2. Carboxypeptidase A1 cleaves aliphatic residues.
3. Carboxypeptidase A2 selectively acts on the bulkier aromatic residues.
4. All carboxypeptidases can cleave all the residues, there is no real specificity in these enzymes.

a. 1, 2, 3

b. 1, 3

c. 2, 4

d. 4

e. 1, 2 ,3 ,4

About sequence and structural similarity in carboxypeptidases:

1. Pancreatic carboxypeptidases are more similar among them than when compared to the regulatory ones
2. Similarities in sequence between digestive and non digestive carboxypeptidases are only 15-20%
3. Similarities in secondary structures between digestive and non digestive carboxypeptidases are higher than sequence similarities between them
4. Sequence is more similar between the two carboxypeptidase subfamilies than structure

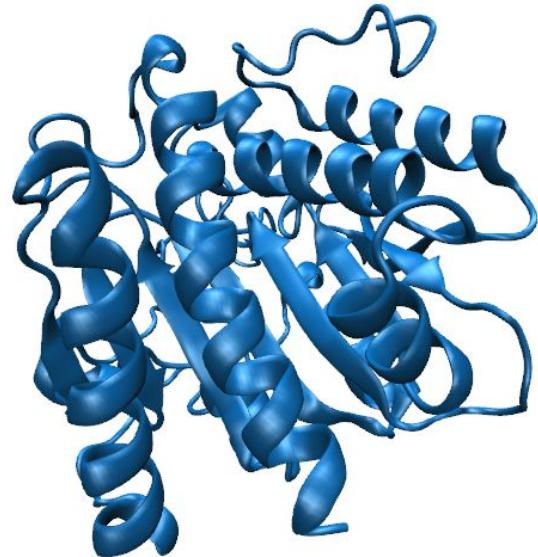
a. 1, 2, 3

b. 1, 3

c. 2, 4

d. 4

e. 1, 2 ,3 ,4


Carboxypeptidases

Carlota Bellot Herrero

Marcel Lucas Sánchez

Irene Ortega González

Clàudia Prat Gibert

