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What are carboxypeptidases?

▷ Exopeptidase

▷ Cleavage at C-terminus

▷ Widely distributed
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M14 Carboxypeptidases

 Carboxypeptidase A                  Carboxypeptidase B
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Classification   SCOP classification

http://scop.mrc-lmb.cam.ac.uk/scop/data/scop.b.d.hi.f.b.html



Procarboxypeptidase

enzyme moiety

propeptide



Rossmann fold-like

α / β

alpha helixes

alpha helixes

beta sheets



Rossmann fold-like
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Active site



Zinc binding residues



Zinc binding residues   Coordination sphere
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Asn 144

Active site   Subsite 1’
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Active site   Subsite 2



Ser 197
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Enzymatic reaction  

Substrate 
binding

Cleavage

crystallizations with 
inhibitors

Phenylalanine-N
-sulfonamide

L-benzylsuccinic acid

2-benzyl-3,4-
epithiobutanoic acid



Substrate binding 

Phenylalanine-N
-sulfonamide



Substrate binding 



Substrate binding   Conformational changes

With substrate

Without substrate

Zn binding 
residues

Hydrophobic 
pocket
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Reaction inhibition

Phenylalanine-N
-sulfonamide



Reaction inhibition 

2-benzyl-3,4-
epithiobutanoic acid

L-benzylsuccinic acid



Pancreatic CBP   

CPA1

CPB

CPA2

CPA4



Pancreatic CBP   Sequence Alignment 

69 72

127

196

270

144-145

248

Zn binding 
residues

Subsite 1

Subsite 1’

LEGEND:  2PCU → CPA4   /   4UEE → CPA1   /   1DTD → CPA2   /   1ZLI → CPB



Pancreatic CBP   Sequence Alignment 

Subsite 2

71

197-199

279

124 128

LEGEND:  2PCU → CPA4   /   4UEE → CPA1   /   1DTD → CPA2   /   1ZLI → CPB

71

197-199



Pancreatic CBP   Superimposition 



Substrate specificity  A/B subfamily

255

Amino acid 255

Main determinant of 
specificity

CPA1
CPA2

CPB

ILE ASP

binds aliphatic 
residues

binds basic 
residues



Substrate specificity  A/B subfamily
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Substrate specificity  A/B subfamily

CPA1 CPA2



Substrate specificity  A/B subfamily
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Substrate specificity  A/B subfamily
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6

CPA1: specificity pocket + Zn binding residues



Substrate specificity  A/B subfamily
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CPA2: specificity pocket + Zn binding residues



Substrate specificity  A/B subfamily

CPA1 CPA2



Substrate specificity  A/B subfamily

768

5
6

CPA1: specificity pocket + Zn binding residues + active site



Substrate specificity  A/B subfamily

768

5
6

CPA2: specificity pocket + Zn binding residues + active site



69 72
69 72

196

196

270

270

248

248

Regulatory CBP vs Pancreatic CBP

%ID: 15,9 %ID: 16,04



Regulatory CBP vs Pancreatic CBP

CPM CPA1 CPM vs CPA1



Regulatory CBP vs Pancreatic CBP

CPN CPB CPN vs CPB



Conclusions

Overall sequence is poorly maintained among M14 carboxypeptidase 
subfamilies

Important functional residues are highly conserved along evolution in 
CPA1 and maintained among M14 carboxypeptidases

Structure is mostly maintained in M14 carboxypeptidases

Functional differences between M14 carboxypeptidases are correlated 
with changes in sequence and active site properties
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Multiple choice questions
Which characteristic is attributed to metallo-peptidases?

a. They have a metal element at the active site
b. They are endopeptidases
c. Both a and b are correct
d. They are exopeptidases
e. Both a and d are correct.

What is the difference between a pancreatic and a regulatory carboxypeptidase?
a. Regulatory carboxypeptidases are the digestive ones
b. Pancreatic carboxypeptidases are endopeptidases
c. Regulatory carboxypeptidases have zinc at their active site and pancreatic don’t
d. Pancreatic carboxypeptidases cleave proteins from diet
e. None of them is correct

Why are residues 69, 72 and 196 highly conserved?
a. Because they are acid residues
b. Because they are basic residues
c. Because they coordinate Zinc atom
d. Because they have long side chains
e. Because they are sulfur containing residues

How is Glu270 able to cleave the peptide bond?
a. Because it is able to act as a general acid allowing nucleophilic attack on the scissile amide carbon of the 

substrate
b. Because of its phosphate group
c. Because it binds to the substrate
d. Because it is a basic amino acid
e. Because it is an apolar amino acid



Multiple choice questions
About carboxypeptidase classification:

a. There is only one way to classify them, and it is very strict
b. There are different classifications, according to the criteria used
c. Both a and b are correct
d. A carboxypeptidase is always an endopeptidase
e. All of them are correct

When is a carboxypeptidase enzyme active?
a. When it is binded to the propeptide which blocks the active site
b. When the propeptide is a globular domain
c. Both a and b are correct
d. When it is not binded to the propetide which blocks the active site
e. None of them is correct

In which species carboxypeptidases are found?
a. Only in hummans
b. Only in mammals
c. Only in vertebrates
d. Only in eukaryotes
e. In eukaryotes and prokaryotes

How is Tyr 248 able to establish an hydrogen bond with the substrate?
a. Because it is an amino acid from the substrate
b. Because only aromatic amino acids perform hydrogen bonds
c. Both a and b are correct
d. Because it suffers a conformational change when the binding to the substrate occurs
e. All of them are correct



Multiple choice questions
About carboxypeptidases specificity:

1. Carboxypeptidase B has preference for basic residues.
2. Carboxypeptidase A1 cleaves aliphatic residues.
3. Carboxypeptidase A2 selectively acts on the bulkier aromatic residues.

4. All carboxypeptidases can cleave all the residues, there is no real specificity in these enzymes.

a. 1, 2, 3
b. 1, 3
c. 2, 4
d. 4
e. 1, 2 ,3 ,4

About sequence and structural similarity in carboxypeptidases:
1. Pancreatic carboxypeptidases are more similar among them that when compared to the regulatory ones
2. Similarities in sequence between digestive and non digestive carboxypeptidases are only 15-20%
3. Similarities in secondary structures between digestive and non digestive carboxypeptidases are higher than 

sequence similarities between them
4. Sequence is more similar between the two carboxypeptidase subfamilies than structure

a. 1, 2, 3 
b. 1, 3
c. 2, 4
d. 4
e. 1, 2 ,3 ,4
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