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Introduction Peptidases

➢ Proteolytic enzymes

➢ Catalytic and regulatory 
functions

➢ Found in 237 species

➢ Essential for life

Endopeptidases

Exopeptidases

Serine proteases

Cysteine 
proteases

Aspartic acid 
proteases

Metallo-
peptidases

Threonine 
proteases

Glutamic 
proteases

Action site:

Catalytic site:

https://www.ebi.ac.uk/merops/cgi-bin/organism_famdist?family=M14;taxon=Animalia;id=peptidase



Introduction Carboxypeptidases

➢ Exopeptidases

➢ C-terminal

➢ Pancreatic secretions

Serinecarboxypeptidases 
(SCPs)

Metallocarboxypeptidases 
(MCPs)

Action site:

Ser-Asp-His

Glutamic Acid bound to Zn2+

CPA-type

CPB-type

Hydrophobic

Basic



Introduction MEROPS Classification

Rawlings, N.D., Barrett, A.J. & Finn, R.D. (2016) Twenty years of the MEROPS database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res 44, D343-D350

Clan Family Subfamily

MC M14

M14A

M14B

M14C

M14D

A/B Subfamily

N/E Subfamily

http://nar.oxfordjournals.org/content/44/D1/D343.full.pdf+html


Introduction A/B Subfamily

M14A (CPA)

- Catalytic or digestive
- Zymogens
- Active site blocked

CPA1
CPA2
CPA4
CPB

M14B (CPH)

- Active enzymes
- Transthyretin-like 

domain

CPD
CPE
CPN
CPM

...



Introduction SCOP Classification
Class Fold Superfamily Family

α/β proteins
Phosphorylase/hydrola

se-like
Zn-dependent 
exopeptidases

Pancreatic CPs

Carboxipeptidase T

Leucine aminopeptidase, C-terminal domain

Bacterial dinuclear Zn exopeptidases

FolH catalytic domain-like

N-acetylmuramoyl-L-alanine amidase-like

AstE/AspA-like

Glutaminyl-peptide cyclotransferase-like

FGase-like

http://scop.mrc-lmb.cam.ac.uk/scop/data/scop.b.d.hi.f.b.html

http://scop.mrc-lmb.cam.ac.uk/scop/data/scop.b.d.hi.f.b.html


Introduction Rossmann-like Fold

2 13 4567 8



Introduction Catalysis

➢ Discrepancy with the catalytic mechanism of CPA
Different mechanisms

Different rate-limiting steps

Proteolytic reactions

Esterolytic reactions

Water-promoted 
pathway

Nucleophilic pathway

Preferred



Introduction Water-promoted pathway

➢ Water acts as a proton donor for Glu270

ES
Arg127
Asn144
Arg145
Tyr127

Arg127
Arg71

C-terminal end

Benzoyl carbonyl oxygen

Ser197 Stabilization



Introduction Water-promoted pathway

➢ STEP 1: nucleophilic addition

TI Glu270 and Zinc-bound water 
nucleophile attack the scissile carbonyl 

carbon resulting in the tetrahedral 
intermediate (TI)

Oxyanion hole



Introduction Water-promoted pathway

Cleavage of the esterolytic 
bond and obtaining the 

enzyme product (EP)

EP

➢ STEP 2: elimination



Introduction Nucleophilic pathway

➢ Anhydride mechanism

➢ Direct nucleophilic attack

➢ Acyl-enzyme intermediate (AI)



Pro-carboxypeptidase Structure

Enzyme moiety

Connecting segment
Helix ⍺3 

Globular domain



Pro-carboxypeptidase Alignment



Pro-carboxypeptidase Alignment

PCPB (PDBID: 1NSA)

PCPA2 (PDBID: 1AYE)



Pro-carboxypeptidase Interactions 

Other interactions

Asp36A → Arg71

Trp38A 

Tyr198 (π 
interaction)

Phe279 
(CO···H) 

Hydrogen bonds



Pro-carboxypeptidase Interactions

Trp 
38A

Asp 
36A

36A 38A 



Active Site
β5

PDBID: 2V77



Active Site    Zn residues
His 
196

Asp 
72

His 
69

69 72

196



Active Site    Subsite S1’
Tyr 
248

Arg 
145

Asn 
144

144 145

248



Active Site    Subsite S1
Glu 
270

Arg 
127

127

270



Active Site    Subsite S2
Tyr 
198

Ser 
197

Arg 
71

Ser 
199

71

197 198 199



Active Site    Subsites S3 and S4
Lys 
128

Arg 
124

Lys 
122

Phe 
279

122 124 128

279



Substrate Specificity CPA vs CPB

243 255

IleIle

Gly Asp

CPA

CPB

PDBID: 1UEE, 1DTD, 1ZLI 



Substrate Specificity CPA vs CPB

CPB (PDBID: 1ZLI)CPA (PDBID: 1UEE)



Substrate Specificity CPA1 vs CPA2

Ser

Gly Ser

Thr

Ala

ThrCPA1

CPA2

253 254 268

PDBID: 1UEE, 1DTD



Substrate Specificity CPA1 vs CPA2

CPA1 (PDBID: 4UEE) CPA2 (PDBID: 1DTD)



Substrate Specificity CPA1 vs CPA2

CPA1 (PDBID: 4UEE) CPA2 (PDBID: 1DTD)



Inhibitors Types

Autologous Inhibition Heterologous Inhibition Excess Zinc

Pro-segment
Potato 

Carboxypeptidase 
Inhibitor

Inhibitory 
Zn2+



Inhibitors Autologous Inhibitors

PDBID: 1NSA

Pro-carboxypeptidase



Inhibitors Heterologous Inhibitors

3 disulfide 
bridges

C-tail

N-terminal

Globular 
core

Potato Carboxypeptidase Inhibitor (PCI)

PDBID: 1H20



Inhibitors Heterologous Inhibitors
Interaction CPA - PCI

PDBID: 4CPA



Inhibitors Excess Zinc

PDBID: 1CPX

Superimposition of CPA and CPA+Zinc



M14A Carboxypeptidases Superimposition

2v77A → hCPA1
1PCA → pPCPA1
1AYE → hPCPA2

2BOA → hPCPA4
1KWM → hPCPB
1NSA → pPCPB



M14A Carboxypeptidases Structural Alignment

α1 β1 β2 β3 β4

β5 β6 β7

β8

α2 α3 α4

α5 α6

α7 α8



M14B Carboxypeptidases
CPE

CPD

CPN

CPZ

CPM

Neuroendocrine enzyme implicated in the biosynthesis of numerous peptide hormones and 
neurotransmitters by removing the C-terminal from peptide processing intermediates that are 

formed by the action of prohormone convertases on the peptide precursor. 

Broadly distributed throughout the body. Primarily functions in the trans-Golgi network and 
constitutive secretory pathway. Main substrates are growth factors and receptors that are 

produced from larger precursors.

Attached to a wide variety of cells via a glycosylphosphatidylinositol linkage and it’s involved in 
the extracellular processing of peptides and proteins.

The largest regulatory carboxypeptidase described, it circulates in the plasma forming a 280kDa 
protein complex. It’s the major blood inactivator of potent peptides such as kinins and 

anaphylotoxins. 

Present in the extracellular matrix, with a broad distribution during embryogenesis and a more 
restricted pattern in adult tissues. Precise function is not known, it is likely that this enzyme cleaves 

intermediates generated by the various matrix endopeptidases



M14B Carboxypeptidases

Glu 
69

His 
66

His 
193

Glu 
72

His 
69

His 
196



M14B Carboxypeptidases Superimposition

3QNV → CPT
1UWY → CPM
2NSM → CPN
1QMU → CPD



M14A vs M14B: Superimposition

2NSM → CPN
1QMU → CPD
1KWM → PCPB
1AYE → PCPA2
2BOA → PCPA4

3QNV → CPT
1ZLI → CPB
2V77 → CPA1
1UWY → CPM



"InParanoid 8: orthology analysis between 273 proteomes, mostly eukaryotic" Erik L.L.Sonnhammer and Gabriel Östlund
Nucleic Acids Res. 43:D234-D239 (2015)

Phylogeny and Evolution Phylogenetic tree

http://www.ncbi.nlm.nih.gov/pubmed/25429972


Phylogeny and Evolution Multiple Sequence Alignment

48% identity

30% identity



Phylogeny and Evolution Multiple Sequence Alignment

➢ Carboxypeptidases are present in all kingdoms of life

➢ Highly conserved residues

➢ Observed similarity fits the classifications

➢ Further research on structure is needed



Conclusions
➔ CPs have a dual classification in different families
➔ Structural similarity in the catalytic domain
➔ Highly conserved residues in the active site
➔ Discrepancies in catalysis
➔ Structural differences between M14A and M14B
➔ Present in all kingdoms of life



Materials and Methods
Programs used:

Psi-blast

Clustalw

STAMP (Alignfit)

Chimera 

Databases used:

PDB

UniProt

MEROPS

InParanoid8
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Multiple Choice Questions
1. Regarding Carboxypeptidases:

a) Endopeptidases that cut the C-terminal end of peptides
b) Endopeptidases that cut the N-terminal end of peptides
c) Exopeptidases that cut the C-terminal end of proteins
d) Exopeptidases that cut the N-terminal end of proteins
e) None of the above

2. Select the correct statements about Carboxypeptidases M14A:
1. Catalytic proteins
2. Secreted as zymogens
3. Found in pancreatic secretions
4. Have a transthyretin-like domain

a)1, 2, 3
b)2, 4
c)1, 3
d) 4
e)1, 2, 3, 4

3. Related to the water-promoted pathway in Carboxypeptidases:
a) It’s divided in nucleophilic addition and elimination steps
b) Water acts as a proton donor for Glu270
c) An oxyanion hole is formed
d) There’s a tetrahedral intermediate
e) All of the above



Multiple Choice Questions
4. Regarding the catalytic mechanism of Carboxypeptidases:

a) There are discrepancies despite the experimental data
b) Water-promoted pathway is the sole mechanism for proteolytic reactions
c) Nucleophilic pathway is not the preferred mechanism
d) Both pathways are viable for esterolytic reactions
e) All of the above

5. Procarboxypeptidases…
a) Are secreted in the liver
b) Their pro-peptide is 50 residues long
c) Need activation by trypsin 
d) Release the pro-peptide when cut in a cysteine residue
e) Contain only globular domains

6. Why are residues 69, 72 and 196 highly conserved? 
a) Because they are in the pro-segment 
b) Because they are crucial for catalysis 
c) Because they coordinate Zinc atom 
d) Because they have positive charge
e) Because they are aromatic amino acids

7. Regarding the substrate specificity of Carboxypeptidases:
a) CPA1 has preference for aliphatic residues
b) CPA’s have an Isoleucine in position 255 and 243.
c) Both a and b are correct
d) CPB cleaves off basic residues
e) All of them are correct



Multiple Choice Questions
8. Which of the following are CPA inhibitors? 

a) PCI (Potato Carboxypeptidase Inhibitor) 
b) Presence of a second zinc ion
c) Both a and b are correct 
d) Autologous inhibition by the pro-segment 
e) All of them are correct

9. About M14 subfamilies superimposition: 
1. M14A carboxypeptidases are more similar among them that when compared to the M14B 
2. Sc values of 9 and RMS values of <2.0 suggest that proteins have a common ancestor
3. M14B superimposition has a higher RMS value than the M14A subfamily superimposition
4. Sequence is more similar between the two carboxypeptidase subfamilies than structure

a) 1, 2, 3 
b) 1, 3 
c) 2, 4 
d) 4 
e) 1, 2 ,3 ,4

10. About evolution of Carboxypeptidases:
a) They are present only in eukaryotes 
b) Low number of residues are conserved along different species. 
c)  Are found in all the kingdoms of life
d) Catalytic CPs are only found in humans
e) All of them are false 
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