

Carboxypeptidases

Irina Badell, Ariadna Cobos, Marta Dacosta

Index

Introduction

Peptidases
Carboxypeptidases
MEROPS Classification
SCOP Classification
Rossmann-like Fold
Catalysis

Pro-carboxypeptidase

Structure
Alignment

Active site

Zinc Residues
Subsites

Substrate Specificity

CPA vs CPB
CPA1 vs CPA2

M14A Superimposition

STAMP
Structural Alignment

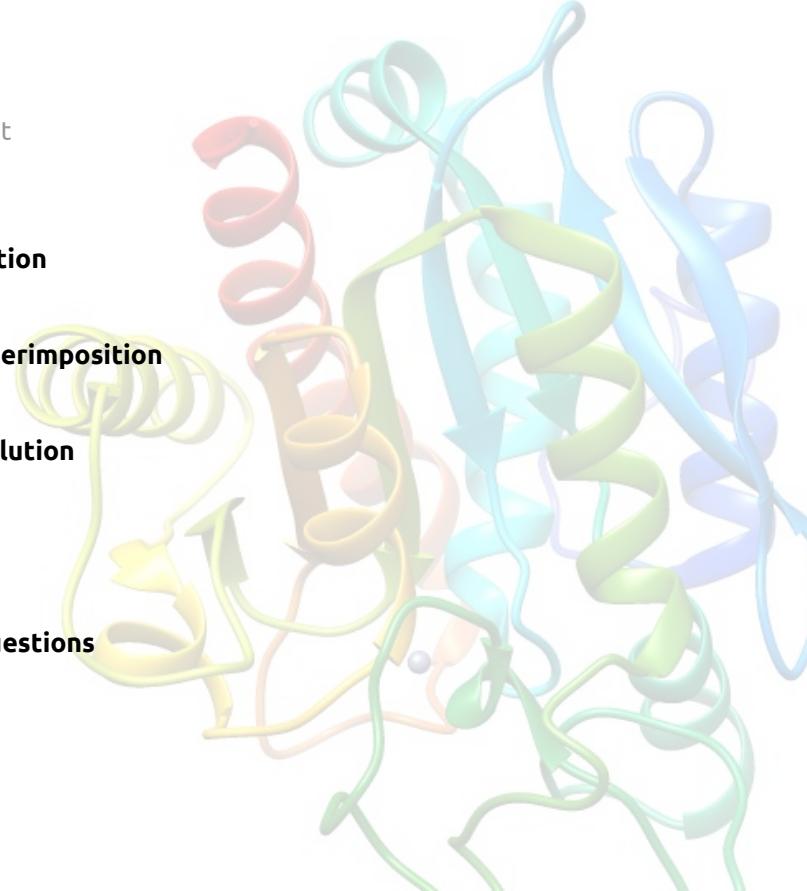
Inhibition

Types
Pro-segment
CPI
Excess Zn

M14B Superimposition

STAMP

M14a vs M14 B Superimposition


STAMP

Phylogeny and Evolution

Conclusions

Bibliography

Multiple Choice Questions

Introduction Peptidases

- Proteolytic enzymes
- Catalytic and regulatory functions
- Found in 237 species
- Essential for life

Action site:

Endopeptidases

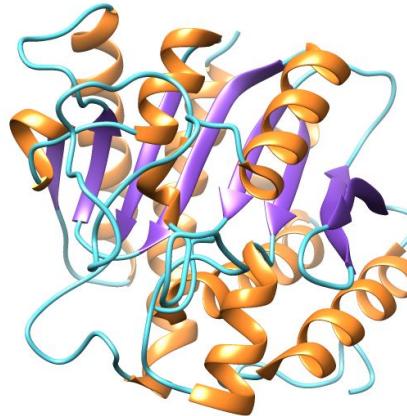
Exopeptidases

Catalytic site:

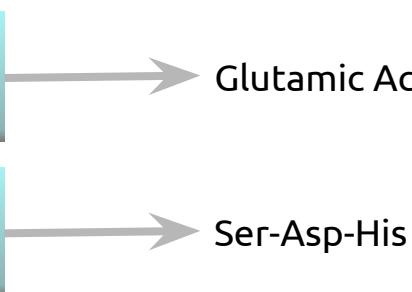
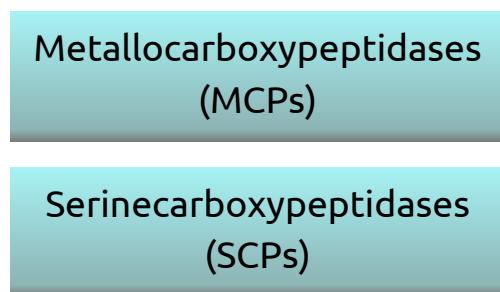
Serine proteases

Cysteine proteases

Aspartic acid proteases


Threonine proteases

Glutamic proteases



Metallo-peptidases

Introduction Carboxypeptidases

- Exopeptidases
- C-terminal
- Pancreatic secretions

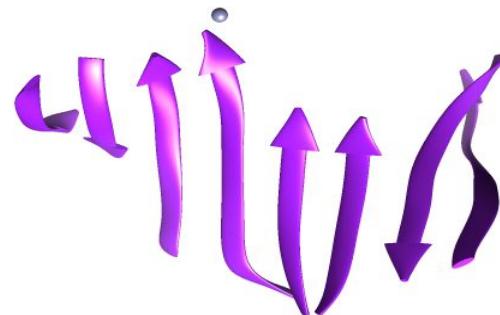
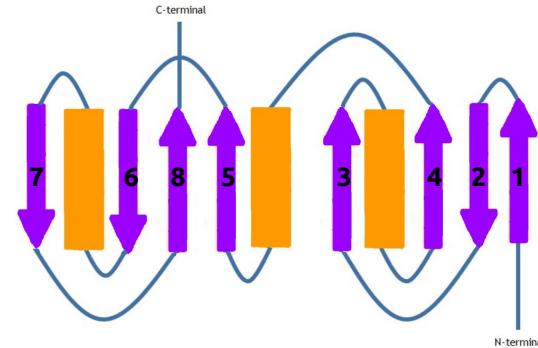
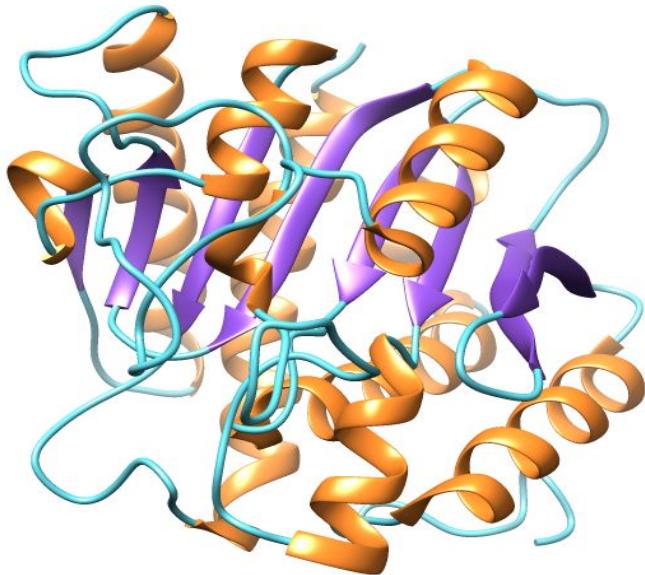
Action site:

CPA-type Hydrophobic

CPB-type Basic

Introduction MEROPS Classification

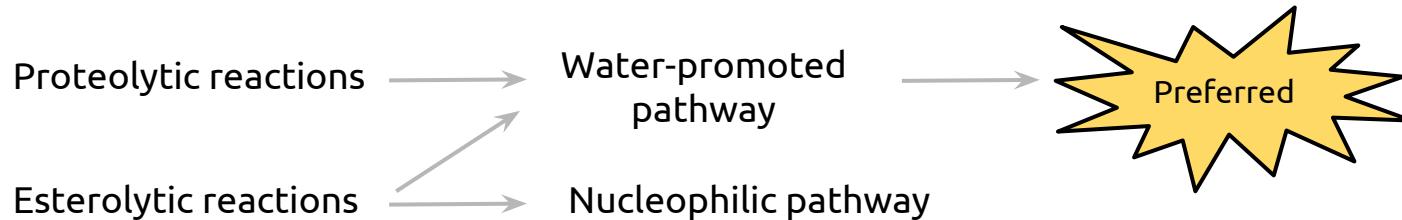
Clan	Family	Subfamily	
MC	M14	M14A M14B M14C M14D	 A/B Subfamily N/E Subfamily




Introduction A/B Subfamily

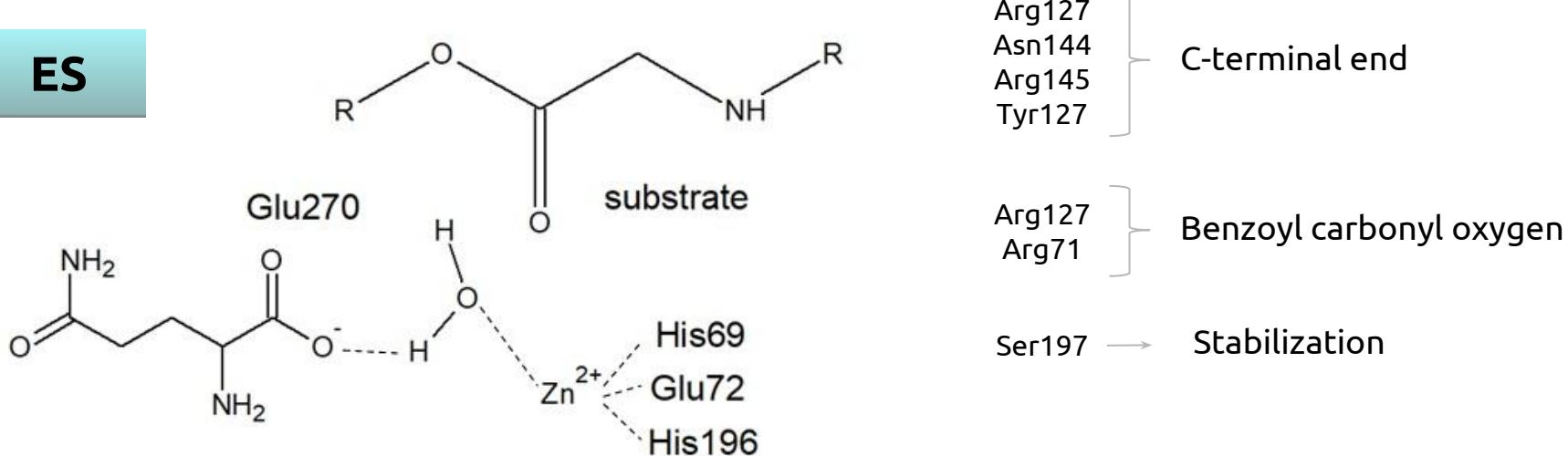
M14A (CPA)	M14B (CPH)
<ul style="list-style-type: none">- Catalytic or digestive- Zymogens- Active site blocked	<ul style="list-style-type: none">- Active enzymes- Transthyretin-like domain
CPA1 CPA2 CPA4 CPB	CPD CPE CPN CPM ...

Introduction SCOP Classification

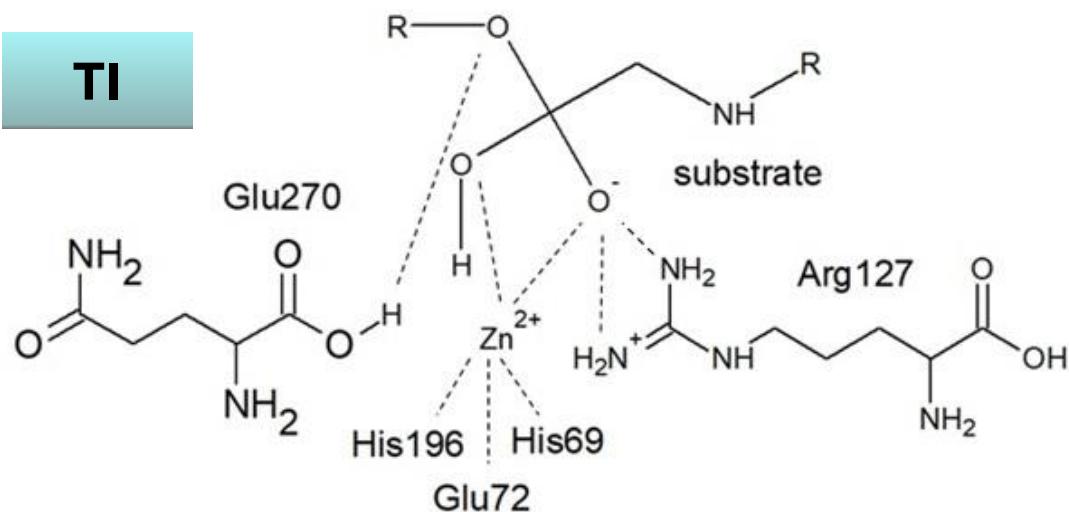
Class	Fold	Superfamily	Family
α/β proteins	Phosphorylase/hydrolase-like	Zn-dependent exopeptidases	Pancreatic CPs Carboxipeptidase T Leucine aminopeptidase, C-terminal domain Bacterial dinuclear Zn exopeptidases FolH catalytic domain-like N-acetylmuramoyl-L-alanine amidase-like AstE/AspA-like Glutaminyl-peptide cyclotransferase-like FGase-like


Introduction Rossmann-like Fold

Introduction Catalysis


- Discrepancy with the catalytic mechanism of CPA

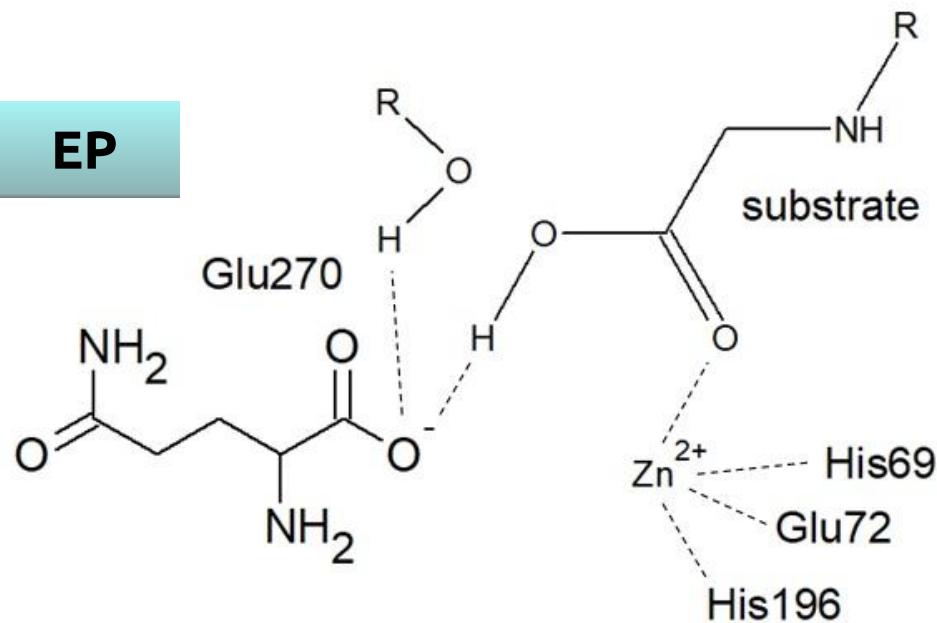
Different mechanisms
Different rate-limiting steps


Introduction Water-promoted pathway

- Water acts as a proton donor for Glu270

Introduction Water-promoted pathway

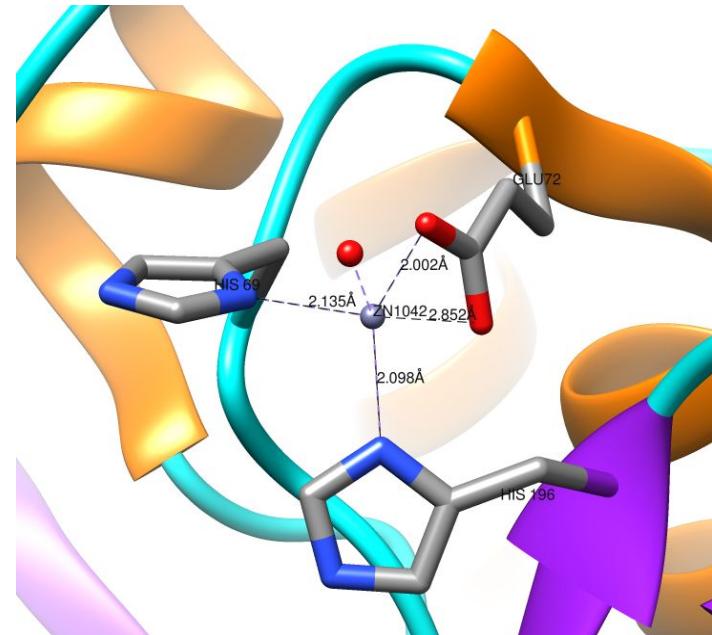
- STEP 1: nucleophilic addition

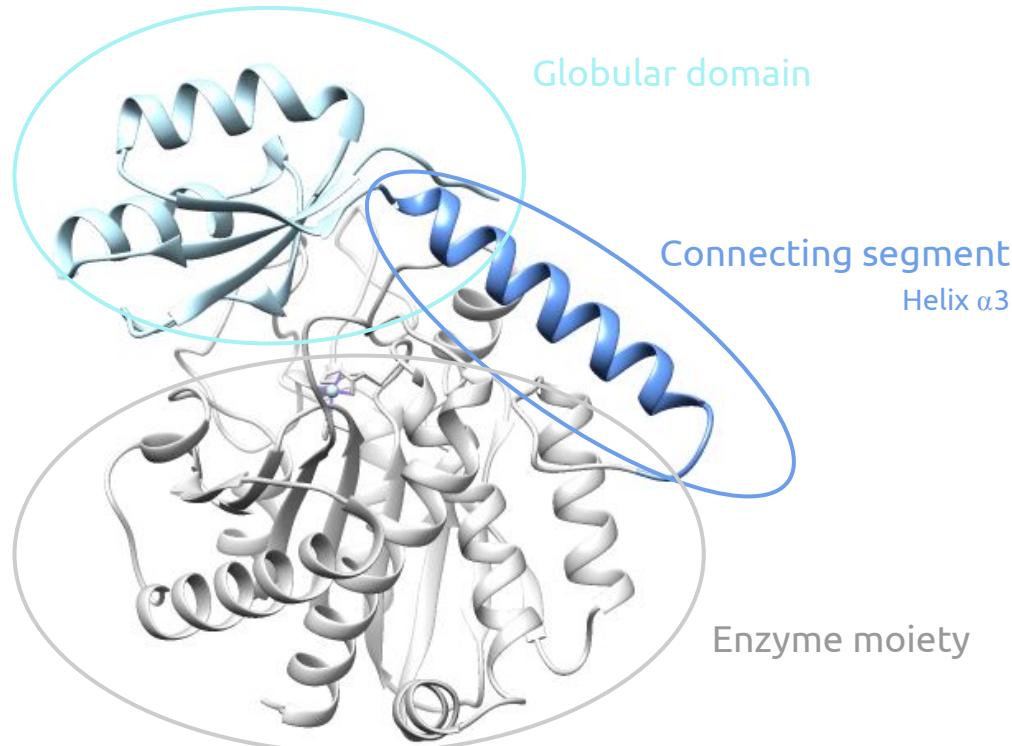


Glu270 and Zinc-bound water nucleophile attack the scissile carbonyl carbon resulting in the tetrahedral intermediate (TI)

Oxyanion hole

Introduction Water-promoted pathway


- STEP 2: elimination


Cleavage of the esterolytic bond and obtaining the enzyme product (EP)

Introduction Nucleophilic pathway

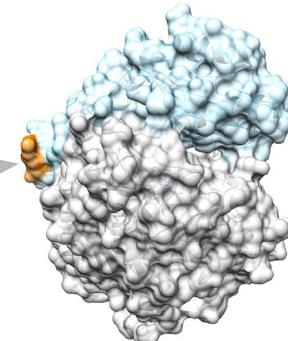
- Anhydride mechanism
- Direct nucleophilic attack
- Acyl-enzyme intermediate (AI)

Pro-carboxypeptidase Structure

Pro-carboxypeptidase Alignment

hCPA2
hPCPA2

-----FNFGAYHTLEEISQEMDNL
KVFLESQGIAYSIMIEDVQVLLDKENEEMLFN**RRRER**-SGNFNFGAYHTLEEISQEMDNL

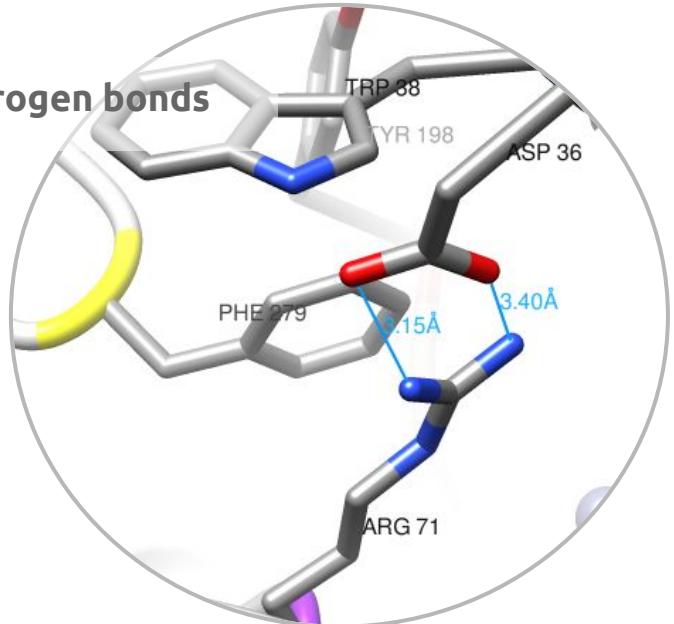

Pro-carboxypeptidase Alignment

CBPA5_HUMAN
CBPA5_MACFA
CBPA2_MOUSE
CBPA2_RAT
CBPA2_HUMAN


ESHGLAYSIMIKDIQVLLDEERQAMAKSRRLE**R**STNSFSYSSYHTLEEIY
ESHGLAYSIMIKDIQVLLDEEREAMAKSRRLE**R**STSSFSYSSYHTLEEIS
ESQGITYSIMIEDVQVLLDQEREEMLFNQQRE**R**GTN-FNFGAYHTLEEIY
ESQGIDYSIMIEDVQVLLDQEREEMLFNQQRE**R**GGN-FNFEAYHTLEEIY
ESQGIAYSIMIEDVQVLLDKENEEMLFNRRRE**R**SGN-FNFGAYHTLEEIS

CBPB2_RAT
CBPB2_MOUSE
CBPB2_HUMAN
CBPB2_BOVIN

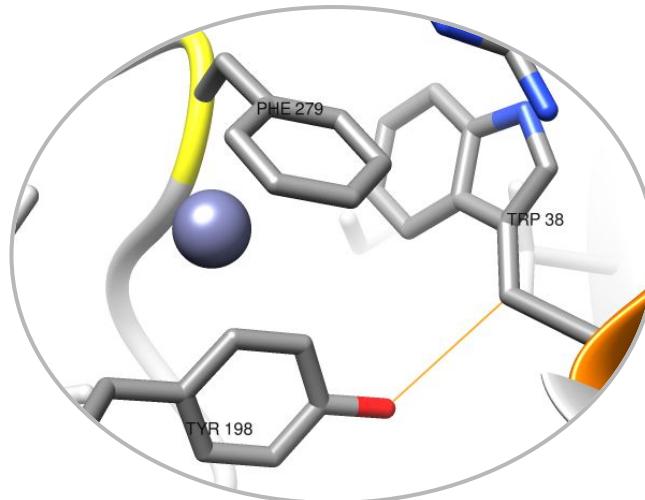
NASRIPFNVLMMNNVEDLIQQQTS--NDTVSH**R**AS--SSYYEQQYHSLNEIY
NVSRIPFNVLMMNNVEDLIEQQTF--NDTVSH**R**AS--ASYYEQQYHSLNEIY
NVSGIPCSVLLADVEDLIQQQIS--NDTVSH**R**AS--ASYYEQQYHSLNEIY
NASRIPFRVLVENVEDLIRQTS--NDTISH**R**AS--SSYYEQQYHSLNEIY


PCPA2 (PDBID: 1AYE)

PCPB (PDBID: 1NSA)

Pro-carboxypeptidase

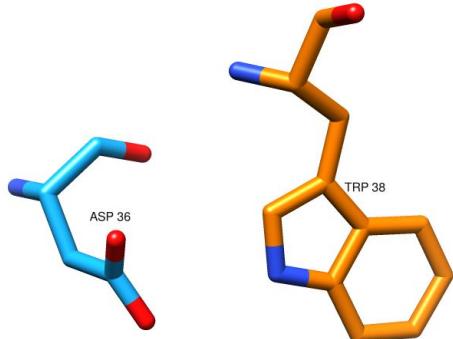
Hydrogen bonds



Distance information
1 283 <-> 1300: 3.15
2 282 <-> 1301: 3.40

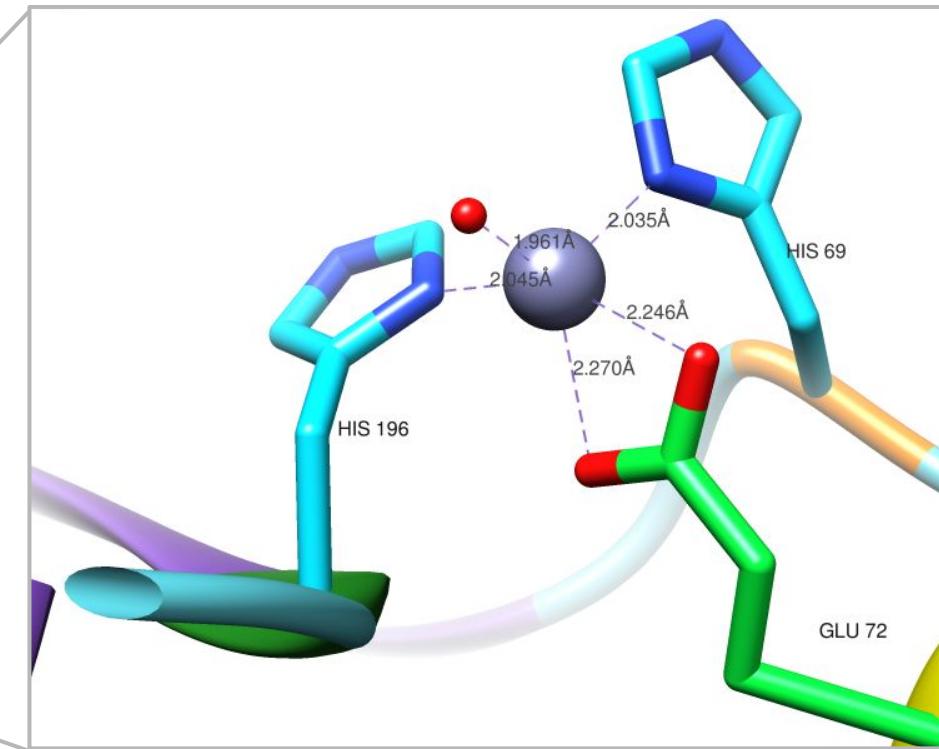
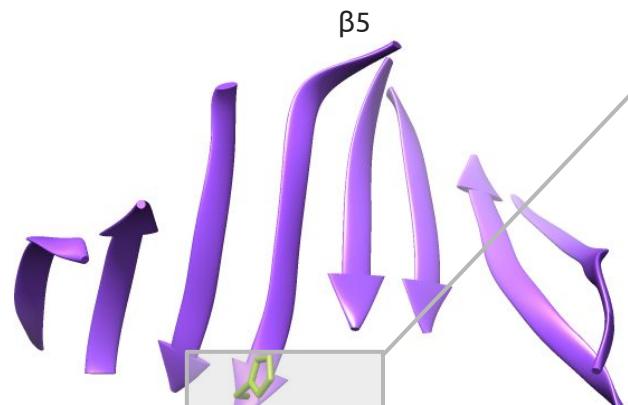
Asp36A → Arg71

Interactions

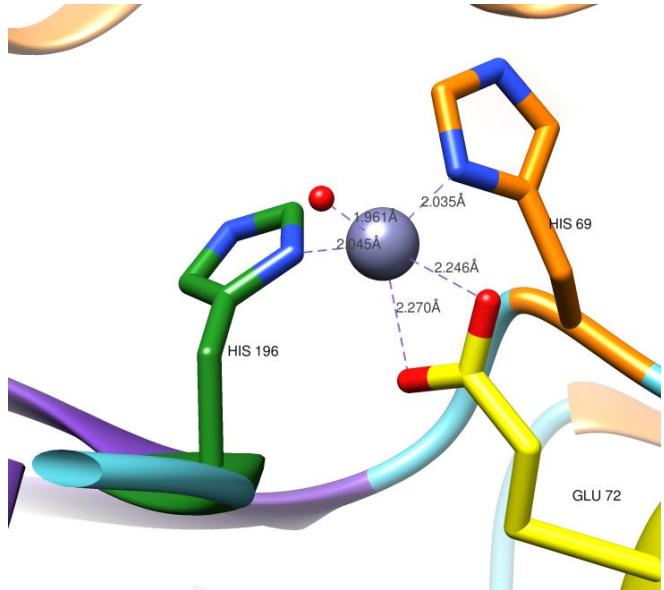

Other interactions

Distance information
5 299 <-> 2279: 3.37

Tyr198 (π interaction)
↑
Trp38A
↓
Phe279 (CO...H)



Pro-carboxypeptidase Interactions

sp|P19222|CBPA2_RAT
sp|Q504N0|CBPA2_MOUSE
sp|P48052|CBPA2_HUMAN
sp|Q9UI42|CBPA4_HUMAN
sp|P09954|CBPA1_PIG
sp|P00730|CBPA1_BOVIN
sp|P15085|CBPA1_HUMAN
sp|P00731|CBPA1_RAT
sp|Q7TPZ8|CBPA1_MOUSE
sp|Q8WXQ8|CBPA5_HUMAN
sp|Q4R7R2|CBPA5_MACFA
sp|Q8R4H4|CBPA5_MOUSE
sp|P00732|CBPB1_BOVIN
sp|P09955|CBPB1_PIG
sp|P55261|CBPB1_CANFA
sp|P15086|CBPB1_HUMAN
sp|P19223|CBPB1_RAT


HEEQIRTLQLEAEEHLEIDWK---SPTIPGETVHVRVPFASIQAVKV
DEEQIKTLLQLEAEEHLEIDWK---SPSVPRQTVHVRVPFASIQDVKV
NEEQIKNLLQLEAQEHLQIDWK---SPTTPGETAHVRVPFVNQAVKV
NGDEISKLSQLVNSNNILKLNIDWK---SPSSFNRPVDDLVPSVSLQAFKS
DEAQVQKVKELEDLEHLQIDWKR---GPARPGFPIDVVRVPFPFSIQAVKV
DEAEVQTVKELEDLEHLQIDWKR---GPGQPGSPIDVVRVPFPFSLQAVKV
DEAQVQKVKELEDLEHLQIDWKR---GPAHPGSPIDVVRVPFPFSIQAVKI
DEAQVQKVKELEDLEHLQIDWKR---DAARAGIPIDVVRVPFPFSIQSVKA
DEAQVQKVRELEELHLKIDWKR---DPARAGLPIDVVRVPFPPTIQSVKA
DEKQLSLLGDLEGGLKPQKVIDWKR---GPARPSLPPVDMRVPFSELKDIKA
DEKQLSLLRDLEGGLKPQKVIDWKR---GPARPSLPPVDMRVPFSELKYIKA
NEKQLSLLRDLETQKPQKVIDWKR---GPARPSLPPVDMRVPFSELPSVKA
DENHISLLHELASTR--QIDWKPDSVTQVKPHSTVDFRVKAEDTVAVED
DENDISLLHELASTR--QIDWKPDSVTQIKPHSTVDFRVKAEDILAVED
DENHINLLHTLASTT--QIDWKPDSVTQIKPHSTADFRVKAEDILTVED
DENHINIIRELASTT--QIDWKPDSVTQIKPHSTVDFRVKAEDTVTVEN
GEDHVNLIQELANTK--E1DWPKPDSATQVKPLTTVDHFVKAEDVADVEN

Active Site

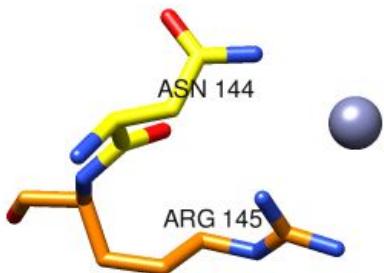
PDBID: 2V77

Active Site Zn residues

His
69

Asp
72

His
196


CBPA2_HUMAN
CBPA2_MOUSE
CBPA1_PIG
CBPA1_BOVINE
CBPA1_HUMAN
CBPA1_MOUSE
CBPB1_BOVINE
CBPB1_HUMAN

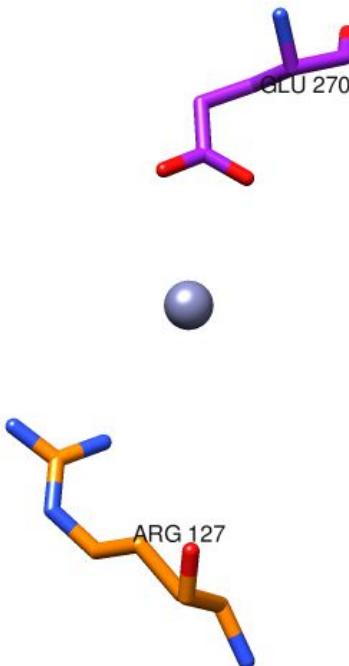
CBPA2_HUMAN
CBPA2_MOUSE
CBPA1_PIG
CBPA1_BOVINE
CBPA1_HUMAN
CBPA1_MOUSE
CBPB1_BOVINE
CBPB1_HUMAN

KVNIGSSFENRPMNVLKFKSTGG-DKPAIWLDAGI **HAF** **E** JVQTQATALWTAN
KVNIGSSFENRPMNVLKFKSTGG-DKPAIWLDAGI **HAF** **E** JVQTQATALWTAN
KLQIGSSYEGRPIYVLKFSTGGNNRPAPIWIIDTGJ **HSE** **E** JVQTQASGVWFAKI
KLQIGRSYEGRPIYVLKFSTGGNSRPAPIWIIDLGJ **HSE** **E** JVQTQATGVWFAKI
KIQIGNTYEGRPIYVLKFSTGGSKRPAPIWIIDTGJ **HSE** **E** JVQTQASGVWFAKI
KIQIGSTFEGRPINVLFKSTGGTNRPAWIIDTGJ **HSE** **E** JVQTQASGVWFAKI
RSAIGTTFLGNNTIYLKVGKPGSNKPAVFMDCGE **HAF** **E** JISPAFCQWFVRL
RSVIGTTFEGRAIYLKVGKAGONKPAIFMDCGE **HAF** **E** JISPAFCQWFVRL

196
SHG-KVKAFITLHSYSQLLLMF PYGYKCTKLDLDFE LSEVAQKAAQSLRSL
SHG-KVKAFITLHSYSQLLLMF PYGYKCAKPDFN E LDEVAQRAA QSLKRL
DHG-NIKAFISLHSYSQLLLLPYGYKTEAPADKDEL DQISKSAV AALTSL
DHG-NFKAFISLHSYSQLLLLPYGYTTQSIPD KTEL NQVAKSAV EALKSL
DHG-NIKAFISLHSYSQLLLMY PYGYKTEPVDPD QDEL DQLSKA A VTALASL
SHG-NIKAFISLHSYSQLLLLPYGYTSEAPDKEEL DQLAKS A VTALTSL
NHLSSIKAYLTIHSYSQMMMLYPYSYDYKLPKNNV E LNTLAKGAVKKL A SL
NKLSSIKAYLTIHSYSQMMIYPYSYAYKLGENN AELNALAKATV KELASL

Active Site Subsite S1'

CBPA2_HUMAN
CBPA2_MOUSE
CBPA1_PIG
CBPA1_BOVIN
CBPA1_HUMAN
CBPA1_MOUSE
CBPB1_BOVIN
CBPB1_HUMAN


144 145

GSLCVGVDE **N**RNWDAFGGGPGASSSNPCSDSYHGPSANSEVEVKSIVDFIK
GSFCVGVDEN **N**RNWDAFGGGPGASSSNPCSDSYHGPSPNSEVEVKSIVDFIK
GSFCVGVDEN **N**RNWDAFGGGAGASSSNPCSETYHGKFPNSEVEVKSIVDFVN
SSLCVGVDAN **N**RNWDAFGKGAGASSSSPCSETYHGKYANSEVEVKSIVDFVK
GSLCIGVDEN **N**RNWDAFGGLSGASSSNPCSETYHGKFANSEVEVKSIVDFVK
GSLCVGVDE **N**RNWDAAFGMPGASSSNPCSETYRGKFPNSEVEVKSIVDFVT
GSSCTGTDIN **N**RNFDAWGWCISIGASNNPCSETYCGSAAESEKESEKAVADFIR
GSSCIGTDEN **N**RNFDAWGCEIGASRNPCEDETYCGPAAESEKEKETKALADFIR

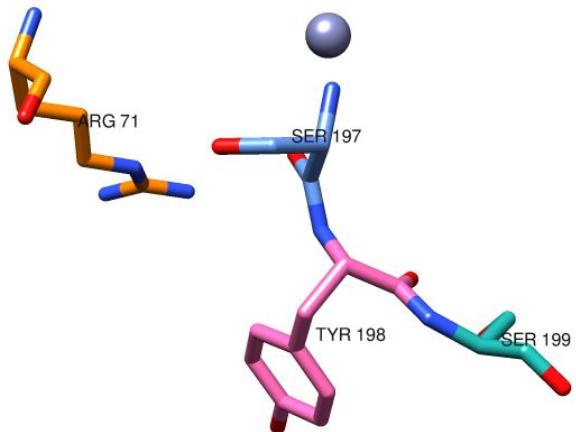
248

HGTKYKVGPICSVI **Y**QASGGSIDWSYDYGIKYSFAF**E**LRDTGRYGFLLPA
HGTSYKVGPICSVI **Y**QASGGSIDDWAYDLGIKYSFAF**E**LRDTGYYGFLPA
YGTKFQYGSIIITTI **Y**QASGGTIDWTYNQGIKYSFSF**E**LRDTGRYGFLLPA
YGTSYKYGSIIITTI **Y**QASGGSIDWSYNQGIKYSFTF**E**LRDTGRYGFLLPA
YGTKFNYGSIIKAI **Y**QASGSTIDWTYSQGIKYSFTF**E**LRDTGRYGFLLPA
HGTKFQYGSIIDTI **Y**QASGSTIDWTYSQGIKYSFTF**E**LRDTGLRGFLPA
HGTTYTYGPGASTI **Y**PASGGSSDDWAYDQGIKYSFTF**E**LRDKGRYGFVLPE
HGTKYTYGPGATTI **Y**PAAGGSSDDWAYDQGIRYSFTF**E**LRDTGRYGFLLPE

Active Site Subsite S1

CBPA2_HUMAN
CBPA2_MOUSE
CBPA1_PIG
CBPA1_BOVIN
CBPA1_HUMAN
CBPA1_MOUSE
CBPB1_BOVIN
CBPB1_HUMAN

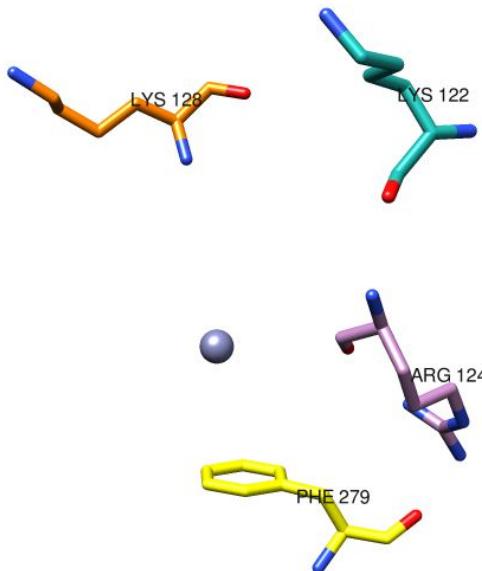
CBPA2_HUMAN
CBPA2_MOUSE
CBPA1_PIG
CBPA1_BOVIN
CBPA1_HUMAN
CBPA1_MOUSE
CBPB1_BOVIN
CBPB1_HUMAN


KIVSDYGKDPSITSILDALDIFLLPVTNPDGYVFSQTKNRMW**R**KTRSKVS
KIASDYGTDPAITSLLNTLDVFLLPVTNPDGYVFSQTSNRMW**R**KTRSKRS
KITEDYGQDPAFTAILDNLDIFLEIVTNPDGFAFTHSENRMW**R**KTRSRTS
KFTEDYGQDPSFTAILEDNSMDIFLEIVTNPDGFAFTHSQNRLW**R**KTRSVTS
KITQDYGQDAFTAILEDNLDIFLEIVTNPDGFAFTHSTNRMW**R**KTRSHTA
KITKDYGQEPITLTAILDNMDIFLEIVTNPDGFVYTHKTNRMW**R**KTRSHTE
EAVRTYGREIHMTTEFLDKLDFYVLPVNVNIDGYIYTWTNNRMW**R**KTRSTRA
EAVRTYGREIQVTELLDKLDFYVLPVLNIDGYIYTWTKSRFW**R**KTRSTHT

HGTKYKVGPICSVI**Y**QASGGSIDWSYDYGIKYSFA**E**LRDTGRYGFLLPA
HGTSYKVGPICSVI**Y**QASGGSIDWAYDLGIKYSFA**E**LRDTGYYGFLLPA
YGTKFQYGSIITTI**Y**QASGGTIDWTYNQGIKYSFS**E**LRDTGRYGFLLPA
YGTSYKYGSIITTI**Y**QASGGSIDWSYNQGIKYSFT**E**LRDTGRYGFLLPA
YGTKFNYGSIIKAI**Y**QASGSTIDWTYSQGIKYSFT**E**LRDTGRYGFLLPA
HGTKFKYGSIIDTI**Y**QASGSTIDWTYSQGIKYSFT**E**LRDTGLRGFLLPA
HGTTTYGPGASTI**Y**PASGGSDDWAYDQGIKYSFT**E**LRDKGRYGFVLPE
HGTKYTYGPGATTI**Y**PAAGGSDDWAYDQGIYRSFT**E**LRDTGRYGFLLPE

127

270

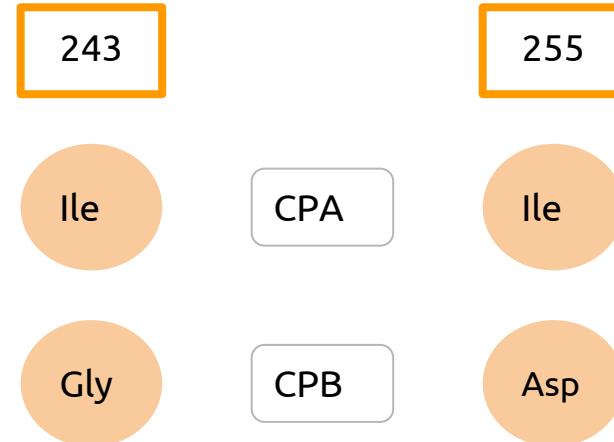

Active Site Subsite S2

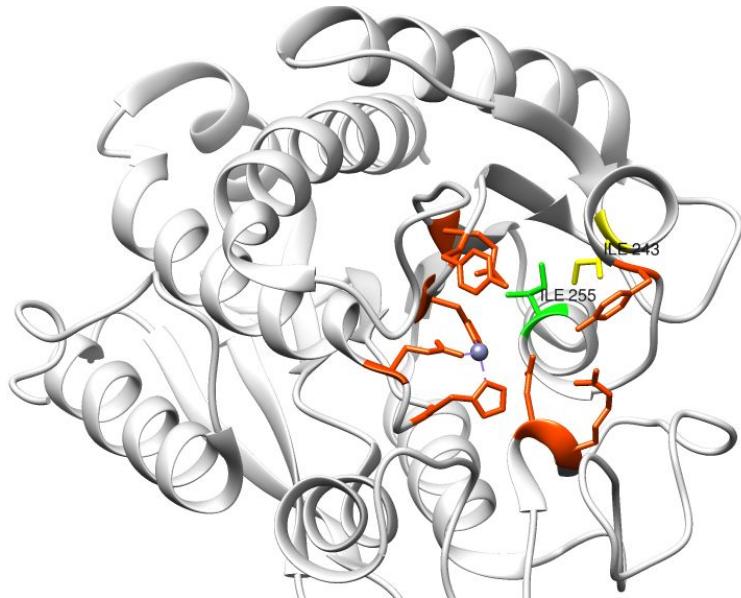
CBPA2_HUMAN
 CBPA2_MOUSE
 CBPA1_PIG
 CBPA1_BOVIN
 CBPA1_HUMAN
 CBPA1_MOUSE
 CBPB1_BOVIN
 CBPB1_HUMAN

KVNIGSSFENRPMNVLFSTGG-DKPAIWLDAIGIHA**REWVTQATALWTAN**
 KVNIGSSFENRPMNVLFSTGG-DKPAIWLDAIGIHA**REWVTQATALWTAN**
 KLQIGSSYEGRPIYVLKFSTGGNNRPAIWIDTGIHS**REWVTQASGVWFAK**
 KLQIGRSYEGRPIYVLKFSTGGSNRPAIWIDLGIHS**REWITQATGVWFAK**
 KIQIGNTYEGRPIYVLKFSTGGSKRPAIWIDTGIHS**REWVTQASGVWFAK**
 KIQIGSTFEGRPINVLKFSTGGTNRPAIWIDTGIHS**REWVTQASGVWFAK**
 RSAIGTTFLGNTIYLLKVGKPGSNKPAVFMDCGFH**REWISPAFCQWFVR**
 RSVIGTTFEGRAIYLLKVGKAGQNKPAlFMDCGFH**REWISPAFCQWFVR**

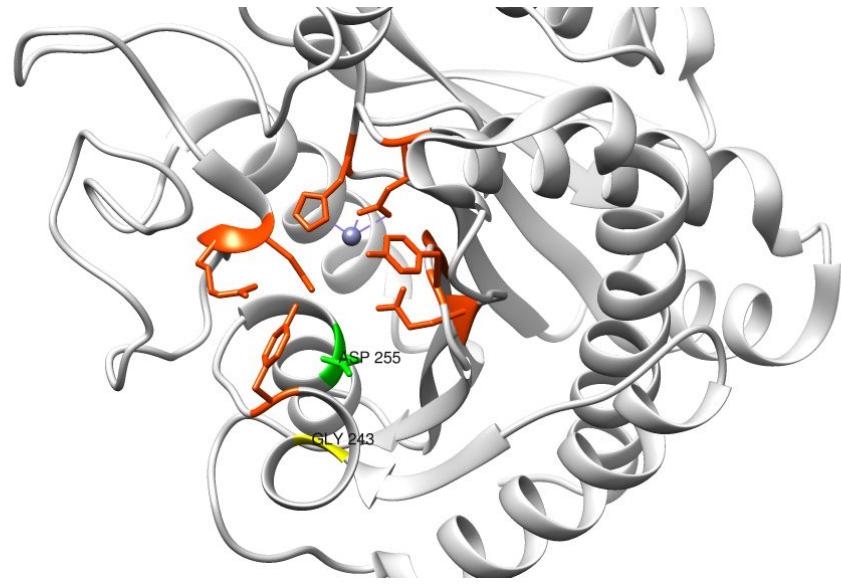
 71
 197 198 199
 SHG-KVKAFITL**SY****S**QLLMFPYGYKCTKLDDELS**E**VAQKAAQSLRSL
 SHG-KVKAFITL**SY****S**QLLMFPYGYKCAKPDDFN**E**LA**V**AQRAAQS**L**KRL
 DHG-NIKAFISI**H****S**Y**S**QLLLYPYGYK**T**EAPADK**D**ELD**Q**IS**K**SAV**A**LT**S**L
 DHG-NFKAFLSI**H****S**Y**S**QLLLYPYGY**T**QSIPDK**T**ELNQ**V**AK**S**AVE**A**LK**S**L
 DHG-NIKAFISI**H****S**Y**S**QLLMY**P**YGY**K**TEPVPD**Q**DEL**D**QL**S**KA**V**T**A**LAS**L**
 SHG-NIKAFISI**H****S**Y**S**QLLLYPYGY**T**SEPA**P**D**K**E**L**D**Q**LA**K**SA**V**T**A**LT**S**L
 NHLSSIKAYLT**I****H****S**Y**S**QMMLY**P**YSY**D**Y**K**LP**K**NN**V**EL**N**TL**A**KG**A**V**K**KL**A**SL
 NKLSSIKAYLT**I****H****S**Y**S**QMMIY**P**YSY**A****Y****K**LG**E**NN**A**EL**N**AL**A**K**T**V**K**EL**A**SL

Active Site Subsites S3 and S4

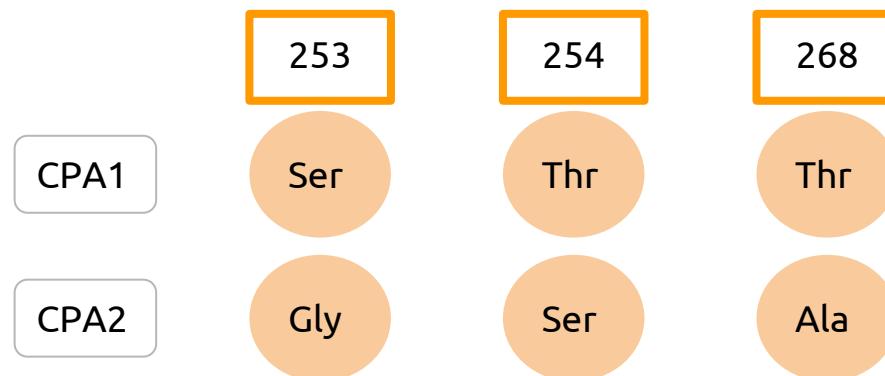

CBPA2_HUMAN
CBPA2_MOUSE
CBPA1_PIG
CBPA1_BOVIN
CBPA1_HUMAN
CBPA1_MOUSE
CBPB1_BOVIN
CBPB1_HUMAN

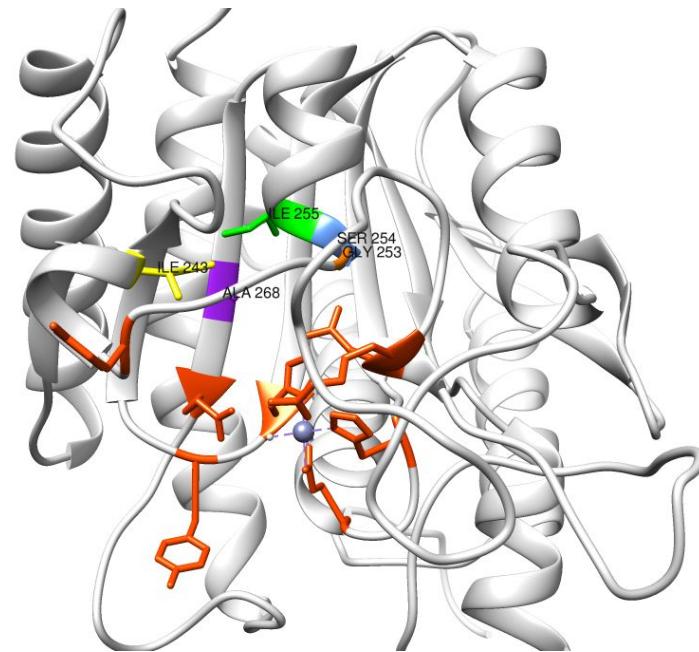
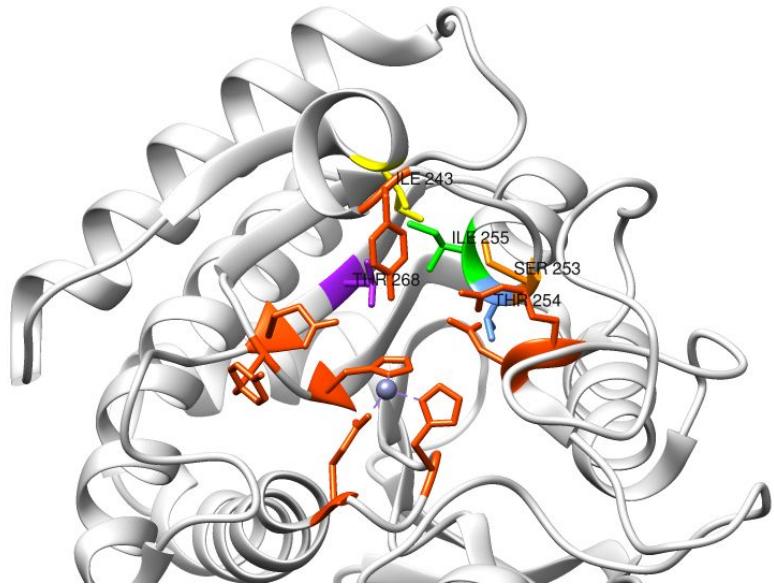

122 124 128
KIVSDYGKDPSITSILDALDI¹²²FLPVTNP¹²⁴PDGYVFSQ¹²⁸T**K**RMW**R**KTRSKVS
KIASDYGTDPAITSLLNTLDVFLPVTNP¹²²PDGYVFSQ¹²⁴TSN**R**RMW**R**KTRSKRS
KITEDYQDPAFTAILDNLDIFLEIVTNP¹²²PDGF¹²⁴FA¹²⁸THSEN**R**RMW**R**KTRSR¹²⁸T
KTEDYQDPSFTAILDSMDIFLEIVTNP¹²²PDGF¹²⁴FA¹²⁸THS**Q**RLW**R**KTRSV¹²⁸T
KITQDYQDAAFTAILDTLDIFLEIVTNP¹²²PDGF¹²⁴FA¹²⁸THSTN**R**RMW**R**KTRSH¹²⁸A
KITKDYQGEPTLTAILDNMDIFLEIVTNP¹²²PDGF¹²⁴VYTHKTN**R**RMW**R**KTRSH¹²⁸E
EAVRTYGREIHMTEFLDKLDFYVLPVVNIDGYIYTWT¹²²TTN**R**RMW**R**KTRSTR¹²⁸A
EAVRTYGREIQVTELLDKLDFYVLPV¹²²LNIDGYIYTWT¹²⁴TTN**R**RMW**R**KTRST¹²⁸H
HGTYKVGPICSV¹²²I**Y**QASGGSIDWSYDYGIKYSFAF**E**LRDTGRYGF¹²⁸LLPA
HGTSYKVGPICSV¹²²I**Y**QASGGSIDWAYDLGIKYSFAF**E**LRDTGYYG**Y**LLPA
YGTKFQYGSII¹²²TTI**Y**QASGGTIDWTY¹²⁴NQGIKYSFS**E**LRDTGRYGF¹²⁸LLPA
YGTSYKGSII¹²²TTI**Y**QASGGSIDWSY¹²⁴NQGIKYSFT**E**LRDTGRYGF¹²⁸LLPA
YGTKFNYGSII¹²²KAI**Y**QASGSTIDWTYSQGIKYSFT**E**LRDTGRYGF¹²⁸LLPA
HGTFKFYGSII¹²²DTI**Y**QASGSTIDWTYSQGIKYSFT**E**LRDTGLRG**Y**LLPA
HGTTTYGPG¹²²GASTI**Y**PASGGSD¹²⁴DWAYDQGIKYSFT**E**LRDKGRYGF¹²⁸VLP¹²⁸E
HGTYTYGPG¹²²GATTI**Y**PAAGGSDD¹²⁴DWAYDQGI¹²⁸YRYSFT**E**LRDTGRYGF¹²⁸LLPE
279

Substrate Specificity CPA vs CPB

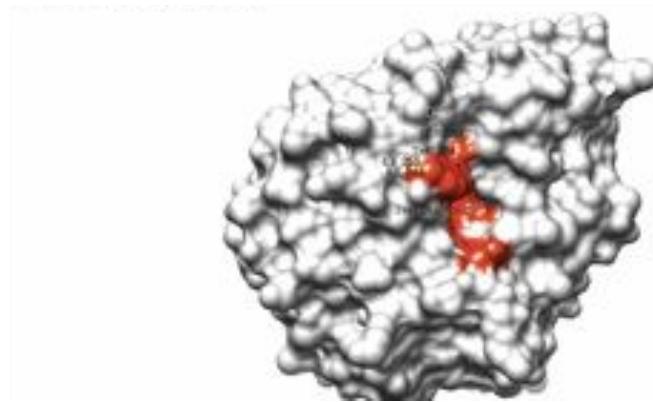

hCPA1	ARSTDTFNYATYHTLEEIYDFLDLLVAENPHLVSKIQIGNTYEGRPIYVL		
hCPA2	-----FNFGAYHTLEEISQEMDNLVAEHPGLVSKVNIGSSFENRPMNVL		
hCPB	-VRATGHSYEKYNNWETIEAWTQQVATENPALISRSGVIGTFEGRAIYLL		
hCPA1	KFSTGGSKRPAIWI [*] DTGI [*] H SRE [*] WVTQASGVWFAKKITQDYQDAAFTAIL	243	255
hCPA2	KFSTGGDK-PAIWLDA [*] G HARE [*] WVTQATALWTANKIVSDY [*] GKDP [*] SITSIL		
hCPB	KVGKAGQNKPAIFMDCGF H ARE [*] WISPAFCQWFVREA [*] RTYGREI [*] QVTELL		
hCPA1	DTLDIFLEIVTNPDGFAFTHSTNRMWRKTRSHTAG-SLCIGVDPN [*] RNWDA		
hCPA2	DALDIFLLPV [*] TNPDGYVFSQTKNRMWRKTRS [*] KVSAGSLCVGVDPN [*] RNWDA		
hCPB	NKLD [*] YVLPV [*] LNI [*] DGYIY [*] TWTKSRFWRKTRSTHTG-SSCIGTDPN [*] RNFDA		
hCPA1	GFGLSGASSNP [*] CSETYHGKFANSEVEVK [*] IVDFVKDHG- [*] NIKAFISI [*] HSY		
hCPA2	GFGGPGASSNP [*] CSDSYHGPSANSEVEVK [*] IVDFIKSHG- [*] KVKAFI [*] ILHSY		
hCPB	GWCEIGASRN [*] PCDETYCGPAESEKETKALADFIRNKLSSIKAYL [*] HSY		
hCPA1	SQLLM [*] PYGYKTEPV [*] PDQDEL [*] DQLSKAAVTALASLYG [*] TKFNYG [*] I IKA [*] Y	243	
hCPA2	SQLLM [*] PYGYKCTK [*] LDDFDELSEVAQKAQ [*] SLSR [*] HGT [*] KV [*] G [*] I CSVI [*] Y		
hCPB	SQMMI [*] Y [*] PSYAY [*] KLGENNAELN [*] ALA [*] KATV [*] KELASL [*] HGT [*] KTY [*] G ATT [*] Y		
hCPA1	QASGST [*] I DWTYSQGIKYSFT [*] F ELRTDGRYGF [*] LLPASQ [*] IIPTAKETWLALL	255	
hCPA2	QASGG [*] I DWSYDYG [*] GIKYSFA [*] F ELRTDGRYGF [*] LLP [*] ARQ [*] ILPTAEETWLGLK		
hCPB	PAAGG [*] S D [*] DWAYDQGIRYSFT [*] F ELRTDGRYGF [*] LLPESQ [*] IRATCEETFLAIK		
hCPA1	TIMEHTLNHPY		
hCPA2	AIMEHVRDHPY		
hCPB	YVASYVLEHLY		

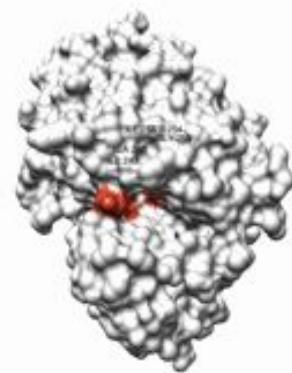
Substrate Specificity CPA vs CPB


CPA (PDBID: 1UEE)

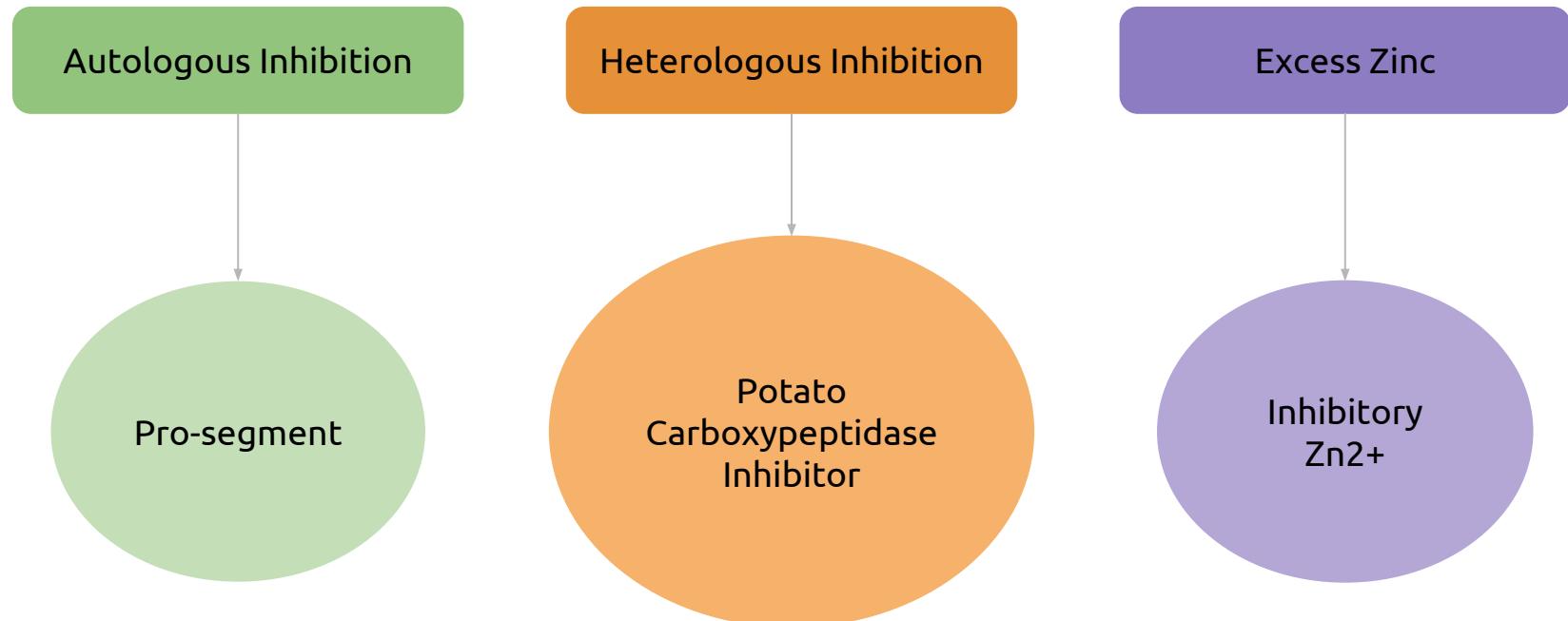


CPB (PDBID: 1ZLI)

Substrate Specificity CPA1 vs CPA2

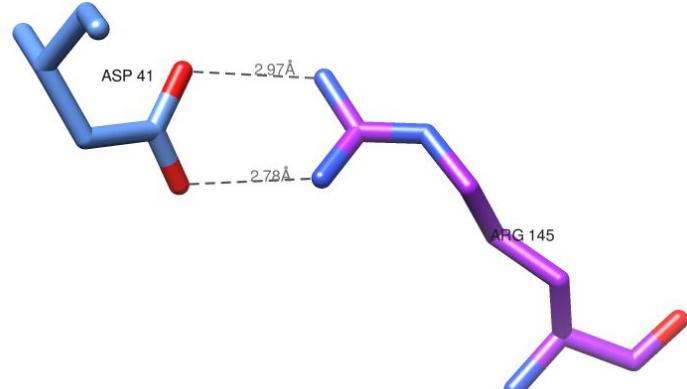
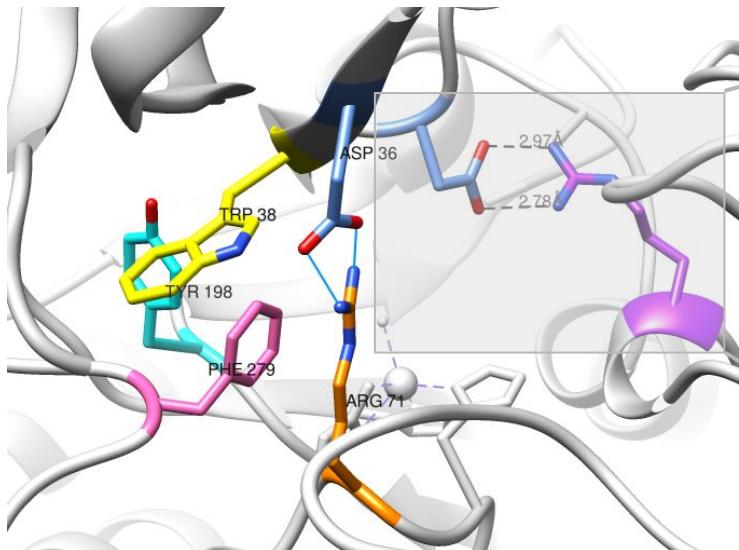

hCPA1	ARSTDTFNYATYHTLEEIYDFLDLLVAENPHLVSQIQIGNTYEGRPIYVLKFSTGGSKRPAIWIDTGI	HSRE	EWVTQASGVWFAKKIQD
hCPA2	-----FNFGAYHTLEEISQEMDNLVAEHPGLVSKVNIGSSFENRPMNVLKSTGGDK-PAIWLDAGI	HARE	EWVTQATALWTANKIVSD
hCPA1	YGQDAAFTAILEDIFLEIVTNPDGFATHTNRMWRKTRSHAG-SLCIGVDPN	RNWDAGFGLSGASSNPCSETYHGKFANSEVEVK	
hCPA2	YGKDPSTSILDALDIFLLPVTPNPDGYVFSQTKNRMWRKTRSKVSAGSLCVGVDPN	RNWDAGFGGPGASSNPCSDSYHGPSANSEVEVK	
hCPA1	SIVDFVKDHG-NIKAFISIHSYSQLLMYPYGYKTEPVPDQDELQLSKAAVTALASLYGTFNYGSIIKAIYQASG	STIDWTYSQGIKY	
hCPA2	SIVDFIKSHG-KVKAIFIILHSYSQLLMFPYGYKCTKLDDFDELSEVAQKAAQSLSRHGTYKVGPICSVYQASGS	IDWSYDYGICKY	
hCPA1	268 * SETFELRDTGRYGFLLPASQIIPPTAKETWLALLTIMEHTLNHPY		
hCPA2	SEAFELRDTGRYGFLLPARQILPTAETWLGLKAIMEHVRDHPY		


Substrate Specificity CPA1 vs CPA2

Substrate Specificity CPA1 vs CPA2


CPA1 (PDBID: 4UEE)

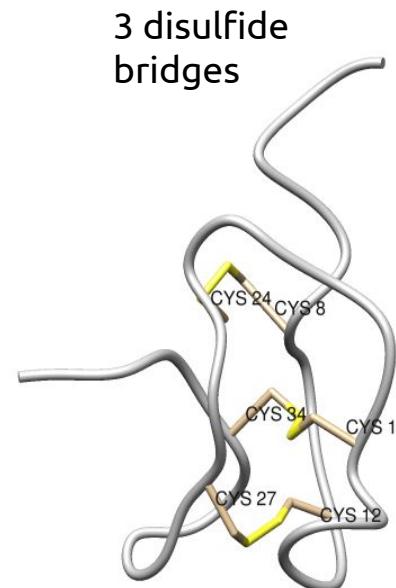
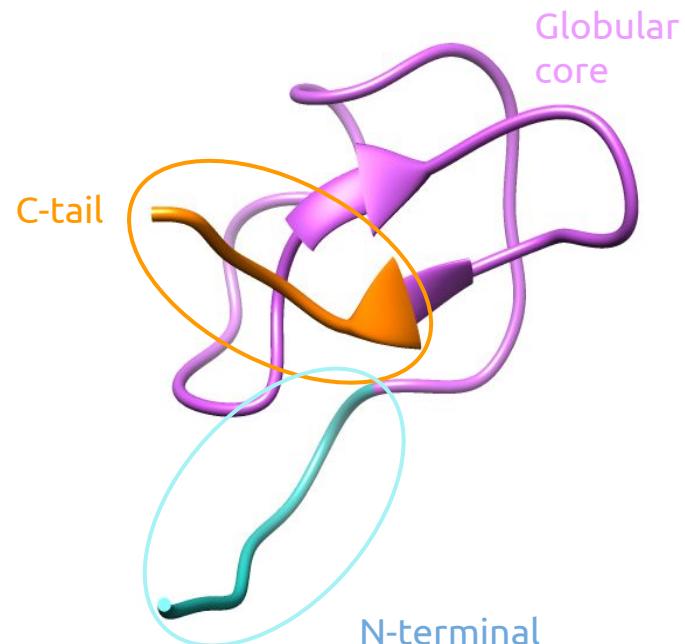
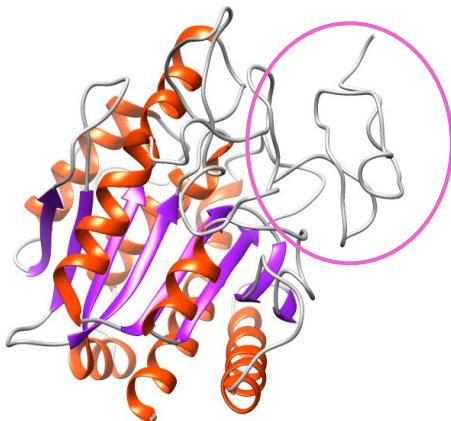
CPA2 (PDBID: 1DTD)



Inhibitors

Types

Inhibitors Autologous Inhibitors

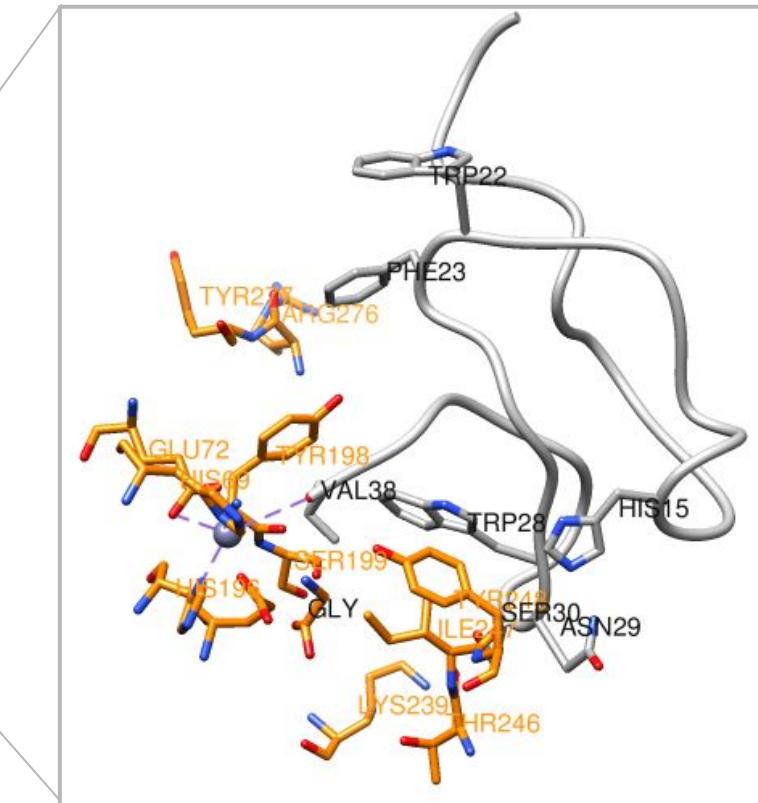
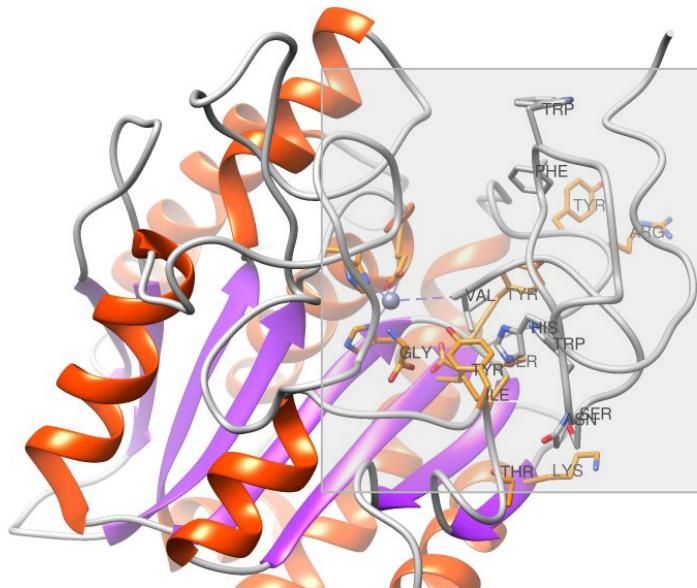
Pro-carboxypeptidase

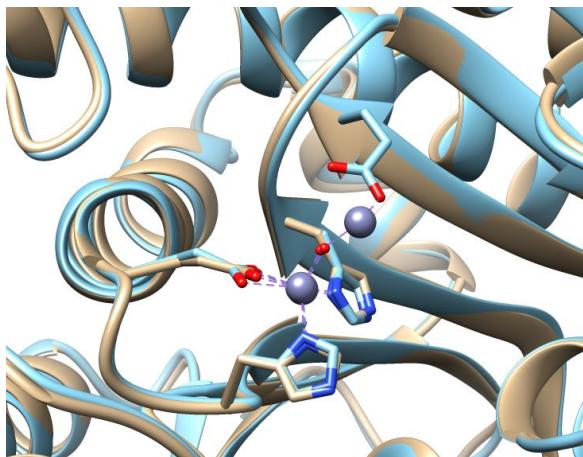
PDBID: 1NSA

Inhibitors

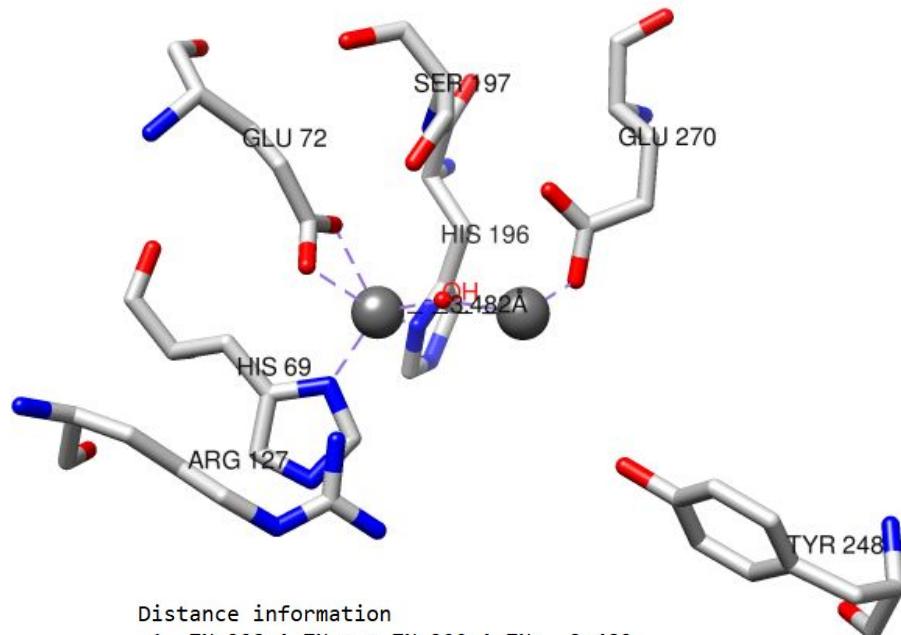
Heterologous Inhibitors



Potato Carboxypeptidase Inhibitor (PCI)

Inhibitors


Heterologous Inhibitors

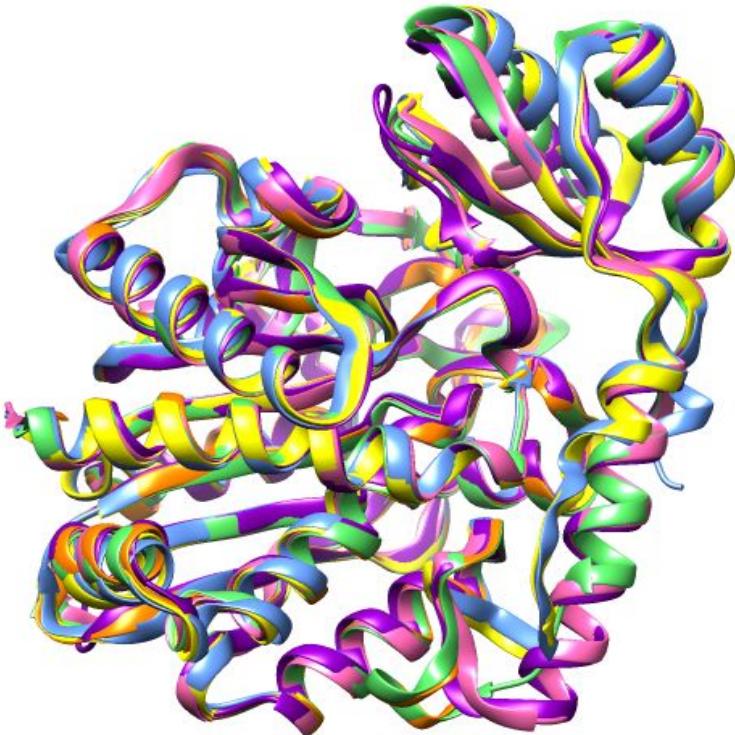
Interaction CPA - PCI



PDBID: 4CPA

Inhibitors Excess Zinc

Superimposition of CPA and CPA+Zinc


Distance information

1	ZN 308.A ZN <-> ZN 309.A ZN:	3.482
2	ZN 308.A ZN <-> OH 541.A O:	1.752
3	ZN 309.A ZN <-> OH 541.A O:	1.846

Angles/Torsions

ZN 308.A ZN -> OH 541.A O -> ZN 309.A ZN: 150.887

M14A Carboxypeptidases Superimposition

No.	Domain1	Domain2	Sc	RMS	Len1	Len2	Align	NFit	Eq.	Secs.	%I	%S	P(m)
Pair 1	2v77A	1pca	7.44	0.38	308	402	308	308	308	0	79.55	100.00	0.00e+00
Pair 2	2v77A	1aye	7.15	0.51	308	401	310	301	301	0	66.78	100.00	0.00e+00
Pair 3	2v77A	2boaA	7.06	0.61	308	404	309	300	299	0	59.87	100.00	4.41e-99
Pair 4	2v77A	1kwmA	6.90	0.87	308	402	309	300	300	0	48.67	100.00	7.57e-65
Pair 5	2v77A	1nsa	7.09	0.76	308	395	309	300	300	0	49.00	100.00	8.81e-66
Pair 6	1pca	1aye	9.25	0.66	402	401	405	393	393	0	62.85	100.00	0.00e+00
Pair 7	1pca	2boaA	9.06	0.89	402	404	406	393	392	0	53.57	100.00	0.00e+00
Pair 8	1pca	1kwmA	8.29	1.31	402	402	409	375	375	0	42.67	100.00	8.12e-61
Pair 9	1pca	1nsa	8.50	1.16	402	395	405	375	375	0	45.60	100.00	3.44e-70
Pair 10	1aye	2boaA	9.36	0.70	401	404	404	399	399	0	64.16	100.00	0.00e+00
Pair 11	1aye	1kwmA	8.43	1.12	401	402	408	371	370	0	43.24	100.00	8.35e-62
Pair 12	1aye	1nsa	8.61	0.94	401	395	403	371	369	0	42.55	100.00	1.64e-59
Pair 13	2boaA	1kwmA	8.37	1.13	404	402	410	371	368	0	44.57	100.00	1.32e-65
Pair 14	2boaA	1nsa	8.55	0.99	404	395	405	372	367	0	44.14	100.00	4.20e-64
Pair 15	1kwmA	1nsa	9.45	0.57	402	395	395	395	395	0	80.76	100.00	0.00e+00

Reading in matrix file M14_prot_OK.mat...

Doing cluster analysis...

Cluster: 1 (1kwmA & 1nsa) Sc 9.45 RMS 0.57 Len 395 nfit 395

See file M14_prot_OK.1 for the alignment and transformations

Cluster: 2 (1aye & 2boaA) Sc 9.36 RMS 0.70 Len 404 nfit 399

See file M14_prot_OK.2 for the alignment and transformations

Cluster: 3 (1pca & 1aye 2boaA) Sc 9.48 RMS 0.71 Len 407 nfit 394

See file M14_prot_OK.3 for the alignment and transformations

Cluster: 4 (1kwmA 1nsa & 1pca 1aye 2boaA) Sc 9.05 RMS 1.02 Len 415 nfit 373

See file M14_prot_OK.4 for the alignment and transformations

Cluster: 5 (2v77A & 1kwmA 1nsa 1pca 1aye 2boaA) Sc 7.64 RMS 0.46 Len 311 nfit 301

See file M14_prot_OK.5 for the alignment and transformations

2v77A → hCPA1

1PCA → pPCP1

1AYE → hCPA2

2BOA → hCPA4

1KWM → hPCP1

1NSA → pPCP1

M14A Carboxypeptidases Structural Alignment

hCPA1

hPCPB

pPCPB

pPCPA1

hPCPA2

hPCPA4

EEIYDFLDLLVAENPHLVSKIQIGNTYEGRPIYVLKFSTG--GSKRPAIWIDTGIHSREWVTQASGVWFAKKITQDYGQDAFTAILEDTLDFILEIVTNPDGFATHTSTNRMRKTRSTH
ETIEAWTQVATENPALISRSVIGTTFEGRAIYLLKVGKAG-Q-NKPAIFMDCGFHAREWISPAFCQWFVREAVRTYGREIQTVELLNKLDFFYVLPVLNIDGYIYTWTKSRWRKTRSTH
ETIEAWTEQVTSKKNPDLLRSAGTTFDGDNLYLLKVGKPG-S-NKPAIFMDCGFHAREWISQAFQCQWFVRAVRTYGYEAHMTFLDNLDFYVLPVLNIDGYIYTWTKMRWRKTRSTN
EEIYDFMDILVVAEHPALVSKLQIGRSYEGRPIYVLKFSTG--GSNRPAIWIDSGIHSREWITQASGVWFAKKITENYQGNSSFTAILEDSDMDFILEIVTNPDGFATHTSDNRLWRKTRSKA
EEISQEMDNLVVAEHPGLVSKVNIGSSFENRPMNVLFKSTG--G-DKPAIWLDAGIHAREWVTQATALWTANKIVSDYKGKDPSTSILDAFLDFLPPVTPNPDGYVFSQTKNRMWRKTRSKV
EAIYHEMDNIAADFPDLARRVKIGHSFENRPMYVLKFSTGKV-RRAVWLNAIHSREWISQATAIWTKARIVSDYQRDPAITSILEKMDIFLPPVANPDGYVYTQNRWLWRKTRSRN

hCPA1

hPCPB

pPCPB

pPCPA1

hPCPA2

hPCPA4

AGSLCIGDPNRNWDAFGFLSGASSNPCEYHGKFANSEVEVKSIYDFVKDHG-NIKAFISIHSYSQLLMYPYGYKTEPVDPDQDELDQLSKAAVTALASLYGTKFNYGSIIKAIYQASG
TGSSCIGDPNRNFDAWGCEIGASRNPDCETYCGPAAESEKETKALADFIRNLSSIKAYLTIHSYSQMMIYPPSYAYKLGENNAELNALAKATVKELASLHGTKYTYPGATTIYPAAG
AGSSCTGTDPRNRFNAGWCTVGASVNPNCNETYCGSAESEKETKALADFIRNLSSIKAYLTIHSYSQMMIYPPSYDYKLPENDAELNSLAGKAVKELASLYGTTSYSGPGTTIYPAAG
SGSLCVGSDSNRWNDAFGGGAGASSSSPCAETYHGKYPNSEVEVKSIYDFVKNN-NIKAFISIHSYSQLLLYPYGYKTCSPADKSELNQIAKSAVALKSLYGTTSYKGSIITVYQASG
SGSLCVGVDPNRNWDAFGGGAGASSSSPCAETYHGKYPNSEVEVKSIYDFVKNN-NIKAFISIHSYSQLLLYPYGYKTCSPADKSELNQIAKSAVALKSLYGTTSYKGSIITVYQASG
PGSSCIGADPNRWNWNASFAGKGASDNPCSEVYHGPHANSEVEVKSVVDFIQLKHG-NFKGFDLHSYSQLLMFPYGYKCTKLDDELSEVAQKAAQSLRSLHGTKYKVGPICSVYQASG

hCPA1

hPCPB

pPCPB

pPCPA1

hPCPA2

hPCPA4

STIDWTYSQGIKYSFTFELRTDGRYGFLLPASQIIPPTAKETWLALLTIMEHTLNHP-
GSDDWAYDQGIRYSFTFELRTDGRYGFLLPESQIRATCEETFLAIKYVASYVLEHLY
GSDDWAYNQGIKYSFTFELRDKGRGFGVLPESQIQATCQETMLAVKYVTNTYLTLEHL-
GVIDWTYNQGIKYSFSFELRTDGRGGFLLPASQIIPPTAETWLALLTIMEHTLNNS-|
GSIDWSYDYGIKYSAFELRTDGRYGFLLPARQILPTAETWLGLKAIMEHVRDHPY
SSIDWAYDNGIKFAFTFELRTDGTGFGFLLPANQIIPPTAETWLGLKTIMEHVRDNL

M14B Carboxypeptidases

CPE

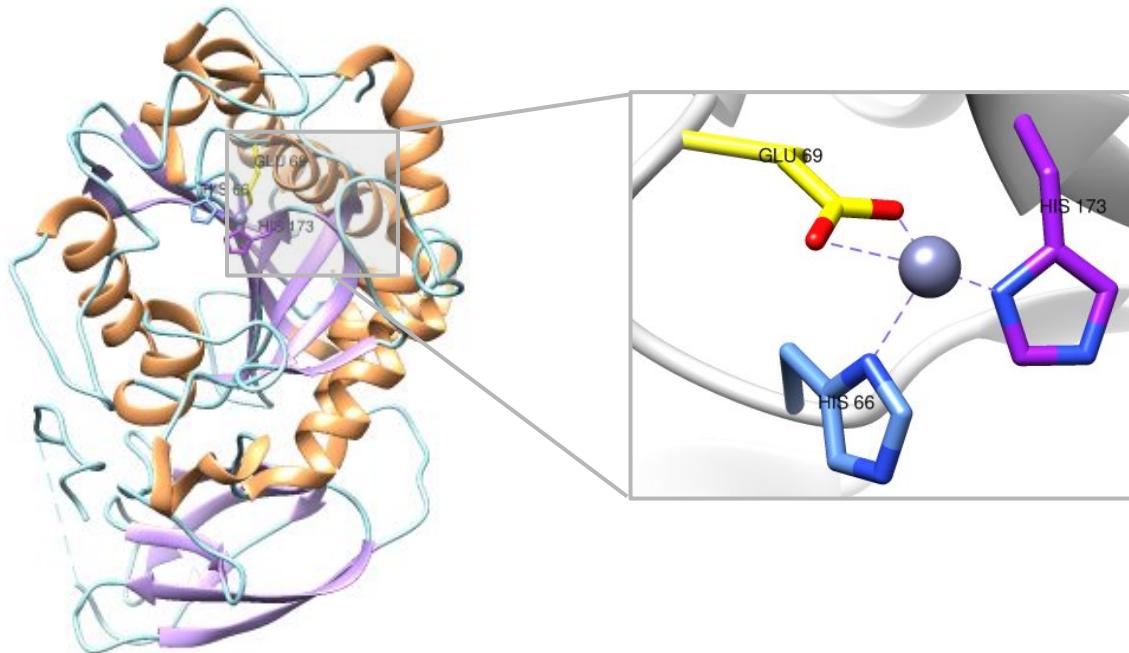
Neuroendocrine enzyme implicated in the **biosynthesis** of numerous **peptide hormones** and **neurotransmitters** by removing the C-terminal from peptide processing **intermediates** that are formed by the action of **prohormone convertases** on the peptide precursor.

CPD

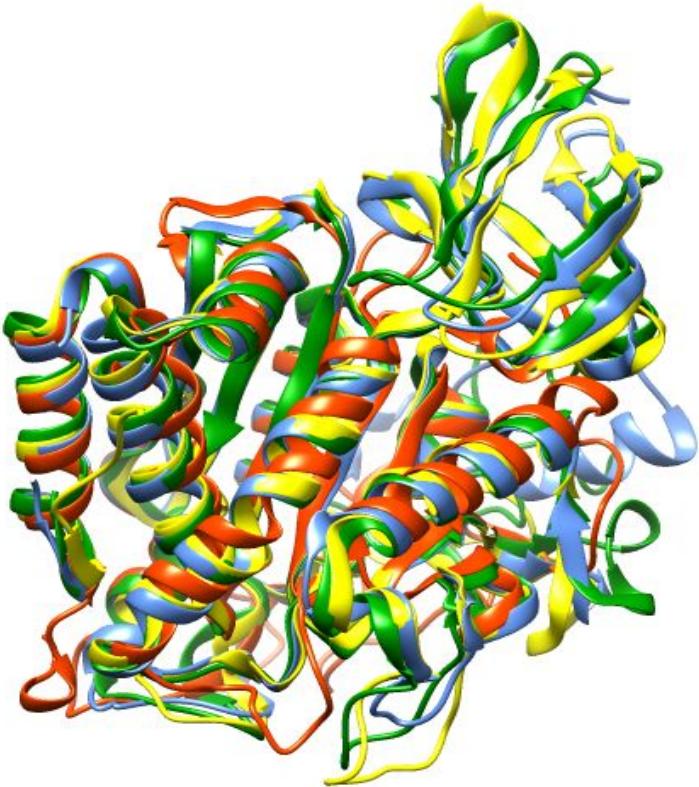
Broadly distributed throughout the body. Primarily functions in the **trans-Golgi network** and **constitutive secretory pathway**. Main substrates are **growth factors** and **receptors** that are produced from larger precursors.

CPM

Attached to a wide variety of cells via a **glycosylphosphatidylinositol linkage** and it's involved in the **extracellular processing** of peptides and proteins.



CPN

The **largest regulatory carboxypeptidase described**, it circulates in the plasma forming a 280kDa protein complex. It's the major **blood inactivator** of potent peptides such as kinins and anaphylotoxins.


CPZ

Present in the **extracellular matrix**, with a broad distribution during embryogenesis and a more restricted pattern in adult tissues. **Precise function is not known**, it is likely that this enzyme cleaves intermediates generated by the various matrix endopeptidases

M14B Carboxypeptidases

M14B Carboxypeptidases Superimposition

No.	Domain1	Domain2	Sc	RMS	Len1	Len2	Align	Nfit	Eq.	Secs.	%I	%S	P(m)
Pair 1	3qnv	1uwy	2.06	2.50	323	393	461	106	87	0	31.03	100.00	4.18e-08
Pair 2	3qnv	2nsm	2.52	2.12	323	390	444	128	107	0	33.64	100.00	2.19e-11
Pair 3	3qnv	1qmu	2.46	2.64	323	380	440	129	109	0	32.11	100.00	1.74e-10
Pair 4	1uwy	2nsm	7.56	1.11	393	390	407	347	343	0	47.81	100.00	3.59e-71
Pair 5	1uwy	1qmu	7.97	1.10	393	380	386	351	348	0	50.86	100.00	3.49e-82
Pair 6	2nsm	1qmu	7.97	0.93	390	380	404	349	345	0	56.81	100.00	0.00e+00

Reading in matrix file m14b_prot_OK.mat...

Doing cluster analysis...

Cluster: 1 (2nsm & 1qmu) Sc 7.96 RMS 0.93 Len 404 nfit 349

See file m14b_prot_OK.1 for the alignment and transformations

Cluster: 2 (1uwy & 2nsm 1qmu) Sc 8.32 RMS 1.03 Len 414 nfit 348

See file m14b_prot_OK.2 for the alignment and transformations

Cluster: 3 (3qnv & 1uwy 2nsm 1qmu) Sc 5.43 RMS 1.72 Len 445 nfit 244

See file m14b_prot_OK.3 for the alignment and transformations

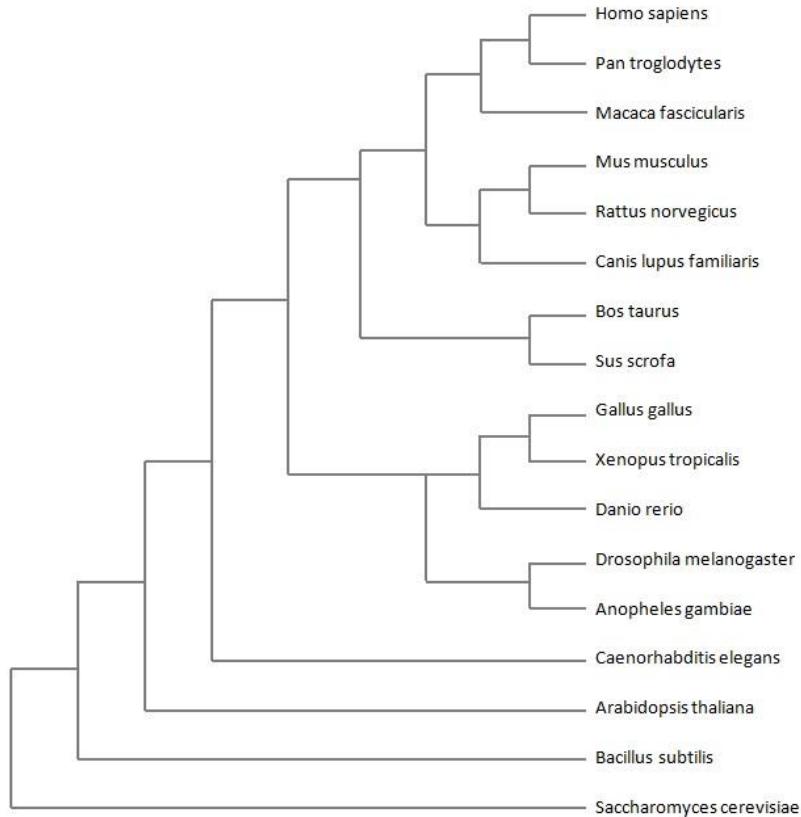
3QNV → CPT

1UWY → CPM

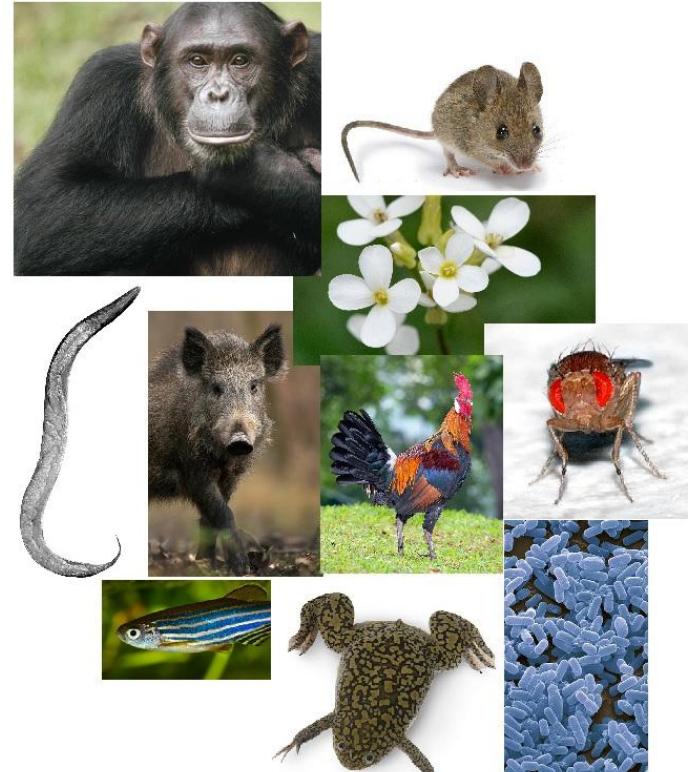
2NSM → CPN

1QMU → CPD

M14A vs M14B: Superimposition


```
Cluster: 1 ( 1ayeA & 2boaA ) Sc  9.36 RMS  0.70 Len 404 nfit 399
See file CPX_OK.1 for the alignment and transformations
Cluster: 2 ( 1zliA & 2v77A ) Sc  9.16 RMS  0.71 Len 309 nfit 300
See file CPX_OK.2 for the alignment and transformations
Cluster: 3 ( 1kwmA & 1ayeA 2boaA ) Sc  9.08 RMS  1.13 Len 410 nfit 374
See file CPX_OK.3 for the alignment and transformations
Cluster: 4 ( 2nsmA & 1qmuA ) Sc  7.99 RMS  0.96 Len 404 nfit 349
See file CPX_OK.4 for the alignment and transformations
Cluster: 5 ( 1uwya & 2nsmA 1qmuA ) Sc  8.36 RMS  1.04 Len 414 nfit 349
See file CPX_OK.5 for the alignment and transformations
Cluster: 6 ( 3qnvA & 1zliA 2v77A ) Sc  8.23 RMS  1.06 Len 335 nfit 280
See file CPX_OK.6 for the alignment and transformations
Cluster: 7 ( 1kwmA 1ayeA 2boaA & 3qnvA 1zliA 2v77A ) Sc  7.15 RMS  0.54 Len 350 nfit 289
See file CPX_OK.7 for the alignment and transformations
Cluster: 8 ( 1kwmA 1ayeA 2boaA 3qnvA 1zliA 2v77A & 1uwya 2nsmA 1qmuA ) Sc  1.15 RMS  3.90
See file CPX_OK.8 for the alignment and transformations
```

No.	Domain1	Domain2	Sc	RMS
Pair 1	1ayeA	1zliA	7.06	0.77
Pair 2	1ayeA	2v77A	7.15	0.51
Pair 3	1ayeA	2boaA	9.36	0.70
Pair 4	1ayeA	1uwya	0.35	2.34


2NSM → CPN
1QMU → CPD
1KWM → PCPB
1AYE → PCPA2
2BOA → PCPA4

3QNV → CPT
1ZLI → CPB
2V77 → CPA1
1UWY → CPM

Phylogeny and Evolution

Phylogenetic tree

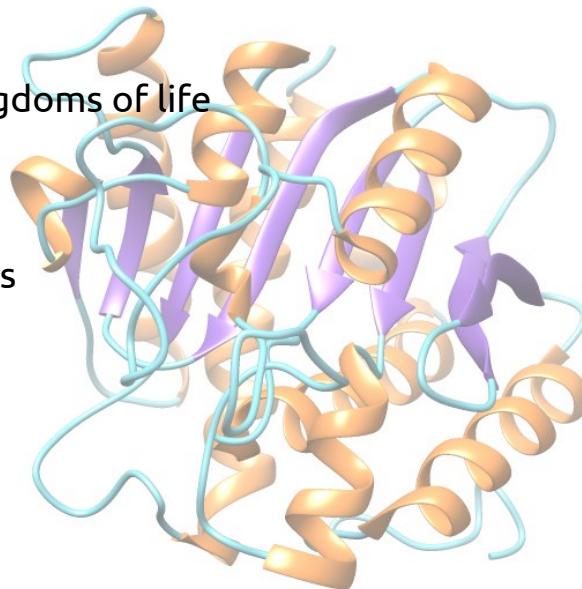
"InParanoid 8: orthology analysis between 273 proteomes, mostly eukaryotic" Erik L.L.Sonhammer and Gabriel Östlund
Nucleic Acids Res. 43:D234-D239 (2015)

Phylogeny and Evolution

Multiple Sequence Alignment

sp Q7TPZ8 CBPA1_MOUSE	Carboxypeptidase A1	OS=Mus musculus	GN=Cp...	412	5e-141
sp P00731 CBPA1_RAT	Carboxypeptidase A1	OS=Rattus norvegicus	GN...	415	2e-142
sp P09954 CBPA1_PIG	Carboxypeptidase A1	OS=Sus scrofa	GN=CPA1 P...	413	1e-141
sp P00730 CBPA1_BOVIN	Carboxypeptidase A1	OS=Bos taurus	GN=CPA1...	412	3e-141
sp P55261 CBPB1_CANFA	Carboxypeptidase B	OS=Canis familiaris	GN...	400	2e-136
sp Q4R7R2 CBPA5_MACFA	Carboxypeptidase A5	OS=Macaca fasciculari...	GN...	376	5e-127
sp A1CSU3 ECM14_ASPL	Putative metallocarboxypeptidase ecm14	OS...	GN...	371	8e-123
sp P04069 CBPB_ASTFL	Carboxypeptidase B	OS=Astacus fluviatilis	GN...	336	5e-113
sp P42788 CBPZ_SIMVI	Zinc carboxypeptidase (Fragment)	OS=Simuli...	GN...	335	2e-112
sp 002350 CBPA1_ANOGA	Zinc carboxypeptidase A 1	OS=Anopheles ga...	GN...	339	2e-112
sp Q9VL86 CBPA1_DROME	Zinc carboxypeptidase A 1	OS=Drosophila m...	GN...	321	1e-105
sp P38836 ECM14 YEAST	Putative metallocarboxypeptidase ECM14	OS...	GN...	316	2e-103
sp P83852 CBPD_LOPSP	Carboxypeptidase D (Fragment)	OS=Lophonett...	GN...	273	2e-87
sp P37892 CBPE_LOPAM	Carboxypeptidase E	OS=Lophius americanus	GN...	254	2e-79
sp A5A6K7 CBPE_PANTR	Carboxypeptidase E	OS=Pan troglodytes	GN=C...	255	2e-79
sp Q6DD21 CBPC1_XENLA	Cytosolic carboxypeptidase 1	OS=Xenopus lae...	GN...	201	3e-56
sp E1C3P4 CBPC1_CHICK	Cytosolic carboxypeptidase 1	OS=Gallus gallus	GN...	200	9e-56
sp P54497 YQGT_BACSU	Uncharacterized protein yqgT	OS=Bacillus subtilis	GN...	164	8e-46
sp 076373 CBPC1_CAEEL	Cytosolic carboxypeptidase 1	OS=Caenorhabditis elegans	GN...	169	3e-45
sp Q68EI3 CBPC5_DANRE	Cytosolic carboxypeptidase-like protein 5...	OS=Danio rerio	GN...	100	8e-22

48% identity



30% identity

Phylogeny and Evolution

Multiple Sequence Alignment

- Carboxypeptidases are present in all kingdoms of life
- Highly conserved residues
- Observed similarity fits the classifications
- Further research on structure is needed

Conclusions

- CPs have a dual classification in different families
- Structural similarity in the catalytic domain
- Highly conserved residues in the active site
- Discrepancies in catalysis
- Structural differences between M14A and M14B
- Present in all kingdoms of life

Materials and Methods

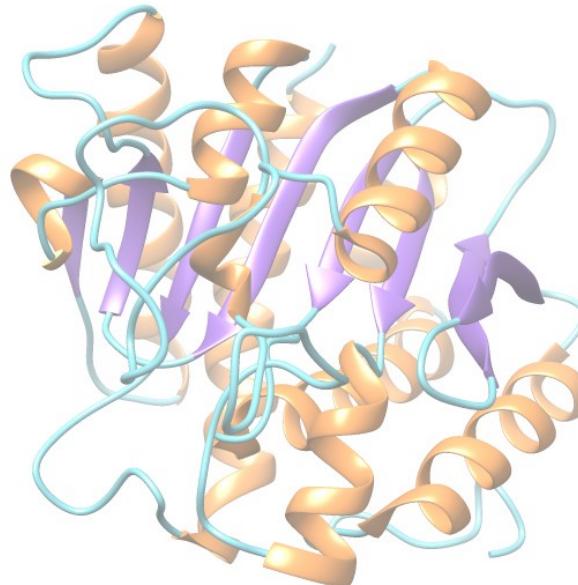
Programs used:

Psi-blast

Clustalw

STAMP (Alignfit)

Chimera


Databases used:

PDB

UniProt

MEROPS

InParanoid8

Bibliography

Aloy P, Catasus L, Villegas V, Reverter D, Vendrell J, Aviles FX. Comparative Analysis of the Sequences and Three-Dimensional Models of Human Procarboxypeptidases A1, 2 and B. 1998;379(February):149–55.

Alvarez-Santos S, Gonzalez-Lafont A, Lluch JM. On the water-promoted mechanism of peptide cleavage by carboxypeptidase A. A theoretical study. Can J Chem. 1994;72(25):2077.

Arolas JL, Lorenzo J, Rovira A, Vendrell J, Aviles FX, Ventura S. Secondary Binding Site of the Potato Carboxypeptidase Inhibitor . Contribution to Its Structure, Folding , and Biological Properties. 2004;7973–82.

Arolas JL, Vendrell J, Aviles FX, Fricker LD. Metallocarboxypeptidases: emerging drug targets in biomedicine. Curr Pharm Des [Internet]. 2007;13(4):349–66. Available from: <http://cat.inist.fr/?aModele=afficheN&cpsidt=18654429>

Banci L, Bertini I, Penna G La. The Enzymatic Mechanism of Carboxypeptidase : A Molecular Dynamics Study. 1994;197:186–97.

Bukrinsky JT, Bjerrum MJ, Kadziola A. Native Carboxypeptidase A in a New Crystal Environment Reveals a Different Conformation of the Important Tyrosine 248. 1998;16555–64.

Bukrinsky JT, Bjerrum MJ, Kadziola A. Native carboxypeptidase A in a new crystal environment reveals a different conformation of the important tyrosine 248. Biochemistry. 1998;37(47):16555–64.

Deiteren K, Surpateanu G, Gilany K, Willemse JL, Hendriks DF, Augustyns K, et al. The role of the S1 binding site of carboxypeptidase M in substrate specificity and turn-over. Biochim Biophys Acta - Proteins Proteomics. 2007;1774(2):267–77.

Fernández D, Boix E, Pallarès I, Avilés FX, Vendrell J. Analysis of a new crystal form of procarboxypeptidase B: Further insights into the catalytic mechanism. Biopolymers. 2010;93(2):178–85.

Alvarez-Santos S, González-Lafont A, Lluch JM, Oliva B, Avilés FX. On the water-promoted mechanism of peptide cleavage by carboxypeptidase A. A theoretical study. Can J Chem 1994 march 21; 72: 2077-2083.

Carbalho HF, Roque ACA, Iranzo O, Branco RJF. Comparison of the Internal Dynamics of Metalloproteases Provides New Insights on Their Function and Evolution. PLoS ONE 2015 september 23; 10 (9): 1-22.

Bibliography

Fernández D, Pallarès I, Vendrell J, Avilés FX. Biochimie Progress in metallocarboxypeptidases and their small molecular weight inhibitors. *Biochimie* [Internet]. Elsevier Masson SAS; 2010;92(11):1484–500. Available from: <http://dx.doi.org/10.1016/j.biochi.2010.05.002>

Gallivan JP, Dougherty DA. Cation-pi interactions in structural biology. *Proc Natl Acad Sci* [Internet]. 1999;96(17):9459–64. Available from: <http://www.pnas.org/cgi/doi/10.1073/pnas.96.17.9459>

García-castellanos R, Bonet-figueredo R, Pallarés I, Ventura S, Avilés FX, Vendrell J. Detailed molecular comparison between the inhibition mode of A / B-type carboxypeptidases in the zymogen state and by the endogenous inhibitor latexin. 2014;62(2005):1996–2014.

García-Sáez I, Reverter D, Vendrell J, Avilés FX, Coll M. The three-dimensional structure of human procarboxypeptidase A2. Deciphering the basis of the inhibition, activation and intrinsic activity of the zymogen. *EMBO J*. 1997;16(23):6906–13.

Gardell SJ, Craik S, Clouserl E, Goldsmith J, Stewart C, Graf M, et al. A Novel Rat Carboxypeptidase, CPAB: Characterization, Molecular Cloning, and Evolutionary Implications on Substrate Specificity in the Carboxypeptidase Gene Family. 1988;263(33):17828–36.

Gomez-ortiza M, Gomis-riithb FX, Huber R, Aviles FX. Inhibition of carboxypeptidase A by excess zinc: analysis of the structural determinants by X-ray crystallography. 1997;400:336–40.

Gomis-r FX. Structure and Mechanism of Metallocarboxypeptidases. *Critical Reviews in Biochemistry and Molecular Biology*, 43:319–345, 2008.

Ibarz A, Garvín A, Garza S, Pagán J. Inactivation of carboxypeptidase A and trypsin by UV-visible light. *Innov Food Sci Emerg Technol* [Internet]. 2009;10(4):517–21. Available from: <http://dx.doi.org/10.1016/j;ifset.2009.03.006>

Jiménez M, Villegas V, Santoro J. NMR solution structure of the activation domain of human procarboxypeptidase A2. *Protein* ... [Internet]. 2003;296–305. Available from: <http://onlinelibrary.wiley.com/doi/10.1110/ps.0227303/full>

Kilshain AV, Warshel A. On the origin of the catalytic power of carboxypeptidase a and other metalloenzymes. *Proteins Struct Funct Bioinforma*. 2009;77(3):536–50.

Bibliography

Kilshain-vardi A, Greenblatt HM. research papers Refined structure of bovine carboxypeptidase A at \tilde{E} resolution research papers. 2003;323–33.

Lee KJ, Kim DH. Design of Mechanism-Based Carboxypeptidase A Inactivators on the Basis of the X-ray Crystal Structure and Catalytic Reaction Pathway 1. 1998;6:1613–22.

Manuscript A, Pathways N. NIH Public Access. 2011;114(28):9259–67.

Petrera A, Lai ZW, Schilling O. Carboxyterminal protein processing in health and disease: Key actors and emerging technologies. *J Proteome Res.* 2014;13(11):4497–504.

Pinto GA, Tardioli PW, Cabrera-Padilla RY, Galvão CMA, Giordano RC, Giordano RLC. Amino acids yields during proteolysis catalyzed by carboxypeptidase A are strongly dependent on substrate pre-hydrolysis. *Biochem Eng J.* 2008;39(2):328–37.

Puigserver a, Desnuelle P. Dissociation of bovine 6S procarboxypeptidase A by reversible condensation with 2,3-dimethyl maleic anhydride: application to the partial characterization of subunit III. *Proc Natl Acad Sci U S A.* 1975;72(6):2442–5.

Rawlings ND, Barrett AJ & Finn RD (2016) Twenty years of the *MEROPS* database of proteolytic enzymes, their substrates and inhibitors. *Nucleic Acids Res* 44, D343-D350

Shushanyan M, Khoshtariya DE, Tretyakova T, Makharadze M, Van Eldik R. Diverse role of conformational dynamics in carboxypeptidase A-driven peptide and ester hydrolyses: Disclosing the “perfect Induced Fit” and “protein Local Unfolding” pathways by altering protein stability. *Biopolymers.* 2011;95(12):852–70.

Szeto MWY, Mujika JI, Zurek J, Mulholland AJ, Harvey JN. Journal of Molecular Structure : THEOCHEM QM / MM study on the mechanism of peptide hydrolysis by carboxypeptidase A. *J Mol Struct THEOCHEM* [Internet]. Elsevier B.V.; 2009;898(1–3):106–14.

Szeto MWY, Mujika JI, Zurek J, Mulholland AJ, Harvey JN. QM/MM study on the mechanism of peptide hydrolysis by carboxypeptidase A. *J Mol Struct THEOCHEM* [Internet]. 2009;898(1–3):106–14. Available from: <http://dx.doi.org/10.1016/j.theocem.2008.06.033>

Shanshan W, Chunchun Z, Dingguo X, Hua G. Catalysis of Carboxypeptidase A: Promoted-water vs Nucleophilic Pathways. *J Phys Chem B* 2010 July 22; 114 (28): 9259–9267.

Bibliography

Szmola R, Bence M, Carpentieri A, Szabó A, Costello CE, Samuelson J, et al. Chymotrypsin C is a co-activator of human pancreatic procarboxypeptidases A1 and A2. *J Biol Chem.* 2011;286(3):1819–27.

Testero S. The X-Ray Structure of Carboxypeptidase A Inhibited by a Thiirane Mechanism-Based Inhibitor. 2010;29–34.

Testero SA, Granados C, Fernandez D, Gallego P, Covaleda G, Reverter D, et al. Discovery of mechanism-based inactivators for human pancreatic carboxypeptidase A from a focused synthetic library Discovery of mechanism-based inactivators for human pancreatic carboxypeptidase A from a focused synthetic library. 2017.

Vallee BL. Metallocarboxypeptidases : Mechanism. 1962;1(5).

Vendrell J, Aviles FX, Fricker LD. Josep Vendrell , Francesc X Aviles and Lloyd D Fricker. 2011;1–15.

Vendrell J, Querol E, Avile FX. Metallocarboxypeptidases and their protein inhibitors Structure , function and biomedical properties. 2000;1477:284–98.

Wang SF, Jin JY, Zeng ZH, Tian GR. Optical 2-benzyl-5-hydroxy-4-oxopentanoic acids against carboxypeptidase A: Synthesis, kinetic evaluation and X-ray crystallographic study. *Chinese Chem Lett.* 2010;21(2):159–62.

Wang SH, Wang SF, Xuan W, Zeng ZH, Jin JY, Ma J, et al. Nitro as a novel zinc-binding group in the inhibition of carboxypeptidase A. *Bioorganic Med Chem.* 2008;16(7):3596–601.

Web sites:

EMBL-EBI I. Peptidase M14, carboxypeptidase A (IPR000834) < InterPro < EMBL-EBI [Internet]. Ebi.ac.uk. 2017 [cited 15 February 2018]. Available from: <http://www.ebi.ac.uk/interpro/entry/IPR000834>

MEROPS - the Peptidase Database [Internet]. Merops.sanger.ac.uk. 2017 [cited 15 February 2018]. Available from: <http://merops.sanger.ac.uk/cgi-bin/famsum?family=m14>

SCOP: Family: Pancreatic carboxypeptidases [Internet]. Scop.mrc-lmb.cam.ac.uk. 2017 [cited 15 February 2018]. Available from: <http://scop.mrc-lmb.cam.ac.uk/scop/data/scop.b.d.hi.f.b.html>

InParanoid 8: orthology analysis between 273 proteomes, mostly eukaryotic" Erik L.L.Sonnhammer and Gabriel Östlund. *Nucleic Acids Res.* 43:D234-D239 (2015) <http://inparanoid.sbc.su.se/cgi-bin/index.cgi>

Multiple Choice Questions

1. Regarding Carboxypeptidases:

- a) Endopeptidases that cut the C-terminal end of peptides
- b) Endopeptidases that cut the N-terminal end of peptides
- c) Exopeptidases that cut the C-terminal end of proteins
- d) Exopeptidases that cut the N-terminal end of proteins
- e) None of the above

2. Select the correct statements about Carboxypeptidases M14A:

- 1. Catalytic proteins
- 2. Secreted as zymogens
- 3. Found in pancreatic secretions
- 4. Have a transthyretin-like domain

- a) 1, 2, 3
- b) 2, 4
- c) 1, 3
- d) 4
- e) 1, 2, 3, 4

3. Related to the water-promoted pathway in Carboxypeptidases:

- a) It's divided in nucleophilic addition and elimination steps
- b) Water acts as a proton donor for Glu270
- c) An oxyanion hole is formed
- d) There's a tetrahedral intermediate
- e) All of the above

Multiple Choice Questions

4. Regarding the catalytic mechanism of Carboxypeptidases:

- a) There are discrepancies despite the experimental data
- b) Water-promoted pathway is the sole mechanism for proteolytic reactions
- c) Nucleophilic pathway is not the preferred mechanism
- d) Both pathways are viable for esterolytic reactions
- e) All of the above**

5. Procarboxypeptidases...

- a) Are secreted in the liver
- b) Their pro-peptide is 50 residues long
- c) Need activation by trypsin**
- d) Release the pro-peptide when cut in a cysteine residue
- e) Contain only globular domains

6. Why are residues 69, 72 and 196 highly conserved?

- a) Because they are in the pro-segment
- b) Because they are crucial for catalysis
- c) Because they coordinate Zinc atom**
- d) Because they have positive charge
- e) Because they are aromatic amino acids

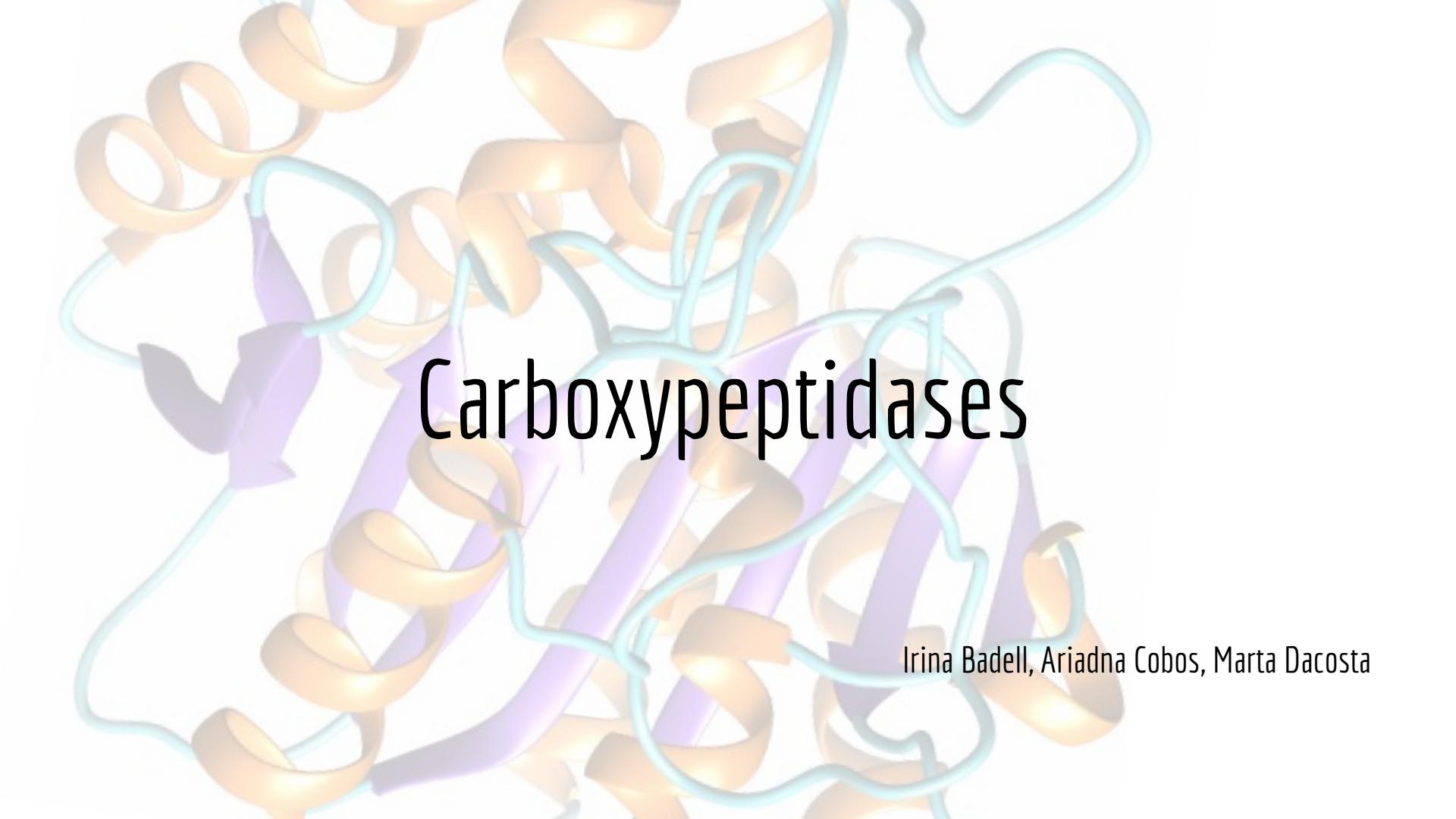
7. Regarding the substrate specificity of Carboxypeptidases:

- a) CPA1 has preference for aliphatic residues
- b) CPA's have an Isoleucine in position 255 and 243.
- c) Both a and b are correct
- d) CPB cleaves off basic residues
- e) All of them are correct**

Multiple Choice Questions

8. Which of the following are CPA inhibitors?

- a) PCI (Potato Carboxypeptidase Inhibitor)
- b) Presence of a second zinc ion
- c) Both a and b are correct
- d) Autologous inhibition by the pro-segment
- e) All of them are correct


9. About M14 subfamilies superimposition:

- 1. M14A carboxypeptidases are more similar among them than when compared to the M14B
- 2. Sc values of 9 and RMS values of <2.0 suggest that proteins have a common ancestor
- 3. M14B superimposition has a higher RMS value than the M14A subfamily superimposition
- 4. Sequence is more similar between the two carboxypeptidase subfamilies than structure

- a) 1, 2, 3
- b) 1, 3
- c) 2, 4
- d) 4
- e) 1, 2, 3, 4

10. About evolution of Carboxypeptidases:

- a) They are present only in eukaryotes
- b) Low number of residues are conserved along different species.
- c) Are found in all the kingdoms of life
- d) Catalytic CPs are only found in humans
- e) All of them are false

Carboxypeptidases

Irina Badell, Ariadna Cobos, Marta Dacosta