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Paul Boyer, 1997

“All enzymes are beautiful,
but ATP synthase is one of
the most beautiful as well
as one of the most unusual
and important”
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ATP synthase/ase types

In vivo
- E-ATPase: mitochondria, chloroplast and bacterial plasmatic membrane. .
Synthesis
- A-ATPase: Archaea and some extremophilic bacteria.
- V-ATPase: vacuoles in eukaryotic cells.
- E-ATPase: cellular surface. Hydrolysis
- P-ATPase: bacteria and eukaryotic plasmatic membrane and organelles.

All life kingdoms In vitro: reversible
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Yy + O + &€ — CENTRAL STALK
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| part: motor function
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Class Mainly alpha

C-ring
CATH

Architecture Up-down bundle

Topology F1F0 ATP synthase

Homologous

Superfamily F1FO ATP synthase subunit C




C-ring rotor: monomer number

10A

C12 Bacillus pseudofirmus
OF4 mutant

C13 B. pseudofirmus OF4 C14 Pisum sativum
wildtype

C15 Spirulina platensis



C-ring monomer MSA
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C-ring monomer

@® S cerevisiae

® E coli
Polytomella sp.

® S oleracea

® B taurus

Rendered by
conserved residues

PR |

RMSD: 1.086
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Consensus
Conservation

Spinacia oleracea
Pisum sativum
Trichormus variabilis
Homo sapiens

Bos taurus

Polytomella sp.
Paracoccus denitrificans
Escherichia coli




C-ring hydrophobicity

membrane view lumenal view matrix view



A subunit
CATH

Polytomella sp.

H4

Class

Mainly alpha

Architecture

Up-down bundle

Topology

Four helix bundle

Homologous
Superfamily

ATP synthase, FO complex, subunit A
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A subunit )

Rendered by conserved residues

S. cerevisiae
® E coli
Polytomella sp.

® s oleracea

RMSD: 2.212

® B taurus



stroma / matrix

Proton translocation
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lumen / IM space
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Polytomella sp.
Escherichia coli
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Escherichia coli



Spinacia oleracea

Pisum sativum
Trichormus variabilis
Homo sapiens

Bos taurus
Saccharomyces cerevisiae
Polytomella sp.
Paracoccus denitrificans
Escherichia coli
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Consensus

Conservation

Homo sapiens

Bos taurus
Saccharomyces cerevisiae
Spinacia oleracea
Polytomella sp.
Escherichia coli
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Saccharomyces cerevisiae
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Conservation
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Consensus
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Escherichia coli
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A subunit

Hydrophobicity surface



c-ring rotation



https://docs.google.com/file/d/1CvJR4gLGhED6P2bG2-ZVbWONMjulEOW6/preview

c-ring rotation



https://docs.google.com/file/d/1X8SLFPt_zzmrknGtUBXe05ezC3WwhoES/preview

Il part: central stalk + catalytic head




F1-ATP synthase

> (]3[33

Bos taurus

F1-catalytic
head

Central stalk > Y 8 6




y-subunit CATH

Class Mainly alpha
Architecture Orthogonal Bundle
Topology Helix Hairpins

Homologous

Superfamily Helix Hairpins

S. cerevisiae
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c-ring - y interactions

ASP 202.G OD2 <-> ARG 39.0 NH1: 3.69A
ASP 202.G OD1 <-> ARG 39.P NE: 3.01A
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States of F1-ATP synthase
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Hexamer asf3s - Rotational states O: “open’
L: “loose”

T: "tight”

ADP+Pi ADP P ENERGY

Q ] & 2
3 Y

Abrahams JP et al. 1994



‘Catch residues’ in 3 subunit alignment
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y-a,[3 interactions
DELSEED loop ( )+aE +y

Y sequence alignment:

131 141 151
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y-a,f3 interactions

YR7/5-BDPE395

1. NH2(Arg)-OE1(Glu) 3,150A
2. N(Arg)-OE2(Glu) 3,188A

YR75-0ED409
1. NH1(Arg)-OD2(Asp) 3,005A



y-a,[3 interactions
DELSEED loop ( )+Y

Y sequence alignment:

131 141 151
Consensus rdvkkviivy vtsDrGLCGg inssiaKkar
Conservation
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y-a,f3 interactions

YA80, K87, K90 —
BTPD394, E398 (DELSEED-loop)




y-a,[3 interactions
DELSEED loop (BE) + Y

Y sequence alignment:

131 141 151
Consensus rdvkkviivy vtsDrGLCGg inssiaKkar
Conservation
Bos taurus
Homo sapiens
Saccharomyces cerevisiae
Polytomella sp
Pisum sativum
Spinacia oleracea
Trichormus variabilis
Escherichia coli
Paracoccus denitrificans
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y-a,f3 interactions
2

yR36 — BEE395



y-a,f3 interactions
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y-a,f3 interactions

4

" yR254,yQ255 - BeD316,D319

1. N(Arg254)-OD2(Asp316) 3,097A
2. N(Arg254)-0D2(Asp319) 3,023A
3. N(GIu255)-OD2(Asp316) 2,734A
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Yy-a,[3 interactions

Yy sequence alignment:

391 401 411

Consensus TALPIiiETQa GDVSAYIPTN VIS

-

Conservation
Bos

Homo
Saccharomyces
Paracoccus
Polytomella
Pisum

Spinacia
Trichormus
Escherichia

Consensus
Conservation

Bos taurus

Homo sapiens
Saccharomyces cerevisiae
Polytomella sp

Pisum sativum

Spinacia oleracea
Trichormus variabilis
Escherichia coli
Paracoccus denitrificans

|
I
|
I
|
| A
|
I
|
I
|

361
yNraRQAv

<

>

-_—rr

> > > >

b

POPARAARAA<S<<S<

— —
<<WVWZ<Or-—--

> T»

>

200

mmmmmmmmm

Frer e

mm™m

MM ™m

mm™m




y-a,f3 interactions
yR252 - pED333

“salt bridge”




y-a,f3 interactions

BE, BDP, TP

Yy — upper ‘catch’ residues

(BE)



lll part: catalytic function
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Catalytic head: { 3

Hexamer a3f33
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structural alignment
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a-subunit

DOMAIN 1

DOMAIN 2

DOMAIN 3




B-subunit CATH

DOMAIN | START | STOP | LENGTH | ARCHITECTURE | TOPOLOGY

1 9 81 72 Beta barrel Thrombin, subunit H
2 82 357 275 3-Layer(aba) Rossmann fold
Sandwich

3 358 475 117 Orthogonal bundle | Bovine Mitochondrial
F1-ATPase, ATP
Synthase Beta
Chain; Chain D,
domain3

Bos taurus



RMSD=2,355

Bos taurus
® S. cerevisiae
E. coli

S. oleracea



Rendered by conserved residues




Bos taurus

a-subunit CATH

DOMAIN START | STOP | LENGTH | ARCHITECTURE TOPOLOGY
1 9 81 72 Beta barrel Elongation
Factor Tu (Ef-tu);
domain 3
2 82 357 275 3-Layer(aba) Rossmann fold
Sandwich
3 358 475 117 Up-down bundle Lysin




How conformational changes
become changes in the affinity
of nucleotide-binding?



Catalytic site
conformations




BE (P-loop)
BDP (P-loop)
BTP (P-loop)




-subunit sequence alignment

20 21 221 231 241 251 261

Consensus La PYarGGK IGL FGGAGVGKTV Il iMELINNIA kaHgGySVFa GVGERTREGN DLYhRhEMIiESGg Vinlkd--ae
Conservation

Homo sapiens LA AK KIGL F LIMEL I VA KA VFA ERJTRE DL EMIE INLKD--AT
Bos taurus LA AK KIGL F LIMEL I VA KA VFA ERJTRE DL EMIE /INLKD--AT
Paracoccus denitrificans LA SK KIGL F LIMELI I A KVHS VFA ERJTRE DL EMVE /IKFDDL -SK
Saccharomyces cerevisiae |L A AR KIGL F FIQELI I A KA FSVF ERJTRE DLYREMKE INLE---GE
Polytomella sp LA QR KIGL F LIMELI [ A KA FSVFA ERJTRE DLYREMIE TKLGCAERGN
Escherichia coli vC FAK KVGL F NMMEL IRN I A I S V FA ERJTRE DF EMTDSN ID=- ===+ --
Spinacia oleracea LA RR KIGL F LIMELI! I A KA V F ERJTRE DLYMEMKE INEQN- IAE
Pisum sativum LA RR KIGL F EIIME & I A KA VF ERJTRE DLYMEMKESR INEKN-TAE
Trichormus variabilis L RR KIGL F IMMEL | I A TQ SV FA ERJTRE DLYNEMIE INKDN-LNE

Glu188, Arg189

Consensus
Conservation

Bos taurus / \ - L L
Homo sapiens L L
Saccharomyces cerevisiae L
Paracoccus denitrificans \ IS A F L
Polytomella sp f A f F L
Pisum sativum S
Spinacia oleracea !
Trichormus variabilis

Escherichia coli

qQVAGK | K

LSV R A / R \ M K AGT MK
L - A A B MKQVAGTMEK
L = \AQV K L K S LK
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ADP catalytic site (3DP)

B * v" -
o Gly161 : -

o Lys162
e Thr163
e Val164

| " N L\}/l £\



ADP catalytic site (3DP)

B (p-loop)

1. N(Gly159)-O3B(ADP) 2,884A

g
LAY R T



ADP catalytic site (BDP)

B (p-loop)

2. N(Gly161)-O1B(ADP) 2,886A



ADP catalytic site (BDP)

B (p-loop)

3. N(Lys162)-O1B(ADP) 2,801A
4. N(Lys162)-O1B(ADP) 2,775A
5. N(Lys162)-O3B(ADP) 3,425A




ADP catalytic site (BDP)

B (p-loop)

6. N(Thr163)-O2B(ADP) 3,019A



ADP catalytic site (BDP-aDP)
B (p-ioop) e d

7. N(Val164)-O2A(ADP) 2,859A



ADP catalytic site (BDP-aDP)

e Glu188
e Arg189




ADP catalytic site (BDP-aDP)

10.
1.

D-subunit

O(Ser372)-02(ADP) 2,971A
O(Ser372)-03(ADP) 3,463A
N(Arg373)-O1A(ADP) 2,990A
N(Arg373)-O3B(ADP) 2,702A

4N

!
!
‘\
- ~
~®



ADP catalytic site (BDP-aDP)
Mg - B )

e BOB(ADP)
e OG1(Thr163)
+ HO




ATP catalytic site (BTP-aTP)

B (p-loop)

o Gly159
o Gly161
o Lys162
e Thr163
e Val164

e Glu188
e Arg189

D
e Arg373




ATP catalytic site (BTP-aTP)

B (p-loop)

1. N(Gly159)-03G(ANP) 3,428A

@




ATP catalytic site (BTP- O(TP)

B (p-loop)

5. N(Lys162)-O3G(ANP) 2,963A /



ATP catalytic site (3TP-aTP)

B (catalytic residues)

8. O(Glu188)-H20

9. N(Arg189)-O1G(ANP) 2,698A
10. N(Arg189)-O1G(ANP) 3,199A
11. N(Arg189)-O2G(ANP) 3,190A




ATP catalytic site (BTP-aTP)

D
12. N(Arg373)-O1G(ANP) 2,885A
13. N(Arg373)-01G(ANP) 3,265A




ATP catalytic site (BTP-aTP)

Mg - 3 .
e 02G(PO4) ) N
e OG1(Thr163)
+ H.O N o
da W —
P

L
N 7
« 8 -
\ 7
\./
/ N\
3 "
/ ® N\
/ AN
N




Catalytic site E (BE-aE)

B
o Gly159

e Gly161
o Lys162
e Thr163




Catalytic site E (BE-aE)
B w

N(Gly159)-01(PO4) 3,049A -
N(Gly161)-01(P0O4) 3,122A

N(Thr163)-02(P04) 2,715A
N(Thr163)-02(P0O4) 2,906A

N =




What about chemical energy in
ATP synthesis?



Superimposition of BDP/BTP

BDP
BTP

RMSD=0,733




Superimposition of catalytic sites in BDP/BTP

BDP
BTP




p-loop

BDP
BTP

DP

N(Gly159)-035(ADP) 2,884A
N(Gly161)-O1B(ADP) 2,886A

Superimposition of the

TP

N(Gly159)-O3G(ANP) 3,428A
N(Gly161)-O1B(ANP) 3,016A

N(Lys162)-O1B(ADP) 2,801A
N(Lys162)-O1B(ADP) 2,775A
N(Lys162)-O35(ADP) 3,425A

N(Lys162)-O1B(ANP) 2,915A
N(Lys162)-O1B(ANP) 2,716A
N(Lys162)-O3G(ANP) 2,963A

™

oo s W =

N(Thr163)-O2B(ADP) 3,019A

N(Val164)-O2A(ADP) 2,859A

@Gk wn =

~

©C®©o®

N(Thr163)-O2B(ANP) 2,900A

N(Val164)-02A(ANP) 2,600A

N(Arg189)-O1G(ANP) 2,698A
N(Arg189)-O1G(ANP) 3,199A
N(Arg189)-02G(ANP) 3,190A




Superimposition of the o
p-loop

BDP
BTP

e Glycins
+

o Ala158

o Lys162

e Thr163




Superimposition of Glu188

BDP
BTP




ATP synthesis

(substrates)
o) O-
II \
AMP —P—0O- O——P
\ /
O- O-

ADP Pi



ATP synthesis F

(od0]0
0 o.
| L
AMP|— P—0- 0O=—=P
\0- 0-/ ‘CH3
M‘g++ ------ NH3+ \-



ATP synthesis

L

\

AMP— P—0 — P — O-

\ /
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PEM questions

1. ATP synthase:

a) Is only present in eukaryotic organisms.

b) Is only present in the mitochondria.

c) Is only present in in vivo conditions.

d) Is only present in chloroplasts.

e) Is ubiquitously distributed in all life kingdoms.
2. Choose the correct answer:

1. ATP synthase produces three protons from each ATP molecule.
2. ATP synthase uses physical rotation of its own subunits as a step of catalysis.
3. The c-ring rotation is generated by catalysis of ATP molecules.
4. The c-ring rotation is generated by protonation and deprotonation of its conserved glutamates.
a) 1,2and 3
b) 1and 3
c) 2and 4
d) 4

e) 1,2,3and 4

3. The main function of C-ring subunit is:
a) Synthesize ATP from ADP and phosphate.
o)) Hydrolyze ATP to produce ADP and phosphate.
c) Translocate protons to generate physical rotation.

d) Stabilize the “a” subunit across the inner membrane.
e) Dimerize ATP synthase between them.



4. Why does beta subunit have catalytic function while alpha doesn't if they share the same conformation?
a. Gamma subunit doesn’t change alpha conformation
b.  Alpha subunits contain mutations in the catalytic residues
. Both previous options are correct
d. Alpha subunits can’t bind ATP

C
e All options are incorrect
Where does ATP synthesis takes place?
f.  Forotor
g. Gamma subunit
h.  Alpha subunit
i.

Beta and alpha subunit in “open” state
j-  Beta and alpha subunit in “tight” state
Select the correct ones:
1. ATP synthase can be found in all forms of life
2.  There are more proteins that can transduce a membrane potential directly into biologically useful chemical energy
3. Invivo, mitochondrial and chloroplast ATP synthase can only act in synthesis mode
4. Invivo, all ATP synthases are reversible

a 1,2,3
b. 1,3

C. 2,4

d 4

e. 1,2,3,4



7. Glycins...

are usually taking part in the nucleotide binding side of a protein.

are flexible amino acids allowing conformational changes of the protein
have no side chains

are the smallest amino acids

all

8. The catalytic head of ATP synthase:

L s N

a. have the 3 catalytic sites which are always in a different conformation between each other, but each pass
through a cycle of ‘open’, ‘loose’ and ‘tight’ states.

b.  consists of an hexamer of three alpha and three beta subunits bounded to delta subunit.

c. rotates with the c-ring (rotor).

d. is hydrophobic.

e all

9. In ATP synthesis...

a. ADP + Pi make a spontaneous reaction at the catalytic site of the F1-ATP synthase.
b.  Mg2+ make hydrogen bonds with the phosphates of the nucleotide and residues of the catalytic site.
c. aandb
d. one molecules of ATP is catalyzed within a turn of 360° of the c-ring.
e. all
10. ATP synthase:
a. is a multisubunit assembly that consists of a globular domain F1 and an intrinsic membrane domain Fo

linked by the central stalk and the peripheral stalk.

makes 3 ATP in one rotor movement of 360° of the c-ring.

the affinity changes of the catalytic sites are determined by the changes in conformation.

gamma subunit couples the rotation movement to conformational changes in the catalytic domain.
all.

© oo



Thank you for your attention

HOORAY! WE
OBTAINED ATP!!

WHAT A NICE
MACHINERY!!!




EXTRA



What makes the difference?

RMSD: full
abetaDP
A "betaTP

A 2

_—
C P
N
14 BN
)

RMSD=0,733




Ligand interactions

e Nucleotide-binding residues

e Mg-binding

Ser372

Gly159

Val160

Arg373

N Gly161
s OG1(Thr163) O2B(ANP)
(@)
. Lys162
-~ O2B(ADP) O2G(ANP)
Thr163
O(H20) O(H20)
Val164
O(H20) O(H20)

Glu188

Arg189




Ligand interactions

Nucleotide-binding residues

Glu188

— BDP, BTP

— BE, BDP, BTP
— BDP, BTP

— BE, BDP, BTP
— BDP, BTP

— BDP, BTP

— BTP



Comparison between BE-BDP-BTP

N

=

. N(Gly159)-01(P0O4) 3,049A

2. N(Gly161)-01(P0O4) 3,122A

> w

N(Thr163)-02(P0O4) 2,715A
N(Thr163)-02(P0O4) 2,906A

~

2 e

DP

N(Gly159)-035(ADP) 2,884A
N(Gly161)-O1B(ADP) 2,886A
N(Lys162)-O1B(ADP) 2,801A
N(Lys162)-O1B(ADP) 2,775A
N(Lys162)-O32(ADP) 3,425A
N(Thr163)-02B(ADP) 3,019A

N(Val164)-O2A(ADP) 2,859A

pb-chain
8. O(Ser372)-O2(ADP) 2,971A
9. O(Ser372)-O3(ADP) 3,463A
10. N(Arg373)-O1A(ADP) 2,990A
11.  N(Arg373)- (ADP) 2,702A

ok wh =

~

TP

N(Gly159)-O3G(ANP) 3,428A
N(Gly161)-O1B(ANP) 3,016A
N(Lys162)-O1B(ANP) 2,915A
N(Lys162)-O1B(ANP) 2,716A
N(Lys162)-O3G(ANP) 2,963A
N(Thr163)-O2B(ANP) 2,900A

N(Val164)-O2A(ANP) 2,600A

p-chain

11. N(Arg373)-01G(ANP) 2,885A
12. N(Arg373)-01G(ANP) 3,265A
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SCOP

SUBUNIT C

Class All alpha proteins
Fold Transmembrane helix hairpin
Superfamily F1FO ATP synthase subunit C
Family F1FO ATP synthase subunit C
SUBUNIT A
Class All alpha proteins
Fold F1FO ATP synthase subunit A
Superfamily F1FO ATP synthase subunit A
101111 F1FO ATP synthase subunit A




RMSD = 1.613



o’
c-ring - y interactions K

5

Different number of c-ring monomers
could be the reason why?

® S oleracea
® 3 taurus

RMSD = 2.027



c-ring - y interactions

ARG 39.T NE <-> GLU 198.G OE1: 4.15

11 281
edeafslsty rFdigkltverdm

Bos taurus --SAES
Homo sapiens --SADS
Saccharomyces cerevisiae | - - OSF S

Polytomella sp. VTCENS

Pisum sativum D FR TK KLTVERDV
Spinacia oleracea DELFRLTTK KLTVERDM
Trichormus variabilis D FR TR QFEVERQT
Escherichia coli DDDLK

Paracoccus denitrificans

c-ring

Consensus
Conservation
Spinacia oleracea
Pisum sativum
Trichormus variabilis

Homo sapiens

Bos taurus
Saccharomyces cerevisiae
Polytomella sp.
Paracoccus denitrificans
Escherichia coli




B-subunit hydrophobicity




a,B-subunit hydrophobicity




a-subunit hydrophobicity




Y
O
-

O

e
(7p)
O
Q.

E
| -
)
Q.
-

7))

7))
-
9
(@))
)]
bt
]
L
LU
7p)
-
Ll
o

BE

BDP
BTP




BE - oeseeo
BDP - peLseeo
BTP - peiseeo



Catalytic sites



