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HISTORY

Cells communicate with each other

How the cell manages to convert
external signals into the cell?

1994- Nobel Prize in Physiology or
Medicine

Alfred G. Gilman and Martin Rodbell received the Nobel Prize in Physiology or Medicine for their discovery of
"G-proteins and the role of these proteins in signal transduction in cells"



TRIMERIC G - PROTEINS

Signalling transduction processes
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6-stranded
(GTP binding
domain)

Resolution = 0,936 A




MONOMERIC G - PROTEINS (or RAS SUPERFAMILY)

« Small GTPases (21 - 30 kD)

o Common core structure (G domain) : 5 helix + 6-stranded B-sheet

« 5 families (Post translational modifications)

o Cytosol/membrane

1

Own source c




MONOMERIC G - PROTEINS (or RAS SUPERFAMILY)

SIGNAL

l

e SWITCHES:
- ON(GTP) Q OFF
- OFF (GTP hydrolyzed to GDP)

e Switch | + Switch Il

o Activation by proteins - conformational change

GTP
(GAP + GEF) l

o RGS = Regulators of G protein Signalling
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MONOMERIC G - PROTEINS

FAMILY SUBFAMILIES FUNCTION

HRAS, NRAS, KRAS, RRAS, RAP, RAL, RIT... Cell growth (growth factor signal cascades)

RHOA,B,C,D...RAC, ROCK, RND... Cytoskeletal dynamics = cell adhesion and
migration

Protein trafficking pathways, regulation of
RAB3A, RABL, RAB1A, RAB14, RAB35... vesicle formation, actin-tubulin dependent
movement and membrane fusion

Transport of proteins into and out of the nucleus
(localisation of prot)

ARF1, ARF3, ARF4, ARF5...ARL 4, ARFRP, Vesicle biogenesis, recycling and trafficking
ARL, SARA...




EVOLUTION OF G PROTEINS

TRIMERIC : GPCR signalling system

Most of the gene families of this system were already present in the LECA
Some species have GPCRs without G proteins and vice versa 2

Different parts of the GPCR signalling system evolved independently

The system is very plastic

The expansion of the GPCR receptors could be motivated by the
emergence of multicellularity in metazoans

&

A key to developing multicellularity complexy



EVOLUTION OF G PROTEINS

MONOMERIC : Ras superfamily

o The Ras superfamily is divided into five

families: Ras, Rho, Arf/Sar, Ran, and
Rab.

o The separation between families was
an early evolutionary event that
predated the expansion of eukaryotes.

o Arf family is the possible founding
member.
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MONOMERIC G - PROTEINS : CLUSTALW

Are the human superfamily ras proteins similar between them?

SwissProt

(fasta files) > <

f‘

All studied
sequences
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> =) Clustaly = Chimera




MULTIPLE SEQUENCE ALIGNMENT (MSA) OF HUMAN RAS SUPERFAMILY
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INTRODUCTION TO RAB FAMILY

Largest small GTPases 200-250 amino acids
70 Rabs and 44 subfamilies

They modulate vesicle trafficking and protein transport of
eukaryotes

Little is known about regulation and function of a large number of -
rab proteins.

Phylogenetic analysis of Rabs. Homma Y, Hiragi S, Fukuda M. Rab family
of small GTPases: an updated view on their regulation and functions.
FEBS J. 2021 Jan;288(1):36-55. ||



RAB SCOPE CLASSIFICATION

STRUCTURAL CLASS - Alpha and beta proteins ~ FOLD - G domain like
SUPERFAMILY - Ras like protein P loop GTPases ~ FAMILY - Ras like monodomain GTPases (Rab)
SUBFAMILY - Rab14, Rab7 PROTEIN - Rab14, Rab7A, Rab7B

SPECIES = Human (Homo Sapiens)
Switch 2
Switch 1

a5 a4 a3 a2 al

g LT LT




GENERAL STRUCTURE

SECONDARY STRUCTURE

6 stranded R-sheet
(with five parallel strands and one antiparallel)

5 a-helices




GENERAL STRUCTURE

STRUCTURAL ELEMENTS

B P-loop
Switch |
InterSwitch
Switch I

COOH-terminal - hypervariable
region (CAAX boxes: aprox 35-40 aa )

Switch2



GENERAL STRUCTURE

SEQUENCE MOTIFS

Conserved regions (F1-F5) /'

m Phosphate/magnesium-binding \ >
motifs (PM1-PM3) - P-loop NTPases

Guanine-binding motifs (G1-G3)




SUPERIMPOSITION

(of HUMAN Rab proteins)




EVOLUTION

CLUSTALW
of human Rabs proteins

Rab14

Rab4A

Rab2A

Rab11A

Rab43

Rab3

Rab1B

Rab33B

Rab7A



MULTIPLE SEQUENCE ALIGNMENT (MSA) OF HUMAN RAB PROTEINS

Consensus
Conservation
RAB14
Rab4A
Rab2A
RAB11A
RAB43
RAB35
RAB1B
RAB33B
RAB7A

Secondary
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Structural
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Sequence
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MULTIPLE SEQUENCE ALIGNMENT (MSA) OF HUMAN RAB PROTEINS
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MULTIPLE SEQUENCE ALIGNMENT (MSA) OF HUMAN RAB PROTEINS
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MULTIPLE SEQUENCE ALIGNMENT (MSA) OF HUMAN RAB PROTEINS
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MULTIPLE SEQUENCE ALIGNMENT (MSA) OF HUMAN RAB PROTEINS
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MULTIPLE SEQUENCE ALIGNMENT (MSA) OF HUMAN RAB PROTEINS
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EVOLUTION

CLUSTALW
of Rab14 proteins

Homo sapiens (Human)
Rattus norvegicus (Rat)
Sus scrofa (Pig)
Mus musculus (Mouse)
Physeter macrocephalus (Cachalot)
Delphinapterus leucas (Beluga whale)
Ursus maritimus (Polar bear)
Meleagris gallopavo (Wild turkey)
Loxodonta africana (African elephant)
Oryctolagus cuniculus (Rabbit)
Capra hircus (Goat)
Ailuropoda melanoleuca (Giant panda)
Cavia porcellus (Guinea pig)
Ovis aries (Sheep)
Mustela putorius furo (Domestic ferret)
Papio anubis (Olive baboon)

Ictidomys tridecemlineatus (Thirteen-lined ground
squirrel)
Myotis lucifugus (Little brown bat)
Pelodiscus sinensis (Chinese softshell turtle)
Sarcophilus harrisii (Tasmanian devil)
Nomascus leucogenys (Northern white-cheeked gibbon)
Anolis carolinensis (American chameleon)
Monodelphis domestica (Gray short-tailed opossum)
Bos taurus (Bovine)
Gorilla gorilla gorilla
Felis catus (Cat)
Pongo abelli (Sumatran orangutan)
Gallus gallus (Chicken)
Danio rerio (Zebrafish)
Caenorhabditis elegans
Drosophila melanogaster (Fruit fly)
Dictyostelium discoideum (slim mold)




MULTIPLE SEQUENCE ALIGNMENT (MSA) OF RAB14 PROTEINS

Conservation

Charge variation

Rattus norvegicus (Rat)

Sus scrofa (Pig)

Homo sapiens (Human)

Mus musculus (Mouse)

Physeter macro. .
Delphinapterus..
Ursus maritimus
Meleagris gall..

Macaca mulatta..

Loxodonta afri...

.alus (Cachalot)
. (Beluga whale)

(Polar bear)

.o (Wild turkey)

.Rhesus macaque)

rican elephant)

Oryctolagus cuniculus (Rabbit)

Capra hircus (Goat)

Ailuropoda mel..

Cavia porcellus

.a (Giant panda)

(Guinea pig)

Ovis aries (Sheep)

Mustela putori..

.omestic ferret)

Papio anubis (Olive baboon)

Ictidomys trid...
.ttle brown bat)

Myotis lucifug..

Pelodiscus sin...

Sarcophilus ha..
Nomascus leuco..
Anolis carolin..

Monodelphis do. .

round squirrel)

ftshell turtle)

.asmanian devil)
.cheeked gibbon)
.ican chameleon)

.tailed opossum)

Bos taurus (Bovine)

Gorilla gorilla gorilla

Felis catus (Cat)

Pongo abelli (..

.tran orangutan)

Gallus gallus (Chicken)

Danio rerio (Zebrafish

Caenorhabditis elegans

Drosophila mel..

Dictyostelium

.ter (Fruit fly)
.um (Slime mold)

Secondary Structure

11

R1

21

31

41

51

R2

D D
N N



MULTIPLE SEQUEN

Conservation

Charge variation
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MULTIPLE SEQUENCE ALIGNMENT (MSA) OF RAB14 PROTEINS

Conservation

Charge variation
Rattus norvegicus
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MULTIPLE SEQUENCE ALIGNMENT (MSA) OF RAB14 PROTEINS

Conservation

Charge variation
Rattus norvegicus
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EVOLUTION: DENDROGRAM OF RAB14 PROTEINS

p_Rattus_norvegicus
_tp_Sus_scrofa
r_Ursus_maritimus
r_Macaca_mulatta
r_Loxodonta_africana
r_Oryctolagus_cuniculus
r_Capra_hircus
Fp_Mus_musculus
[—tr_Ailuropoda_melanoleuca
r_Meleagris_gallopavo
r_Cavia_porcellus
r_Ovis_aries
r_Mustela_putorius_furo
r_Papio_anubis
r_Ictidomys_tridecemlineatus
r_Myotis_lucifugus
r_Pelodiscus_sinensis
r_Sarcophilus_harrisii
r_Nomascus_leucogenys
r_Anolis_carolinensis
r_Monodelphis_domestica
r_Bos_taurus
r_Gorilla_gorilla_gorilla
r_Felis_catus
kp_Pongo_abelli
kp_Gallus_gallus
r_Delphinapterus_leucas
jr_Physeter_macrocephalus
sp_Homo_sapiens
r_Danio_rerio

tr_Caenorhabditis_elegans
tr_Drosophila_melanogaster

sp_Dictyt 1_discoideum
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FUNCTION OF RAB PROTEINS

They regulate intracellular membrane trafficking by orchestrating the
biogenesis, transport, tethering, and fusion of membrane-bound

organelles and vesicles.

TWO STATES [

Active state (GTP-loaded)

Inactive state (GDP-loaded)



Rab GTPase

cycle
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RAB FAMILY : INTERACTIONS

Rab- REP N
REP B
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REB- Rab- RabGGTase GO oP
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% mm"::“:'”:m
Rab- GEF
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Rab7:REP1 INTERFACE

Rab REP 1

4 Effector loops: TR ;
&) RBP-mediated ay | SMCR
% association oM (7 \(Rab) B ooo oo

e

C\\’* :

c
I
c

Mechanistic model of RabGGTase-mediated protein prenylation. Guo Z, Wu Y, Das D,
Delon C, Cramer J, Yu S et al. Structures of RabGGTase-substrate/product complexes

provide insights into the evolution of protein prenylation. EMBO J. 2008; 27(18):
2444-2456.




RAB7: REP1 INTERFACE ¢

RAP7

B Switch |
" Switch I
I nterswitch

REP1

B Rab Binding Platform
Loop B’ - 12







RAP7

B Switch |
0 Switch Il
I Interswitch

REP1

I Rab Binding Platform
Loop B’ - 2
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REP - Rab- RabGGTase

Mechanistic model of RabGGTase-mediated protein prenylation.

Guo Z, Wu Y, Das D, Delon C, Cramer J, Yu S et al. Structures of
RabGGTase-substrate/product complexes provide insights into
the evolution of protein prenylation. EMBO J. 2008; 27(18):
2444-2456.
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RabGGTase

Alpha subunit: interacts with REP Il domain

- LRR domain
- Ig-like domain
- His2: coordinates a zinc ion

Beta subunit; has the active site

- Coordinates a zinc ion
- GGPP-binding site

LRR domain S



"1 subunit RabGGTase

a-a barrel made up of 12 a helices
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Interaction RabGGTase-REP1
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Interaction RabGGTase- REP1 (a10-012 with E) '
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Interaction RabGGTase- REP1 (a10-012 with E)
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Interaction RabGGTase- REP1 (a.8-a10 with D)
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Rab7 - RabGGTase

Rab effector loops:
RBP interface REP-1

Ig-like domain LRR domain

Model of the mammalian RabGGTase catalytic ternary complex. Guo Z, Wu Y, Das D,
Delon C, Cramer J, Yu S et al. Structures of RabGGTase-substrate/product complexes
provide insights into the evolution of protein prenylation. EMBO J. 2008; 27(18):
2444-2456.

Detailed view of interactions of the C-terminus of Rab7 with RabGGTase. Wu Y, Goody R, Abagyan
R, Alexandrov K. Structure of the Disordered C Terminus of Rab7 GTPase Induced by Binding to
the Rab Geranylgeranyl Transferase Catalytic Complex Reveals the Mechanism of Rab
Prenylation. J Biol Chem. 2009; 284(19): 13185-13192.



Prenylation: interaction

0 GORRE —







GDP-Rab & GTP-Rab

Rab

INACTIVE

High degree of flexibility
and disorder for the
Switch1 and Switch2

region

@
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|

Restricted
conformational
flexibility

Switch1

RMSD: 0,506 A

Switch2




Video


https://docs.google.com/file/d/1eS7kjiGcORSjjCL_DS_gqqAOb6neRH6K/preview

Switch (1 & 1) : 4 \









 —
gt

» 292A
ASP127A @

“E
A







%







Rab - GDP /

GXXXXGKS/T
/ GLY 23A ;

I

® /

,122A )

\m/\ ! g -

. A




ASP 66 A







Rab- GDP .\ / . |

Switch1

N '343A

. / N "
~2.69A

P P4 N
,Jx \\‘






ww o I

-

[ 4

I

| -

| — , . -
ﬂ,—. I 3

|

|
I
I———




Rab - GTP iR
-

ASP 127 A




5.90A
8

-~ < 4 /,'i
SER 154 A /343/}‘ / :
B b
> “Z |
g 5 43
i
I
® [
|
LYS 156 A






GLY 21A

GXXXXGKS/T

VAL22A




MET 20.A

)
x
m
o |







SN,
\ = /\m\éi/\ )




20.A

Rab - GTP | N

Switch1

' ASP39A

\
CYS 40 A
. ALA38 A o



Rab-GDP <-> GEF

1) GEFs destabilizes the ternary GDP-Rab
2) GDP is released

3) Nucleotide free-Rab + GEF = stable complex
4)  GTP binding (higher concentration)
5) Destabilization = GEF released

6) RabACTIVE

*Catalytic mechanism — variety
*Residues conservation GAP > GEF

*Opening of the nucleotide binding pocket + projection residues



GEFs Rab

Rab-GDP <-> GEF

The largest class
DENN Rab3, Rab27, Rab14,

proteins

Rab35
u-DENN, c-DENN, d-DENN

VSP9 Vacuolar protein
proteins Rab5, Rab21, Rab22
Alpha helix

Sec2 proteins = Sec# (yeast homologue
of Rab8)

TRAPP Multi-subunit

Comp[exes 3 forms (1, 11, 11)
Ypt1(Rab1 homologue)

Mon1A-Ccz1, HPS1-HPS4,

Heterodimer Ric1-Rgp1,
GEFS Rab3GAP1-Rab3GAP2

Rab7, 32/38, 6, 18

SH3BP5 Rab11




Rab11a INTERACTION WITH SH3BP5 (GEF)

Inactive Rab11 Rab11-SH3BP5 Active Rab11

SH3BP5

SH3BP5

Jenkins M, Margaria J, Stariha J, Hoffmann R, McPhail J, Hamelin D et al. Structural determinants of Rab11
activation by the guanine nucleotide exchange factor SH3BP5. Nature Communications. 2018;9(1).

SH3BP5 (GEF) : a1 A

Rab11a:
P-loop + + Switch Il + Interswitch






N-terminal Rab11a

a1 GEF (SH3BP5)
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HYDROPHOBIC INTERACTION

PHE48 + TRP65
LEU49 + LEU 52
TYR 243 + LEU 247

+ DISPENSABLE H.BOND GLN63 - TYR243
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Switch | Rab11a . | 2 HYDROGEN BONDS

HIS258 - GLU39
SER254 - THR43

THR43 coordinates
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nucleotide-bound
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GTPase Activating Protein (GAP)- GTP Hydrolysis



GTPase Activating Protein (GAP)




Rab33 INTERACTIONS WITH Gyp1 (GAP)

Arginine Finger
Glycine Finger
Aluminium Fluoride

GDP molecule

Glycine 91B




EFFECTORS

Function/Membrane Traffic

Rab protein
P Pathway
Rab14 FIP2,RCP, Rip11, D-AKAP2 TGN/RE to plasma membrane;
apical membrane targeting
Rab11a Sec15, Rab11-FIP1 to FIP5 TGN/RE to plasma membrane
Vps 35/29/26 complex
(retromer), Rabring7,
Rab7A proteasome alpha-subunit Late endosome to lysosome
PSMA?7, Vps34/p150 PI3-kinase
complex




~ TAKEHOME MESSAGES

1) Rab proteins are a huge family

”.)’ L= . T A * -~ P o S A4
: ‘ There's a conservation through the evolution and the phylogeny between species o ‘.
y ‘ The interaction REP1-Rab-GGTase is essential to its anchorage at the membrane .
e L - - £ [CS5Y AT v ’
The active state of a G protein is mediated by GAP and GEF (the protein will be active in the presence 4

of GTP and inactive with GDP)

L 4 R T T T EER SRR . S o W

G proteins have a common structure

Sl N i o avy

3

T ETwTNMM A LI Tl AN LENER T 1 1 RS FiEs T

[ 'There’s homology between the alpha region of trimeric G proteins and monomeric G proteins

L TWS, AT L .3 S T R Ta N a

4 ‘A mutation in a G protein cycle or structure implies a disease
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WHY THIS INTERACTION IS WEAK?

Rabs Kd of binary complex, Kd of ternary complex,
wt/mutants C-terminal sequence REP-1 RabGGTase
(nM) (nM)
Rab7wt EFPEPIKLDKNDRAKTSAESCSC 7.5+2.7 130+9.3
Rab7A3 EFPEPIKLDKNDRAKTSAES 16.1+1.0 191+ 22
Rab7A14 EFPEPIKLD 15.8+2.1 321+11
Rab7A22 E 381+ 37 491 +31
Rab7-5A EFPEPIKLDKNDRAAAAAACSC 21.5+1.1 188 + 45

Summary of dissociation constants for interaction between Rab7wt/mutants and REP and RabGGTase. Adapted from: Wu Y, Goody R, Abagyan R, Alexandrov K. Structure of
the Disordered C Terminus of Rab7 GTPase Induced by Binding to the Rab Geranylgeranyl Transferase Catalytic Complex Reveals the Mechanism of Rab Prenylation. J Biol
Chem. 2009; 284(19): 13185-13192.



Rab-GTP vs Rab -GDP : IMPORTANT MOTIFS
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di-geranylgeranylated Rab



QUESTIONS

1. Choose the correct affirmation about small GTPases:
a) Inthe transition of active and inactive state switch regions are known to undergo large conformational changes.

b) In the inactive state it has been demonstrated that its structure has a high degree of flexibility and disorder for the
Switch1 and Switch2 regions

c) Bothaand care correct.

d) Inthe activate state their structures show a more restricted conformational flexibility compared with the inactive form.

e) All of them are correct.

2. Which functions are regulated by Rab proteins?

Vesicle biogenesis
Vesicle transport
Vesicle tethering
Vesicle fusion
a) 123

b) 2i4
c) 1i3
d)

FoN -

4



QUESTIONS

3. Mark the incorrect answer:

a) The Ras superfamily is divided into five families: Ras, Rho, Arf/Sar, Ran, and Rab.
b)  The separation between G protein families was an early evolutionary event that predated the expansion of eukaryotes.
)

c) G proteins have not a common structure|

d
e

The original function of these proteins may have been related to the regulation of membrane trafficking.
Some species have GPCRs without G proteins and vice versa.

)
)
4, Choose the correct answer related with the interaction Rab-REP-RabGGTase (ternary complex):

a
b

) The prenylation (the addition of hydrophobic molecules to a protein) of Rab is optional for membrane anchoring.
) ThereisaNa'ion in the active site of RabGGTase.

) The CIM (C-terminal interacting motif) of Rab interacts with REP,

)

)

o

There is not any hydrophobic interaction in the assembly of the ternary complex.
RabGGTase can recognize directly the Rab C-terminal peptide as a substrate.

)



QUESTIONS

5. Which structure of Rab11 doesn’t interact with GEF?

b.  Switch |
c. Switchll
d. Interswitch
e. N-terminal

6. Choose the correct affirmation(s) about GEF:

1. GEFs destabilize the GTPase interaction with GDP

2. Each GEF interacts with the Rab surface differently

3. GEF plays an important role in activating Rab proteins
A

GEF stabilizes the intermediate nucleotide-free state of small GTPases

a) 123
b) 2i4
c 1i3
d 4



QUESTIONS

7. The most important sequence motifs in Rab proteins are:

Alpha helices and beta sheets

Conserved regions (F1-F5), phosphate/magnesium-binding motifs (PM1-PM3) and guanine-binding motifs (G1-G3)
P-loop, switch I, interSwitch and switch Il
Switch Il and Switch IV

N oo

8. Which is the secondary conserved structure of Ras superfamily?

6 stranded B-sheet (with six parallel strands) and 5 a-helices

6 stranded R-sheet (with five parallel strands and one antiparallel) and 5 a-helices
6 stranded B-sheet (with six parallel strands and one antiparallel) and 4 a-helices
5stranded R-sheet (with four parallel strands and one antiparallel) and & a-helices

0N T



QUESTIONS

9. Which of these affirmations about GTPase Activating Protein (GAP) is correct:

Rab GAPs have a very conserved structure
GAP hydrolyzes GTP to GDP

a) and b) are correc

GAP exchanges GDP for GTP

All are incorrect

N T

10. Choose the correct affirmation(s) about trimeric G-proteins:

1. Trimeric G-proteins have two B subunits and an a one.

2. The GB subunit has GTPase intrinsic activity.

3. The GTPase domain isn't structurally homologous to the monomeric G-proteins family.
4, The Ga subunit is the most heavy subunit.

a) 123

b) 2i4

c) 1i3

e) 123i4



