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The cryo-EM structure of the human pre-A complex (7VPX): Homo sapiens, 3.00A
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Structure of a human fully-assembled precatalytic spliceosome (pre-B complex) (6QX9): Homo sapiens, 3.28A
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Cryo-EM structure of a human activated spliceosome (early Bact) (5Z58)



Complex B*

Associated
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Cryo-EM structure of a human activated spliccosome (mature Bact) (5Z56): Homo sapiens, 5.10A
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The cryo-EM structure of human pre-C*-| complex (7W59)
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Post spliceosomal complex

Associated
proteins

Cryo-EM structure of a human post-catalytic spliccosome (P complex) (61CZ): Homo sapiens, 3.00A



Evolutionary conservation (U1 snRNP)
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U1 small nuclear ribonucleoprotein 70 kD

a. Homo sapiens, 448 aa (P08621) c. Bos taurus, 439 aa (Q1RMR2) e. Drosophila melanogaster, 448 aa (P17133)
b. Mus musculus, 448 aa (Q62376) d. Xenopus tropicalis, 471 aa (Q66118) f. Schizosaccharomyces pombe, 261 aa (013829)




Evolutionary conservation (U1 snRNA)

5’ splice site

11 21
Conservation
U1snRNA_HUMAN CAUUG|CA|ICUC G

AUCCA
U1snRNA_DROSO CAUUG|CA|ICCU CGC

CC- - -

U1snRNA_SCERE ©CCAUUUUA UUUUUCAIC CACAUUCGCAA

31 41 51
Conservation
UisnRNA HUMAN A CAUACCAU AUCACGAA U vuuuuccu
U1snRNA_DROSO
UisnRNA_ SCERE U GAACUUAA

Adapted from: Claudio H. and Patrick J (2006) U1-70k in complex with U1l snRNA stem-loops 1 and U1-A RRM .(4PKD): Homo sapiensé 2.50A
Crystal structure of SNF/U1-SL2 complex (6F4H): Drosophila melanogaster,OZ.OOA
S. cerevisiae U1 snRNP (6N7X): Saccharomyces cerevisiae S288C, 3.60A



Evolutionary conservation (U1 snRNA)

Domainl Domain2 Sc RMS Lenl Len2 Align NFit
4pkd 6f4h 3.54 0.45 240 90 89 89

U1-70k in complex with Ul snRNA stem-loops 1 and U1-A RRM in complex with stem-loop 2 (4PKD):oHomo sapiens, 2.50A
Crystal structure of SNF/U1-SL2 complex (6F4H): Drosophila melanogaster, 2.00A



Evolutionary conservation (U1 snRNA)
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U1-70k in complex with Ul snRNA stem-loops 1 and U1-A RRM in complex with stem-loop 2 (4PKD):°Homo sapiens, 2.50A
Crystal structure of SNF/U1-SL2 complex (6F4H): Drosophila melanogaster, 2.00A


https://docs.google.com/file/d/1NzOjARPu671hiiVrfNtQjcZ1vZEzy4Db/preview

Evolutionary conservation (U5 SnRNP)
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U5 small nuclear ribonucleoprote Da:

c. Bos taurus, 358 aa (Q2HJHG6)
d. Mus musculus, 358 aa (Q6PEO1)
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e. Dictyostelium discoideum, 355 aa (Q55AR8)
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Structure of a human fully-assembled
precatalytic splicecosome (pre-B co[’nplex)
(6QX9): Homo sapiens, 3.28A



Prp23 structure
A5,

RecA-2 domain

Structure of the spliceosomal DEAD-box protein Prp28 (4NHO): Homo sapiens, 2.00A



Prp28 structure

Structure of the spliccosomal DEAD-box protein Prp28 (4NHO): Homo sapiens, 2.00A


https://docs.google.com/file/d/1116PiyXEz13ez-_qrixtoxIwgKm8zPSr/preview

RS-like domain

Q1l la GG bl 1 IV QxxR V VI
629 640 820

N-Terminal Extension (NTE) RecA-1 domain Linker RecA-2 domain

e All attempts to crystallize
full-length hPrp28 = Failed

' _ . Rich in ARGININE/SERINE as well ‘
* RS-Like domain predictedto 5 ARGININE/GLUTAMATE and —
be intrinsically disordered ARGININE/ASPARTATE
e Presentin HIGHER - ‘
eukaryotes -—

Mathew R, Hartmuth K, Méhlmann S, Urlaub H, Ficner
R, Lihrmann R. Phosphorylation of human PRP28 by
SRPK?2 is required for integration of the U4/U6-U5
tri-snRNP into the spliceosome. Nat Struct Mol Biol.
2008;15(5):435-43.



N-Terminal Extension (NTE)

| | Ql la GG Ibll M IV QxxR V VI
0 220 378 629 640 | | | | 820
RS-like domain 1 N-Terminal Extension (NTE) 1 RecA-1 domain Linker RecA-2 domain

e Residues 367-377 form an alpha-helix which
packs against RecA-1 domain.

e The further N-terminal residues form an
irregular loop including two short turns

Structure of the spliceosomal DEAD-box .
protein Prp28 (4NHO): Homo sapiens, 2.00A



RecA-1 domain

Q1l la GG bl 1 IV QxxR V VI

RS-like domain N-Terminal Extension (NTE) 1 RecA-1 domain : Linker RecA-2 domain

Helicase core

e Eight stranded beta-sheet comprising seven
parallel strands and one antiparallel strand

e Ten alpha helices pack against this sheet on
both sides

Insertion of 24 aa (576-599) which form a protuberance
that consists of an alpha helix within an extended loop

Structure of the spliccosomal DEAD-box .
protein Prp28 (4NHO): Homo sapiens, 2.00A
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Helicase core

Structure of the spliccosomal DEAD-box .
protein Prp28 (4NHO): Homo sapiens, 2.00A



RecA-2 domain
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Helicase core

e Six stranded parallel beta-sheet

e Five alpha helices pack against this
sheet

Structure of the spliceosomal DEAD-box .
protein Prp28 (4NHO): Homo sapiens, 2.00A



SCOPe Classification

Lineage for Protein: RecA protein, ATPase-domain

1. Root: SCOPe 2.08
2. M\ Class c: Alpha and beta proteins (a/b) [51349] (148 folds)

3 Fold ¢.37: P-loop containing nucleoside triphosphate hydrolases [52539] (1
superfamily)
3 layers: a/b/a, parallel or mixed beta-sheets of variable sizes

Superfamily ¢.37.1: P-loop containing nucleoside triphosphate hydrolases

[52540] (27 families) §
division into families based on beta-sheet topologies

Family ¢.37.1.11: RecA protein-like (ATPase-domain) [52670] (22 proteins)
core: mixed beta-sheet of 8 strands, order 32451678; strand 7 is antiparallel to
the rest

6. ( ., Protein RecA protein, ATPase-domain [52671] (6 species)
"" C-terminal domain is alpha+beta

SCOPe: Structural Classification of Proteins — extended. Release 2.08 (updated 2023-01-06,
stable release September 2021). From: https://scop.berkeley.edu/sunid=52671



CLUSTAL 2.1 multiple sequence alignment

RecA-1

-—
lus l alW M S A VASA_DROSO GPLGSPEFPGEFYIPPEPSNDAIEIFSS--GIASGIHFSKY-NNIPVKVTGSDVPQPIQH
Prp28_HOMO GPLGSARLRKLRKKEAKQRWDDRHWSQKKLDEMTDRDWRIFREDYSITTKGGKIPNPIRS

DHH1_SCERE GPLGS-------- KDTRPQTDDVINTKG=co-=~2o—c 2 222 22 " Bl o 2 NT
- ok ok Kk . * . .
VASA_DROSO FTSADLRDIIIDNVNKSGYKIPTPIQKCSIPVISSGRDLMACAQTGSGKTAAFLLPILSK
Prp28_HOMO WKDSSLPPHILEVIDKCGYKEPTPIQRQAIPIGLQNRDIIGVAETGSGKTAAFLIPLLVIW
DHH1 SCERE FEDFYLKRELLMGIFEAGFEKPSPIQEEATPVAITGRDILARAKNGTGKTAAFVIPTLEK
- Lk o s s ke kekEE okok. KK ke kekkRRdkoke ok X
. . . la =
o :
ATP binding and hydrolysis VASA_DROSO LLEDP===== HELELGRPQUVIVSPTRELATIQIFNEARKFAFESYLKIGIVYGGTSFRHQ
MOtIfS | Walker A || Wa[ker Prp28_HOMO ITTLPKIDRIEESDQG-PYAIILAPTRELAQQIEEETIKFGKPLGIRTVAVIGGISREDQ
Q’ ( )’ ( DHH1_SCERE VKPKLN=-=-===-=- KIQALIMVPTRELALQTSQWRTLGKHCGISCMVTTGGTNLRDD
B), V and VI . N Joke RRERRR R . . -
VASA_DROSO NECITRGCHVVIATPGRLLDFVDRTFITFEDTRFVVLDEADRMLDMGFSEDMRRIMTHVT
R . Prp28_HOMO GFRLRMGCEIVIATPGRLIDVLENRYLVLSRCTYVVLDEADRMIDMGFEPDVQKILEHMP
) RNA binding: Motifs |a, |b, AV DHH1 SCERE ILRLNETVHILVGTPGRVLDLASRKVADLSDCSLFIMDEADKMLSRDFKTIIEQILSFLP
o L LR ¢ RAK K ¢ *
and V i _ReeAl o
VASA DROSO MRPEH-- == 7= 7= T T T LTS TL TS IQTLMFSATFPEEIQRMAGEF LKNYVFVAIGI
. . Prp28_HOMO VSNQKPDTDEAEDPEKMLANFESGKHKYRQTVMFTATMPPAVERLARSYLRRPAVVYIGS
PY Coupling ATP hydrolysis to the DHH1_SCERE PTHQS|- —;—_-.—-_—-_-:—_——_—-_——;—;—_IJ--LLFSi\IFPLTVKEFMVKHLHKPYEINL -M
* * .. . * . .
. . . . . Llnker RecA-2 T e e
_ .
RNA-unwinding activity: Motifflll VASA_DROSO VGGACSDVKQTIYEVNKYAKRSKLIEILSEQADG-TIVFVETKRGADFLASFLSEKEFPT
Prp28_HOMO AGKPHERVEQKVF LMSESEKRKKLLAILEQGFDPPIIIFVNQKKGCDVLAKSLEKMGYNA
DHH1_SCERE EELTLKGITQYYAFVEERQKLHCLNTLFSKLQINQAIIFCNSTNRVELLAKKITDLGYSC
. . ** .
QxxR \%
. . VASA_DROSO TSIHGDRLQSQREQALRDFKNGSMKVLIATSVASRGLDIKNIKHVINYDMPSKIDDYVHR
Motif | contains the P-loop — sequence Prp28_HOMO CTLHGGKGQEQREFALSNLKAGAKDILVATDVAGRGIDIQDVSMVVNYDMAKNIEDYIHR
DHH1_SCERE YYSHARMKQQERNKVFHEFRQGKVRTLVCSDLLTRGIDIQAVNWINFDFPKTAETYLHR
T/S-G-T/S-G-K-T. %, MaaR: L:oii: % Bazon RRoRes o kakoen || p koek
. RecA-Z
giRecti2
Motif Il — sequence DExD/H VASA_DROSO TGRTGRVGNNGRATSFFDPEKDRATAADLVKILEGSGQTVPDFLRTC- - ~----=====-=
Prp28_HOMO IGRTGRAGKSGVAITFLTKEDSAVFYELKQAILESPVSSCPPELANHPDAQHKPGTILTK

DHH1_SCERE IGRSGRFGHLGLAINLINIAINDRFNLYKIEQE LG TEIAAIPATIDKSLYVAENDET- S

Ekkakk ke K ks

Structure of DEAD-box protein Drosophila Vasa (2DB3): Drosophila melanogaster, 2.200,&
Structure of the spliceosomal DEAD-box protein Prp28 (4NHO): Homo sapiens, 2.00A .
Crystal structure of the DEAD box protein Dhhlp (1S2M): Saccharomyces cerevisiae, 2.10A



DExD/H-box protein motifs




Prpz8 homolog

Structure of the spliccosomal DEAD-box protein Structure of DEAD-box protein Drosophila Vasa (2DB3): No. Domainl Domain2 Sc RMS
Prp28 (4NHO): Homo sapiens, 2.00A Drosophila melanogaster, 2.20A Pair 1 4nho 2db3 0.87 2.58



RNA binding by DExD/H-box helicases




RNA binding by DExD/H-box helicases

QxxR la GG

Side-chain interactions

Ib

—— Main-chain interactions

Created in Biorender.com



RNA binding by DExD/H-box helicases
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Structure of DEAD-box protein Drosophila Vasa (2DB3): Drosophila melanogaster, 2.29,&
Structure of the spliccosomal DEAD-box protein Prp28 (4NHO): Homo sapiens, 2.00A .
Crystal structure of the DEAD box protein Dhhlp (1S2M): Saccharomyces cerevisiae, 2.10A



RNA binding by DExD/H-box helicases

/. ’.—('
A P

E497 — U2 2’-OH

K499 — U2 P

Prp28_HUMAN AC
G521 — U3 P NG
T546 — U3 P

Pmp28_HUMAN A
Vasa_DROSO
DHH1_SCERE

Structure of DEAD-box protein Drosophila Vasa (2DB3): Drosophila melanogaster, 2.20A



RNA binding by DExD/H-box helicases

P326 — U4 2’-OH

R328 — U4 P
R528 — U4 P
R528 — U4 P

Prp28_HUMAN
Vasa_DROSO S

DHH1_SCERE

Salt bridge

Structure of DEAD-box protein Drosophila Vasa (2DB3): Drosophila melanogaster, 2.20A



RNA binding by DExD/H-box helicases

G355
G354

501
Prp28_HUMAN V A V
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R328 — U5 P
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G377 — U5 2'-OH B
R378 — U5 P
R378 — U6 P
R378 — U6 P
R378 — U6 2"-OH b y 531
D381 — U6 2’-OH h : D381 Prp28_HUMAN
' . i - Vasa_DROSO
, N DHH1_SCERE

Salt bridge

Structure of DEAD-box protein Drosophila Vasa (2DB3): Drosophila melanogaster, 2.20A



RNA binding by DExD/H-box helicases

Prp28_HUMAN
Vasa_DROSO
DHH1_SCERE

Salt bridge

Structure of DEAD-box protein Drosophila Vasa (2DB3): Drosophila melanogaster, 2.20A



RNA binding by DExD/H-box helicases

Electrostatic potential (Coulomb’s Law)

Structure of DEAD-box protein Drosophila Vasa (2DB3): Drosophila melanogaster, 2.20A



ATP hydrolysis by DExD/H-box hellcases




ATP hydrolysis by DExD/H-box helicases
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Prp28_HUMAN
Vasa_DROSO
DHH1_SCERE

Structure of DEAD-box protein Drosophila Vasa (2DB3): Drosophila melanogaster, 2.29;&
Structure of the spliccosomal DEAD-box protein Prp28 (4NHO): Homo sapiens, 2.00A .
Crystal structure of the DEAD box protein Dhhlp (1S2M): Saccharomyces cerevisiae, 2.10A



ATP hydrolysis by DExD/H-box helicases
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., I
o
: y ¥

D554 — 3’-OH .
L P

Prp28_HUMAN

Vasa_DROSO
DHH1_SCERE

Structure of DEAD-box protein Drosophila Vasa (2DB3): Drosophila melanogaster, 2.20A



ATP hydrolysis by DExD/H-box helicases
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Structure of DEAD-box protein Drosophila Vasa (2DB3): Drosophila melanogaster, 2.20A



ATP hydrolysis by DExD/H-box helicases
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Structure of DEAD-box protein Drosophila Vasa (2DB3): Drosophila melanogaster, 2.20A



Helicase core conformation
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Structure of DEAD-box protein Drosophila )Iasa Crystal structure of RNA splicing effector Prp5o Crystal structure of the N-terminal domain gf
(2DB3): Drosophila melanogaster, 2.20A (4LK2): Saccharomyces cerevisiae S288C, 2.12A human UAP56 (1T6N): Homo sapiens, 1.94A

Crystal structure of the DEAD box protein D!\hlp Crystal structure of BLF1 in complex with° human Crystal structure of eIF4AIII-CWC22°complex
(1S2M): Saccharomyces cerevisiae, 2.10A elF4A (7PPZ): Homo sapiens, 2.52A (4C9B): Homo sapiens, 2.00A



States




Linker

Y628 — S631
E637 — S631

Structure of the spliccosomal DEAD-box i
protein Prp28 (4NHO): Homo sapiens, 2.00A



RecA-1 and RecA-2 union
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Structure of the spliceosomal DEAD-box .
protein Prp28 (4NHO): Homo sapiens, 2.00A

Salt bridge



Prp28 inactive conformation
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Structure of the spliccosomal DEAD-box .
protein Prp28 (4NHO): Homo sapiens, 2.00A



Prp28 active conformation

S439 — P* K441 — T437
G440 — PP E550 — T437

Structure of the splicecosomal DEAD-box grotein Prp28
(4NHO): Homo sapiens, 2.00A

Structure of DEAD-box protein Drosophila Yasa (2DB3):
Drosophila melanogaster, 2.20A



Prp28 active conformation

Structure of the spliccosomal DEAD-box protein Prp28 (4NHO): Homo sapiens, 2.00A


https://docs.google.com/file/d/1DD4Axjy31EOyADcQzmZYMAkqGeZUyqTq/preview

Structural superimposition (P-loop)

No. Domainl Domain2 Sc RMS
; # 4nho.pdb (437 to 441)
Pa}r 1 4nho 2gxu 3.92 1.32 # 2gxu.pdb (47 to 51) T437 — K441
Pair 2 4nho 1lqde 3.79 1.43 # 1qde.pdb (67 to 71)
Pair 3 2gxu 1qde 7.71 1.16 T437 — E550
RMSD table

HHEHBEHER

Structure of the DEAD-box protein Prp28 (4NHO): Homo sapiens, 2.00A 3
HERA N-terminal domain in complex (2GXU): Thermus thermophilus, 1.67A = N = e e e e e e e e e e e e e = === - - -
Structure of the ATPase elF4a (1QDE): Saccharomyces cerevisiae, 2.00A # mean global backbone RMSD : .22 +/- 0.08 A (0.13..0.31 A)
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Structure of the spliceosomal DEAD-box protein Prp28 (4NHO): Homo sapiens, 2.00A



Buried surfaces
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Structure of the splicecosomal DEAD-box protein Prp28 (4NHO): Homo sapiens, 2.00A



Ramachandran plots

PROCHECK PROCHECK

Ramachandran Plot Ramachandran Plot

Prp28_human Vasa_Droso
| | == 7

I
|
s =

Lot .’_,_I_ LAI ]J ]

1354},

~1

ASP 239 (C) ’—‘ —
"

L T a

g | R, o, [ R

§ool— |- T ] e

2 N )| z | —
454 —

90+ _'_,—‘ — —
135" = '_I | ‘ -t | 135 = '_I | l | i |
|
|
4s

b |

p| & b I l PI ~b
. - . T R,
480 135 =90 45 90 135 1% 2180 -135 90  -45 4590 135 180
Phi (degrees) Phi (degrees)
Plot statistics Plot statistics
Residues in most favoured regions [A,B,L] 355 92.9% Residues in most favoured regions [AB.L] 340 92.1%
Residues in additional allowed regions [a,b,l,p] 27 7.1% Residues in additional allowed regions [a.b,1p] 28 7.6%
Residues in generously allowed regions [~a,~b,~1,~p] 0 0.0% Residues in generously allowed regions [~a~b.~1,~p] 1 0.3%
Residues in disallowed regions 0 0.0% Residues in disallowed regions ] 0.0%

Number of non-glycine and non-proline residues 382 100.0% Number of non-glycine and non-proline residues 369 100.0%



Prpz8 mutations




Prp28 - Likely pathogenic variant

R528H

Missense mutation (C>T)

rs1938420751 (dbSNP)

T =0.000007 (1/140234)

Outside RecA1l region M)

|
Intellectual disability b




Prp28 - Likely pathogenic variant

R528 - Q511
R528 - D531

Polar, positively charged

Guanidine group — High HB formation
L,Easier salt bridge formation

Structure of the spliccosomal DEAD-box Erotein
Prp28 (4NHO): Homo sapiens, 2.00A

Polar, can be positively charged

Imidazole group — Protonation state
depends on local pH value

Shapovalov and Dunbrack (2011), A smoothed backbone-dependent rotamer
library for proteins derived from adaptive kernel density estimates and
regressions structure, 19, 844-858.



Prp28 - Pathogenic variant

1629S

Missense mutation (A>C)

rs1938405472 (dbSNP)

T =1 case

Preceding linker region

Fetal growth restriction | ‘,|,=_




Prp28 - Pathogenic variant

S629 - A435

Link
N

Non-polar, non charged Polar, non charged
Found in the surface

Structural role — Hydrophobic core, stabilizing Higher capability of HB formation

Structure of the spliccosomal DEAD-box Erotein Shapovalov and Dunbrack (2011), A smoothed backbone-dependent rotamer
Prp28 (4NHO): Homo sapiens, 2.00A library for proteins derived from adaptive kernel density estimates and
regressions structure, 19, 844-858.



Prpz8 variants




Remarks

The spliceosome is a large complex consisting of snRNPs, snRNA and over 170 associated proteins
that helps to perform its function.

Splicing is a vital process, so the different subunits are highly conserved across eukaryotic species.

To carry out the splicing process, different remodelings are necessary in the RNA-RNA and
RNA-protein interaction networks.

Prp28 is a DExD/H-box helicase, so it conserves different motifs of this family.

Changes in the conformation of the RecA domains are important for the activation of the helicase

activity of Prp28. Fundamental to these changes is the sequence of the linker that binds them, since it
determines the flexibility of the movement.

Depending on which region is mutated in Prp28, the destabilization of the protein and the energy

peaks will be different. A mutation in the region preceding the linker will be more severe than one in
the outer region of the RecA1l domain.
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Multiple Choice Questions

1. How many subunits does the splicecosome have (considering all the complexes)?

a) 2 subunits
b) 3 subunits
c) 4 subunits
d) 5 subunits
e) It is not known

2. How many transesterification reactions are need it to transform the pre-mRNA into mature mRNA?

a) One reaction

b) Two reactions

c) It depends on the gene

d) None

e) No transesterification reactions are need it, indeed there are two phosphoester transferences

3. Which of the following motifs is name-giving to the family of Prp28 helicases?

a) DExD/H
b) QxxR
c) GG

d) P-loop
e) SAT

4. Which specie/s has a unique P-loop conformation in Prp28 characterized by a 2A separation?

a) Thermus thermophilus

b) Drosophila melanogaster
c) Saccharomyces cerevisiae
d) Homo sapiens

e) All of the above



Multiple Choice Questions

5. From which spliceosome subunit and complex is Prp28 associated with?

a) U4 and complex C

b) U1l and complex A

c) U6 and complex B

d) U5 and pre-complex B

e) U5 and post spliceosomal complex

6. In the inactive Prp28 conformation (closed), P-loop is stabilized by:

a) ADP

b) SO24

C) M92+

d) Ca?*

e) None of the above

7. The P-loop, required for ATP binding is located in:

a) RecA2 domain

b) RS-like domain

c) RecAl domain in the motif |
d) RecAl domain in the motif Il
e) N-terminal extension

8. Which post translational modification is required in RS-like domain in order to bind Prp28 with the U5 subunit?

a) Glycosylation

b) Phosphorylation
c) Acetylation

d) Protonation

e) Solvation



Multiple Choice Questions

9. In which region of Prp28 can occur a likely pathogenic (life-compatible) mutation, creating a positive energy peak?

a) Outer part of the RecAl domain

b) P-loop

c) RNA binding site

d) Linker between RecAl and RecA2 domains
e) RS-like domain

10. Which is the helicase in charge of the cleavage of U1 subunit from the 5’ss?
a) Brr2

b) Prp2

c) Snull4

d) Prp28

e) Prp28 and Prp2



