

BE 2009 12307

Conformational space and molecular dynamics

Explorant l'espai de moviments de la proteïna, i més...

Jordi Villà i Freixa

jordi.villa@upf.edu // cbbl.imim.es Grup de Recerca en Informàtica Biomèdica Universitat Pompeu Fabra Barcelona

Barcelona, April 2010

BE 2009 12307

Outline

Basic back-

Table of contents

Objectives of the section

Survival kit

Thermodynamics essentials

Statistical mechanics essentials

Potential energy surface

Exploring the PES: minimization vs simulation

4

Simulations implementation

Monte Carlo

Molecular dynamics

Creating a real potential energy surface

Exploring the PES

Analysis of the simulations

5

The protein folding problem and why simulations are needed

Energy versus Free energy

A brief on folding mechanisms

6 M

Molecular interactions

Coulomb's law of electrostatic forces

7

Investigating processes: free energy calculations

Docking

Docking vs binding

What do we want to achieve?

BE 2009 12307

Outline

Objectives

Basic background

Simulatio

- ...

Molecular interactions

FΕ

- Use basic classical mechanics as a way to explore protein conformations (dynamics), to start with.
- Be sure we deal with a correct description of the interactions (energetics) (and if we do a good job we will be able to go beyond conformations)

BE 2009 12307

Outline

Objectives

Basic back ground

Simulation

Molecular

FΕ

[Goodsell, 1998]

BE 2009 12307

Outline

Objectives

Basic back-

Simulati

Folding

Molecular

FΕ

[Goodsell, 1998]

The crowded environment complicates folding in vivo

BE 2009 12307

Outline

Objectives

Basic back-

Simulation

Oliffulation

Molecular

interaction

FΕ

BE 2009 12307

Outline

Objectives

Basic back-

Simulation

Ommandion

Molecular

interaction

FΕ

Will we stop in structure?

BE 2009 12307

Outline

Objectives

Basic back

Simulation

Molecular

FΕ

Ras Catalytic Site with GTP

Will we stop in structure?

BE 2009 12307

Outline

Objectives

Basic back

Simulation

Ommandion

Molecular

FΕ

BE 2009 12307

Outline

Objectives

Basic background

Thermodynamics Statistical mechanics

Exploring the PES: minimization vs

Simulation

Folding

olecular

EE

BE 2009 12307

Outline

Objective

Basic background

Thermodynamics Statistical mechanics PES Exploring the

Exploring the PES: minimization

Simulation

Folding

lecular eractions

FΕ

Essentials of thermodynamics

BE 2009 12307

Outline

Objective

Basic background

Thermodynamic Statistical mechanics PES

Exploring the PES: minimization vision simulation

Simulation

Folding

lecular eractions

FΕ

- Essentials of thermodynamics
- Statistical Mechanics principles

BE 2009 12307

Outline

Objective

Basic background

Thermodynamic Statistical mechanics PES

Exploring the PES: minimization v

Simulation

Folding

Molecular

FE.

- Essentials of thermodynamics
- Statistical Mechanics principles
- Potential energy surfaces

BE 2009 12307

Outline

Objective

Basic background

Thermodynamic Statistical mechanics PES

Exploring the PES: minimization vision simulation

Simulation

Folding

lolecular

FE

- Essentials of thermodynamics
- Statistical Mechanics principles
- Potential energy surfaces
- Molecular simulations

Thermodynamics: some definitions

BE 2009 12307

Outilile

Objectiv

ground

Thermodynamics Statistical mechanics

Exploring the PES: minimization v

Simulation

Molocula

interaction

FE

- State variables or state functions: variables that depend only on the state of the system: P, V, T, U... Other variables are dependent of the path followed to obtain them: w
- Mechanical and non mechanical variables: the former are additive, depending on the amount of particles in the system (P, V, U...) and the latter are independent of this value (T).

Path-dependant functions

BE 2009 12307

Outline

Objective

Basic back ground

Thermodynamics

Statistical mechanics

Exploring the PES:

Simulation

Foldina

Molecular

FΕ

Two important path-dependant functions:

work $w = \int_{\text{path}} \mathbf{F} d\mathbf{x}$ or, in terms of the change in volume of a gas expanding against an external pressure: $w = -\int_{V_L}^{V_2} p_{\text{ext}} dV$

heat the heat needed to increase the temperature of N moles of a given substance can be evaluated by: $q_V = \int_{T_1}^{T_2} nC_{V,m} dT$ for a constant volume process and $q_P = \int_{T_1}^{T_2} nC_{P,m} dT$ for constant pressure. C is called the heat capacity.

Thermodynamics laws

BE 2009 12307

Outlin

Objective

Basic background

Thermodynamics

Statistical

PES Exploring the

minimization simulation

Officiation

roluli

Molecular

FΕ

1st law $q+w=\Delta U$, where the internal energy U is a state function. For an ideal gas the internal energy is only dependent on the temperature. At constant pressure, $\Delta H=q_P$

2nd law Defining the entropy of a system as $\Delta S_{\rm sys} = \frac{q_{\rm rev}}{T}$, where $q_{\rm rev}$ is heat given reversivebly (without change in the temperature). All spontaneous (non-reversible) processes imply an increase of the universe entropy:

$$\Delta S_{\text{universe}} = \Delta S_{\text{sys}} + \Delta S_{\text{surround}} > 0$$

3rd law The entropy of all pure substances at 0K is zero.

Obtaining Gibbs free energy expression

BE 2009 12307

It is easy to see how, for a constant pressure chemical reaction:

Outline

Basic back-

ground

Thermodynamics Statistical mechanics PES

Exploring the PES: minimization vision vision vision vision vision.

Simulation

Molecular

FF

$$\Delta S_{\text{universe}} = \Delta S_{\text{sys}} + \Delta S_{\text{surround}} = \Delta S_{\text{sys}} - \frac{\Delta H}{T}$$

which, multiplied by *T* yields the usual expresion for the Gibbs free energy:

$$\Delta G = -T\Delta S_{\text{universe}} = \Delta H - T\Delta S$$

By using normal Gibbs free energies, we can relate thermodynamic quantities to equilibrium properties in a chemical reaction:

$$\Delta G^{\circ} = -RT \ln K^{\circ}$$

So, all this was macroscopic... what about the microscopic view?

BE 2009 12307

Outline

Objective

Basic back-

Thermodynamics

Statistical mechanics

Exploring the PES:

Simulation

Foldin

Molecular

ΕĒ

[Kitchen et al., 2004]

Statistical mechanics is the answer

Phase Space of a dynamical system

BE 2009 12307

Phase space is the space of all possible states:

Outline

Objective

Basic background

Thermodynamics Statistical

mechanics PES

Exploring the PES: minimization v

Simulation

Folding

Molecular

FΕ

For *N* atoms, 6*N* values are required to define its state:

- 3*N* positions: $\mathbf{r}^N = x_1, y_1, z_1, x_2, \dots, z_N$
- 3N momenta: $\mathbf{p}^{N} = m \frac{d\mathbf{r}^{N}}{dt} = p_{1x}, p_{1y}, \dots, p_{Nz}$

Time average

BE 2009 12307

Outlin

Objective

Basic background

Thermodynamic Statistical mechanics

PES Exploring the PES: minimization

Simulation

Folding

Molecular

FΕ

All properties of a macroscopic system depend on the positions and momenta of all N particles that comprise the system. We can define a instantaneous value of a certain observable as $\mathcal{A}(\mathbf{p}^N(t), \mathbf{r}^N(t))$. However, this quantity \mathcal{A} suffers fluctuations.

Time average

BE 2009 12307

Outlin

Objective

Basic background

Thermodynam Statistical mechanics

PES
Exploring the PES:

Simulation

Foldin

Molecular interaction

FΕ

All properties of a macroscopic system depend on the positions and momenta of all N particles that comprise the system. We can define a instantaneous value of a certain observable as $\mathcal{A}(\mathbf{p}^N(t), \mathbf{r}^N(t))$. However, this quantity \mathcal{A} suffers fluctuations. Over time, its average is found doing:

$$\mathcal{A}_{\text{ave}} = \lim_{\tau \to \infty} \frac{1}{\tau} \int_{t-0}^{\tau} \mathcal{A}(\mathbf{p}^{N}(t), \mathbf{r}^{N}(t)) dt$$

Which is directly comparable with the experimentally observable value of A.

Ensemble average

BE 2009 12307

Outline

Objective

Basic background

Statistical mechanics

Exploring the PES:

Simulation

Folding

Molecular interaction

FΕ

Virtually impossible to achieve for the phase space in a macroscopic system.

Instead, by the <u>ergodic hypothesis</u> the *time* average is replaced by an *ensemble* average (or expectation value):

$$<\mathcal{A}>=\int\int d\mathbf{p}^N d\mathbf{r}^N \mathcal{A}(\mathbf{p}^N,\mathbf{r}^N) \underbrace{\rho(\mathbf{p}^N,\mathbf{r}^N)}_{\text{probability density}}$$

Probability density in NVT

BE 2009 12307

Outline

Objectives

Basic back ground

Thermodynam Statistical

mechanics

Exploring the PES:

minimization simulation

Simulation

Molocu

FΕ

Under conditions of constant N, V, and T, $\rho(\mathbf{p}^N, \mathbf{r}^N)$ takes the form of the Boltzmann distribution:

$$\rho(\mathbf{p}^N, \mathbf{r}^N) = \frac{\exp(-E(\mathbf{p}^N, \mathbf{r}^N)/k_BT)}{Q}$$

So, finally we reach the key value: E.

Q is the partition function, E is the energy, $k_{\rm B}$ is the Boltzmann constant and T is the temperature. In the case of an NVT system of N identical particles, the classical partition function is:

$$Q_{NVT} = \frac{1}{N!} \frac{1}{h^{3N}} \int \int d\mathbf{p}^N d\mathbf{r}^N \exp \left[-\frac{H(\mathbf{p}^N, \mathbf{r}^N)}{k_B T} \right]$$

with
$$H(\mathbf{p}^N, \mathbf{r}^N) = K(\mathbf{p}^N) + V(\mathbf{r}^N)$$

How can we use Q?

BE 2009 12307

Outline

Objective

Basic back-

Thermodynam Statistical

Statistical mechanics

Exploring the PES:

Simulatio

Folding

Molecular nteractions

FΕ

From the partition function we can evaluate several thermodynamic quantities. Among them, some mechanical properties (*U*) and other non-mechanical properties (like the Helmholtz free energy, *A*):

$$U = \frac{k_{\rm B}T^2}{Q} \frac{\partial Q}{\partial T}$$

$$A = -k_{\rm B}T \ln Q$$

Potential energy surface

BE 2009 12307

Outline

Objective

Basic back ground

Thermodynamics Statistical mechanics

PES

Exploring the PES: minimization vs

Simulation

Folding

Molecular

FF

Potential energy surface

BE 2009 12307

Outline

Objectives

Basic back-

Thermodynamics Statistical mechanics

PES

Exploring the PES: minimization v

Simulation

Folding

Molecular

EE

Potential energy surface

BE 2009 12307

Outline

Objective

Basic background

Thermodynam Statistical mechanics

PES

Exploring the PES: minimization v

Simulation

Folding

Molecular

CC.

[Levitt, 2001]

On functions and derivatives

BE 2009 12307

Outline

Objective

Basic back-

Thermodynamics Statistical mechanics

PES

Exploring the PES: minimization v

Simulatio

Foldin

Molecular interaction

FΕ

$$f(x) = 3x^2 - 10x^2 - 56x + 5$$

$$f'(x) = 9x^2 - 20x - 56$$

$$f''(x) = 18x - 20$$

BE 2009 12307

 $\sum \mathbf{F} = m\mathbf{a}$

Outline

_

Basic background

Thermodynamics Statistical mechanics

Exploring the PES: minimization vs simulation

PES

Simulation

Folding

Molecular

FΕ

 $\sum \mathbf{F} = m\mathbf{a}$

Statistical mechanics

PES

Exploring the PES: simulation

$$\sum \mathbf{F} = m\mathbf{a}$$

$$\begin{cases} mg \sin \alpha - \mu N = ma \\ -mg \cos \alpha + N = 0 \end{cases}$$

Thermodynamics

Statistical mechanics

PES

Exploring the PES: minimization visimulation

Simulatio

Folding

interaction

FE

$$\sum \mathbf{F} = m\mathbf{a}$$

b

/ α

$$\begin{cases} mg \sin \alpha - \mu N = ma \\ -mg \cos \alpha + N = 0 \end{cases}$$

$$a = g(\sin \alpha - \mu \cos \alpha)$$

$$a = \frac{dv}{dt} = \frac{d^2x}{dt^2}$$

Thermodynamics mechanics

PES

Exploring the

BE 2009 12307

Outline

Objective

Basic bac ground

Statistical mechanics

PES Exploring the

PES: minimization simulation

Simulation

Folding

interactions

 $f=\mu N$ ma b W=mg

$$\sum \mathbf{F} = m\mathbf{a}$$

$$\begin{cases} mg \sin \alpha - \mu N = ma \\ -mg \cos \alpha + N = 0 \end{cases}$$

$$a = g(\sin \alpha - \mu \cos \alpha)$$

$$a = \frac{dv}{dt} = \frac{d^2x}{dt^2}$$

$$\begin{cases} v - v_0 = \int_0^t a dt = at \\ x - x_0 = \int_0^t v dt = \int_0^t (v_0 + at) dt = v_0 t + \frac{1}{2} a t^2 \end{cases}$$

BE 2009 12307

Outline

Objective

Basic bac ground

Statistical

PES Exploring the

PES: minimization simulation

Simulation

Foldin

Molecular nteraction

ΗE

 $\mathbf{f} = \mu \mathbf{N}$ \mathbf{N} $\mathbf{M} = \mathbf{M}$ $\mathbf{M} = \mathbf{M}$

$$\sum \mathbf{F} = m\mathbf{a}$$

$$\begin{cases} mg \sin \alpha - \mu N = ma \\ -mg \cos \alpha + N = 0 \end{cases}$$

$$a = g(\sin \alpha - \mu \cos \alpha)$$

$$a = \frac{dv}{dt} = \frac{d^2x}{dt^2}$$

$$\begin{cases} v - v_0 = \int_0^t a dt = at \\ x - x_0 = \int_0^t v dt = \int_0^t (v_0 + at) dt = v_0 t + \frac{1}{2} a t^2 \end{cases}$$

$$dW = \mathbf{F} \cdot \mathbf{dx}$$

$$W_{a o b} = \int_a^b \mathbf{F} \cdot \mathbf{dx}$$

$$W_{a\to b} = \int_a^b mg(\sin\alpha - \mu\cos\alpha) dx = mg(\sin\alpha - \mu\cos\alpha)\Delta x$$

Hooke's law

BE 2009 12307

Outline

Objectives

Basic background

Thermodynamics Statistical mechanics

PES

Exploring the PES: minimization vs

Simulation

Folding

Molecular interactions

FF

Hooke's law

BE 2009 12307

In one dimension:

 $m\frac{d^2x}{dt^2} = -kx$

Outline

Basic back

Basic back ground

Thermodynamics Statistical mechanics

PES Exploring the PES:

Cimulation

Folding

Molecular interactions

Hooke's law

BE 2009 12307 In one dimension:

$$m\frac{d^2x}{dt^2} = -kx$$

If we define $\omega^2 = k/m$ we reduce the problem to:

$$\frac{d^2x}{dt^2} + \omega^2 x = 0$$

Outline

Objective

Basic background

Thermodynamics Statistical mechanics

PES

Exploring the PES: minimization visits and a simulation.

Simulation

Folding

Molecular interactions

Hooke's law

BE 2009 12307 In one dimension:

$$m\frac{d^2x}{dt^2} = -kx$$

Objective

Basic background

Thermodynamic Statistical mechanics

mechanics PES

Exploring th PES: minimization

Simulation

Folding

Molecular

FΕ

If we define $\omega^2 = k/m$ we reduce the problem to:

$$\frac{d^2x}{dt^2} + \omega^2 x = 0$$

Which has the following solution:

$$x = A \sin(\omega t + \phi)$$

$$V = A\omega \cos(\omega t + \phi)$$

$$a = -A\omega^2 \sin(\omega t + \phi) = -\omega^2 x$$

$$k = m\omega^2$$

And it is easy to see that the period can be evaluated as:

$$\tau = 2\pi \sqrt{m/k}$$

Hooke's law and harmonic potential

BE 2009 12307

Outline

Objective

Basic background

Thermodynamic Statistical mechanics

PES

Exploring the PES: minimization vs

Simulation

Folding

Molecular

FF

$$\vec{F} = -k\vec{x} = m\vec{a} = m\frac{d^2\vec{x}}{dt^2}$$

$$dW = \vec{F} \cdot d\vec{x}$$

$$W_{0 \to x} = \int_0^x \vec{F} \cdot d\vec{x}$$

$$W_{0 \to x} = \int_0^x (-kx)dx = -\frac{1}{2}kx^2 = -\Delta U_{0 \to x}$$

$$F = -\frac{dU}{dx}$$

Hooke's law and harmonic potential

BE 2009 12307

Outline

Objective

Basic background

Thermodynan Statistical mechanics

PES

Exploring the PES: minimization vs

Simulation

Folding

Molecular

FΕ

$$\vec{F} = -k\vec{x} = m\vec{a} = m\frac{d^2\vec{x}}{dt^2}$$

$$dW = \vec{F} \cdot d\vec{x}$$

$$W_{0 \to x} = \int_0^x \vec{F} \cdot d\vec{x}$$

$$W_{0 \to x} = \int_0^x (-kx)dx = -\frac{1}{2}kx^2 = -\Delta U_{0 \to x}$$

$$F = -\frac{dU}{dx}$$

In general, for a system with N coordinates:

$$\vec{F} = -\vec{\nabla} U = -\left(\frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}, \cdots, \frac{\partial}{\partial x_N}\right) U$$

Force and potential

BE 2009 12307

Outline

Objective

Basic background

Thermodynam Statistical mechanics

PES

Exploring the PES: minimization v

Simulation

Foldin

Molecular interactions

- The work done corresponds to the area delimited in the F = f(x) plot
- The force is the opposite of the derivative of the potential energy with respect to the displacement at each point of the W = f(x) plot

Exploring PES

BE 2009 12307

Outlin

Objectives

Basic background

Thermodynami Statistical mechanics

Exploring the PES: minimization vs simulation

Simulation

Foldin

Molecular nteraction

FΕ

Molecular dynamics or Monte Carlo simulations can be used to generate an ensemble of systems, characterized by their energy. The canonical (*NVT*) ensemble partition function form can be evaluated from such simulation by:

$$Q = \sum_{i} \exp(-\varepsilon_{i}/k_{\rm B}T)$$

internal energy
$$U = k_{\rm B} T^2 \left(\frac{\partial \ln Q}{\partial T} \right)_V$$
 enthalpy $H = k_{\rm B} T^2 \left(\frac{\partial \ln Q}{\partial T} \right)_V + k_{\rm B} T V \left(\frac{\partial \ln Q}{\partial V} \right)_T$ Helmholtz free energy $A = -k_{\rm B} T \ln Q$ Gibbs free energy $G = -k_{\rm B} T \ln Q + k_{\rm B} T V \left(\frac{\partial \ln Q}{\partial V} \right)_T$

But, before, let us find minima on the PES

BE 2009 12307

Outline

Objectives

Basic back

Thermodynamics Statistical mechanics

PES
Exploring the
PES:
minimization vs

simulation

Folding

Molecular

FF.

Minimization methods: Gradient search

BE 2009 12307

Outline

Objective

Basic background

Thermodynami Statistical mechanics PES

Exploring the PES: minimization vs simulation

Simulation

Folding

Molecular

FF

Starting at point \mathbf{x}_0 . As many times as needed, move from point \mathbf{x}_i to \mathbf{x}_{i+1} by minimizing along the line from \mathbf{x}_i in the direction of the local downhill gradient $-\nabla f(\mathbf{x}_i)$.

Minimization methods: Newton-Raphson

BE 2009 12307

Objective

Basic background

Thermodynam Statistical mechanics

Exploring the PES: minimization v

Simulation

Foldin

Molecular nteractior

FΕ

From the Taylor expansion of the function:

$$f(\mathbf{x}) \approx f(\mathbf{x}_k) + \underbrace{(\mathbf{x} - \mathbf{x}_k)^T \cdot \mathbf{g}_k}_{\text{linear term}} + \underbrace{\frac{1}{2} (\mathbf{x} - \mathbf{x}_k)^T \cdot \mathbf{H}_k \cdot (\mathbf{x} - \mathbf{x}_k)}_{\text{quadratic term}}$$

we can take derivatives

$$\nabla f(\mathbf{x}) = \mathbf{g}_k + \mathbf{H}_k \cdot (\mathbf{x} - \mathbf{x}_k)$$

If we assume that $f(\mathbf{x})$ takes its minimum at $\mathbf{x} = \mathbf{x}^*$, the gradient is zero:

$$\mathbf{H}_k \cdot (\mathbf{x}^* - \mathbf{x}_k) + \mathbf{g}_k = 0$$

which is a simple linear system. The Newton-Raphson considers \mathbf{x}^* to be the next point in the iterative formula:

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \mathbf{H}_k^{-1} \cdot \mathbf{g}_k$$

Minimization methods: Conjugated gradients I

BE 2009 12307

Outline

Objective

Basic background

Thermodynamic Statistical mechanics

Exploring the PES: minimization visimulation

Simulation

Folding

Molecular

FΕ

- Let's come back to the gradient search
- Let's minimize $f(\mathbf{x})$ over the hyperplane that contains all previous search directions.

$$\mathbf{x}_0+<\mathbf{p}_0,\mathbf{p}_1,\mathbf{p}_2,\ldots,\mathbf{p}_i>$$

• If the vectors \mathbf{p}_i are chosen to be L.I. we should ideally perform only N searches.

$$f(\mathbf{x}) \approx c - \mathbf{g} \cdot \mathbf{x} + \frac{1}{2} \mathbf{x} \cdot \mathbf{H} \cdot \mathbf{x}$$

- initial gradient \mathbf{g}_0 and an initial $\mathbf{h}_0 = \mathbf{g}_0$
- the CG method will construct $\mathbf{g}_{i+1} = \mathbf{g}_i \lambda \mathbf{H} \cdot \mathbf{h}_i$ and $\mathbf{h}_{i+1} = \mathbf{g}_{i+1} + \gamma \mathbf{h}_i$

Minimization methods: Conjugated gradients II

BE 2009 12307

Outline

Objectives

Basic background

Thermodynamic Statistical mechanics

Exploring the PES: minimization visionulation

Simulation

Folding

Molecular

FΕ

 these vectors satisfy the orthogonality and conjugacy conditions:

$$\mathbf{g}_i \cdot \mathbf{g}_j = 0$$
 $\mathbf{h}_i \cdot \mathbf{H} \cdot \mathbf{h}_j = 0$
 $\mathbf{g}_i \cdot \mathbf{h}_i = 0$

and the scalars are given by:

$$\lambda_i = \frac{\mathbf{g}_i \cdot \mathbf{g}_i}{\mathbf{h}_i \cdot \mathbf{H} \cdot \mathbf{h}_i}$$

$$\gamma_i = \frac{\mathbf{g}_{i+1} \cdot \mathbf{g}_{i+1}}{\mathbf{q}_i \cdot \mathbf{q}_i}$$

Simulated annealing (I)

BE 2009 12307

Outline

Objective

Basic background

Thermodynamic Statistical mechanics

Exploring the PES: minimization vs simulation

Simulation

.

Molecular Interaction

- SA simulates the finite T dynamics of the system
- Starting from r with energy E(r) one generates a new r' with energy E(r') which replaces the original configuration with some probability function, e.g.:

$$P = \begin{cases} \exp(-\beta [E(\mathbf{r}') - E(\mathbf{r})]) & \text{if } E(\mathbf{r}') > E(\mathbf{r}) \\ 1 & \text{otherwise} \end{cases}$$

- At a given β SA samples the configurations r of the PES according to their thermodynamic probability.
- basic hopping technique, analogous to Monte Carlo/Metropolis algorithm when a Boltzmann distribution is used to decide the probability.

Simulated annealing (II)

BE 2009 12307

Outline

Objective

Basic background

Thermodynamic Statistical mechanics

Exploring the PES: minimization visimulation

Simulation

Folding

Molecular

FΕ

(a) $f(x) = Ax^2 + cos(x/n)$ with different ruggedness (b) Distribution of 10000 SA processes started at random initial positions for the PES with A=1 (left) and A=0.1(right) at the given T

Monte Carlo/Metropolis algorithm

BE 2009 12307

Outline

Objective

Basic background

Simulation

MC

PES

Exploring t PES

Analysis

i oluli

Molecular interaction

ГЕ

Each iteration is generated by randomly moving one atom or molecule. The energy of the new configuration is evaluated:

- if $V_i \leqslant V_{i-1}$ the new configuration is accepted
- if $V_i > V_{i-1}$ the new configuration is accepted with a probability evaluated from the Boltzmann factor of the differences in energy (when comparing with a random number in the interval [0, 1]

then:

$$\langle A \rangle = \frac{1}{M} \sum_{i=1}^{M} A(\mathbf{r}^N)$$

It uses only the potential energy function $(H(\mathbf{r}^N) = V(\mathbf{r}^N))$ Specially fitted for the canonical (NVT) ensemble; its equilibrium state is characterized by the minimum Helmholt free energy (A).

BE 2009 12307

Outline

Objective

Basic background

Simulatio

...

MD

Exploring the

PES Analysis

I Oldini

Molecular interaction

FΕ

MC the probability function is Boltzmann distribution. The final distribution resembles the thermodynamic equilibrium distribution over physical states.

SA Any function that is useful to reach a minimum is ok. We just look for a minima, and no equilibrium distribution is sought!

Other ensembles

BE 2009 12307

Outline

Objective

Basic background

Simulation

MD PES Exploring th

PES Analysis

Folding

Molecular interaction

- canonical: NVT: equilibrium state characterized by minimal A (Helmholtz free energy)
- microcanonical: NVE: equilibrium state characterized by maximum S
- isothermal-isobaric: fixed N, T and P; its equilibrium state is the minimum Gibbs function (G)
- grand canonical: fixed μ (chemical potential), V and T; its equilibrium state is characterized by the maximum value of PV.

NVE vs NVT

BE 2009 12307

Outline

Objective

Basic back around

Simulation

MC

MD

PES

Exploring the PES Analysis

Foldin

Molecular interaction

Molecular dynamics

BE 2009 12307

Outlin

Objective

Basic background

Simulation

MC

MD

Exploring t PES Analysis

Foldir

Molecular interaction

FE

Thermodynamic averages are obtained from molecular dynamics as time averages using numerical integration of a given property A:

$$\langle A \rangle = \frac{1}{M} \sum_{i=1}^{M} A(\mathbf{p}^N, \mathbf{r}^N)$$

MD provides kinetic energy contribution $(H(\mathbf{p}^N, \mathbf{r}^N) = K(\mathbf{p}^N) + V(\mathbf{r}^N))$ to the total energy. Specially fitted for the microcanonical (NVE) ensemble; its equlibrium state is characterized by the maximum entropy (S).

Molecular dynamics

BE 2009 12307

We need to integrate the following equation

 $\mathbf{F} = -\nabla U = m \frac{d^2 \mathbf{x}}{dt^2}$

All algorithms for integration assume that the positions and dynamical properties (velocities, accelerations, etc.) can be approximated as Taylor series expansions. In the case of the Verlet algorithm:

$$\mathbf{x}(t+\delta t) = \mathbf{x}(t) + \delta t \mathbf{v}(t) + \frac{1}{2} \delta t^2 \mathbf{a}(t)$$

$$\mathbf{v}(t+\delta t) = \mathbf{v}(t) + \frac{1}{2} \delta t [\mathbf{a}(t) + \mathbf{a}(t+\delta t)]$$

Objective

Basic background

Simulation

MC

PES

PES Analysis

Folding

interaction

ΗE

A "real" system

BE 2009 12307

Outline

Objectives

Basic background

Cimulation

Ollifialia

MC MD

PES

Exploring the PES

Analysis

Folding

Molecular

--

A "real" system

BE 2009 12307

Outline

Objective

Basic back around

Simulation

MC

MC

MD PES

Exploring the

PES Analysis

Foldini

Molecular interaction

Bond interactions

BE 2009 12307

Outilile

Objectives

Basic background

Simulation

Ommanation

MC

PES

Exploring

Analysis

Molecula

interaction

FΕ

$$U_b = \sum_{i}^{N_b} k_b^i (r_i - r_0^i)^2$$
$$\mathbf{F} = -\nabla U$$

Bond force:

$$\mathbf{F}_b = -\left(\frac{\partial U_b}{\partial x_1}, \frac{\partial U_b}{\partial x_2}, \cdots, \frac{\partial U_b}{\partial x_{3N}}\right)$$

Let's consider one single bond:

$$\left\{ \begin{array}{ll} \frac{\partial U_b^{ab}}{\partial x_a} &= \frac{\partial U_b^{ab}}{\partial r_{ab}} \frac{\partial r_{ab}}{\partial x_a} \\ \frac{\partial U_b^{ab}}{\partial y_a} &= \frac{\partial U_b^{ab}}{\partial r_{ab}} \frac{\partial r_{ab}}{\partial y_a} \end{array} \right.$$

Non-bonded interactions

BE 2009 12307

vanderWaals Basic back-

$$U_{nb} = \underbrace{\sum_{i}^{N_{nb}} 4\epsilon \left[\left(\frac{\sigma}{r} \right)^{12} \right) - \left(\frac{\sigma}{r} \right)^{6} \right]}_{\text{vanderWaals}} + \underbrace{\sum_{i}^{N_{nb}} \frac{1}{4\pi\epsilon_{0}\epsilon_{r}} \frac{q_{a}q_{b}}{r}}_{\text{electrostatics}}$$

 $\mathbf{F} = -\nabla U$

Non bonded force:

$$\mathbf{F}_{nb} = -\left(\frac{\partial U_b}{\partial x_1}, \frac{\partial U_b}{\partial x_2}, \cdots, \frac{\partial U_b}{\partial x_{3N}}\right)$$

Let's consider a single interaction:

$$\begin{cases} \frac{\partial U_{nb}^{ab}}{\partial x_a} = \frac{\partial U_{nb}^{ab}}{\partial r_{ab}} \frac{\partial r_{ab}}{\partial x_a} \\ \frac{\partial U_{nb}^{ab}}{\partial y_a} = \frac{\partial U_{nb}^{ab}}{\partial r_{ab}} \frac{\partial r_{ab}}{\partial y_a} \end{cases}$$

Constant T and/or P

BE 2009 12307

Outillio

- -,---

Basic background

Simulatio

MC

PES

Exploring the PES Analysis

Foldin

Molecular

FΕ

Although mathematically more convenient, running MD on the NVE ensemble (where naturally the entropy S is obtained directly from the corresponding partition function) is less desirable than running in the NVT (to obtain the Helmholtz free energy, A) or even better in the NPT (to obtain the Gibbs free energy G).

Measuring the temperature

BE 2009 12307

Outline

Objective:

Basic background

Simulation

140

MC

PES

Exploring the PES

Analysis

Molecular interaction

FΕ

In a canonical ensemble (NVT) the temperature is constant. In the microcanonical (NVE) it fluctuates.

T is directly linked to the kinetic energy:

$$K = \sum_{1=1}^{N} \frac{|\mathbf{p}|^2}{2m_i} = \frac{k_{\rm B}T}{2}(3N - N_c)$$

As due to the *theorem of the equipartition of energy* each degree of freedom contributes to K by $k_{\rm B}T/2$. N_c is the number of constraints in the system.

Constant T

BE 2009 12307

Thus, in an unconstrained system:

increased by a factor λ like:

$$K=\frac{3}{2}Nk_{\rm B}T$$

let's assume that between two different times the velocity has

 $\Delta T = \frac{1}{2} \sum_{i=1}^{N} \frac{2}{3} \frac{m_i (\lambda v_i)^2}{N k_{\rm B}} - \frac{1}{2} \sum_{i=1}^{N} \frac{2}{3} \frac{m_i v_i^2}{N k_{\rm B}}$

Basic back-

Exploring the

or

$$\Delta T = (\lambda^2 - 1) T(t)$$

which yields $\lambda = \sqrt{T_{\text{new}}/T(t)}$. This involves that multiplying the velocities at each time step by the factor $\lambda = \sqrt{T_{\text{target}}/T_{\text{current}}}$ we ensure the velocities to remain constant through the simulation. 4日 → 4周 → 4 目 → 4 目 → 9 Q P

Constant T: Berendsen

BE 2009 12307

Outline

Objective

Basic background

Simulation

MC

PES Exploring the

PES Analysis

Folding

Molecular interaction

FE

Alternatively, the Berendsen thermostat couples the simulation to an external bath. In this case we scale the velocities in such a way that the rate of change of the temperature is proportional to the difference between the bath and the system:

$$\frac{dT(t)}{dt} = \frac{1}{\tau} (T_{\text{bath}} - T(t))$$

and it yields the scaling factor for the velocities as

$$\lambda^2 = 1 + \frac{\delta t}{\tau} \left(\frac{T_{\text{bath}}}{T(t)} - 1 \right)$$

Constant P

BE 2009 12307

Outline

Objectives

Basic background

Simulation

MC

MD

Exploring

Analysis

Foldin

Molecular

FE

In this case we will want to control the volume of the system. In a way analogous to the control of the temperature, Berendsen proposed a "pressure bath", yielding a rate of change of the pressure by:

$$\frac{dP(t)}{dt} = \frac{1}{\tau_P}(P_{\text{bath}} - P(t))$$

This yields a scaling factor for the volume:

$$\lambda = 1 - \kappa \frac{\delta t}{\tau_P} (P(t) - P_{bath})$$

which is equivalent to scaling all atomic coordinates by $\lambda^{1/3}$:

$$\mathbf{r}_i' = \lambda^{1/3} \mathbf{r}_i$$

Microscopic simulations: additional considerations

BE 2009 12307

Outline

Obiecti

Basic background

Simulation

PES Exploring the

PES Analysis

Folding

Molecular interaction

- Need to describe a water potential: TIP3P, SPC...
- Do we include polarization?
- Convergence problems
- Boundary conditions
- Need to introduce cutoffs

We will need to restrict to a certain region

BE 2009 12307

Outline

Objectives

Basic back

Simulation

110

MC

MD PES Exploring the

PES Analysis

Foldin

Molecular

FE

Boundary conditions

BE 2009 12307

Outilile

Objective

Basic background

Simulatio

MC MD

PES Exploring the

PES Analysis

Foldin

Molecular interaction

FΕ

Why are they necessary?

- in 1 liter of water, we have around 3.3×10^{25} water molecules. Interactions with the walls can extend up to 10 molecules inside the fluid. If the diameter of the water molecule is approximately 2.8, the number of water molecules close to the boundary is about 2×10^{19} . One in 1.5 milion water molecules is close to the wall!!!
- in a typical simulation we have the order of 10³-10⁴ molecules: most (if not all) will be close to the wall

Bulk properties need to be considered properly.

Periodic boundary conditions

BE 2009 12307

Outline

Objective

Basic back-

Simulation

MC

PES Exploring the

Analysis

Folding

Molecular

FΕ

We may simply repeat the same cell unit adjacent to the previous one. In two dimensions a central box would be surrounded by 8 identical cells and in three dimensions this number would increase up to 26.

The coordinates of the particles in the image boxes can be computed simply by adding or substracting integral multiples of the box sides. If the replicated volume is a cube:

$$x_{\text{right}} = x_{\text{central}} + 2a$$

$$y_{\text{right}} = y_{\text{central}} + 2a$$

$$z_{\text{right}} = z_{\text{central}} + 2a$$

Periodic boundary conditions

BE 2009 12307

Outline

Objectives

Basic background

Simulation

MC

MD

Exploring the

PES

Analysis

i oldiii

interaction

Periodic boundary conditions

BE 2009 12307

Outline

Objective

Basic background

Simulation

MC

PES

Exploring the

Analysis

Molecular

FΕ

Possible geometries (see http://mathworld.wolfram.com/Space-FillingPolyhedron.html):

cube or general parallelepiped useful for its simplicity of implementation

hexagonal prism useful for DNA or elongated molecules simulations

truncated octahedron its spherical shape resembles well a water droplet

rhombic dodecahedron also spherical elongated dodecahedron

In some cases it is preferable to use non-standard periodic boundary conditions. For example, when simulating absorption on a solid surface, or when simulating an ion channel within a membrane, it is much more appropriate to use PBC in two dimensions.

Non-periodic boundary conditions

BE 2009 12307

Outilile

Objective.

Basic background

Simulation

110

MD

Exploring the

PES

Analys

i Oldini

Molecular interaction

FΕ

In some cases the system is better approximated by a spherical simulation. In addition the methods for PBC can introduce artifacts for long range electrostatic interactions. In this cases, Non-PBC or *stochastic boundary conditions* are needed (SCAAS).

Non-periodic boundary conditions

BE 2009 12307

Outline

Objective

Basic background

Simulation

140

MD

Exploring the

PES Analysis

Foldin

Molecular

FΕ

In some cases the system is better approximated by a spherical simulation. In addition the methods for PBC can introduce artifacts for long range electrostatic interactions. In this cases, Non-PBC or *stochastic boundary conditions* are needed (SCAAS).

Cutoffs and minimum image convention

BE 2009 12307 Is it needed to include infinite number of interactions in the model? Would it be appropriate?

Outline

Obiostico

Basic background

Simulation

140

MD

PES

Exploring the PES

Analysis

l Oldill

Molecular interaction

Basic background

Simulation

Ommandio.

MD

PES

Exploring

Analysis

Foluli

Molecula

FΕ

Let us consider a spherical shell of thickness δr at a distance r from a chosen atom. The volume of such shell is

$$V = \frac{4}{3}\pi(r+\delta r)^3 - \frac{4}{3}\pi r^3$$
$$= 4\pi r^2 \delta r + 4\pi r \delta r^2 + \frac{4}{3}\pi \delta r^3 \approx 4\pi r^2 \delta r$$

Let us imagine that we are considering a perfect fluid with uncorrelated particles. If the number of particles per unit volume is ρ , then the total number in the shell is $4\pi\rho r^2\delta r$ and so the number of atoms in the volume varies as r^2 . The pair distribution function, g(r), gives the probability of finding an atom (or molecule) at distance R from another atom (or molecule) compared to the ideal gas distribution.

BE 2009 12307

Outline

Objective

Basic back-

Simulation

Officiation

MC

MD PES

Exploring

PES Analysis

Foldir

Molecular

Figure 5. Radial distribution function (rdf) $g_{\text{Glu}-X}(r)$ between the carboxylate carbon of the Glu side chains and X, where X = O (water oxygen), Na^+ , or K^+ , plotted for no salt (c=0) and NaCl and KCl at concentrations of $c \simeq 3-4$ M. Note that $g_{\text{Glu}-O}(r)$ at c=0 (black line) and $g_{\text{Glu}-K}^+(r)$ (green line) are nearly indistinguishable. (inset) rdf $g_{\text{Lys}-X}(r)$ between the nitrogen of the Lys side chain and X, where X=O (water oxygen), F^- , Cl^- , or l^- .

Mean squared displacement

BE 2009 12307

Outline

Objectives

Basic background

Simulation

MC

MD

PES

Exploring 1

Analysis

Foldii

Molecula interactio

FE

The *mean squared displacement* provides a means to stablish how the simulation is evolving:

$$\Delta r^2(t) = \frac{1}{N} \sum_{i=1}^{N} [\mathbf{r}_i(t) - \mathbf{r}_i(0)]^2$$

For a fluid without structure, the RMSD (square root of the MSD) increases with time. For a solid lattice the RMSD fluctuates close to zero with time. In this sense the g(r) function can perform better to check if the structure of a fluid is statistically conserved.

Lucky you!

BE 2009 12307

Outline

Objective

Basic background

Simulation

Ommanation

MC MD

PES

Exploring the

Analysis

Foldin

Molecular interaction

FF

What have we learnt and what is next?

BE 2009 12307

Outline

Objective

Basic back ground

Simulation MC

PES Exploring the PES

Analysis

Molecular

Molecular interaction

- Simulations are used to sample the configuration space.
- Statistical mechanics takes profit of this sampling to generate partition functions, leading to free energy values.
- How do we include the effects of the environment?
- How do we study differences in free energy? (processes!)
- What if we break bonds?

BE 2009 12307

12307

01.1

Objective

Basic background

Simulation

Folding E vs dG Mechanism

Molecular

FΕ

Levinthal's paradox

Folding

BE 2009 12307

Outline

Objectives

Basic background

Simulation

Simulation

Folding E vs dG Mechanism

Molecular

Folding and simple conformational changes

BE 2009 12307

Outline

Objective

Basic back-

Simulation

Folding

E vs dG Mechanism

Molecular

Subtile effects on conformational changes

Outline

Objective

Basic bac

Simulation

Folding

E vs dG Mechanism

Molecular interaction

FE [Guix et al., 2009]

Subtile effects on conformational changes

BE 2009 12307

Outline

Objective

Basic back

Simulation

Simulation

Folding E vs dG Mechanism

Molecular

Subtile effects on conformational changes

BE 2009 12307

Outline

Ohiective

Basic back-

Simulation

Simulation

Folding
E vs dG
Mechanism

Molecular

FΕ

Miscione, Giupponi, Villà-Freixa, unsubmitted

A simple abstract example

BE 2009 12307

Outline

Objectives

Basic back-

Simulation

E vs dG

Mechanism

interaction

A simple abstract example

BE 2009 12307

Outline

Objective

Basic background

Simulation

E vs dG

Mechanism

Molecular interaction

FΕ

SO...

...in what case do we reach the minimum before?

A simple abstract example

BE 2009 12307

Outline

Objective

Basic background

Simulation

E vs dG

Mechanism

Molecular interaction

FΕ

SO...

...in what case do we reach the minimum before?

$$\Delta G = \Delta H - T \Delta S$$

Energy and free energy can yield very different results \rightarrow interpretations

BE 2009 12307

Outline

Objective

Basic back-

Simulation

E vs dG Mechanism

Molecular

Energy and free energy can yield very different results \rightarrow interpretations

BE 2009 12307

Outline

Objective

Basic back-

Simulation

Folding F vs dG

E vs dG Mechanism

Molecular interaction:

FE

Energy and free energy can yield very different results \rightarrow interpretations

BE 2009 12307

Outline

Objective

Basic back-

Cimulation

Simulation

E vs dG Mechanism

Molecular

Different pathways to reach the same native structure

BE 2009 12307

Outline

Ohiective

Basic back

Simulation

Ommandion

E vs dG Mechanism

Molecular

nucleation-condensation vs diffusion-collision

Binding of cetuximab

BE 2009 12307

Outilitie

Objective

Basic back

Simulati

1 Olding

Molecular interactions

FE

[Shoichet, 2007]

BE 2009 12307

Outilitie

Objectives

Basic back ground

Simulation

Folding

Molecular interactions

Coulomb

BE 2009 12307

Outilitie

Objective

Basic back ground

Simulation

Caldina

Molecular interactions

Coulomb

Charge interactions obey Coulomb's law

BE 2009 12307

O dtill lo

Objective

Basic background

Jiiilulalio

Calalina

Molecular interaction:

- Charge interactions obey Coulomb's law
- When more than two charges interact, the energies are sums of Coulombic interactions

BE 2009 12307

. .,...

Basic background

Simulatio

- ...

Molecular interactions Coulomb

ΗE

- Charge interactions obey Coulomb's law
- When more than two charges interact, the energies are sums of Coulombic interactions
- Electric field, Gauss's law and electrostatic potentials allow us to do such calculations

Coulomb's law I

BE 2009 12307

Outline

Objective:

Basic background

Simulation

Foldina

Molecular interaction:

ГЕ

 $U(r) = \frac{1}{4\pi\varepsilon_0\varepsilon_r} \frac{q_1 q_2}{r} \tag{1}$

- Clearly long ranged (r^{-1}) with respect to dispersion forces (r^{-6}) and strong
- Polarizable media (charges redistribute in response to an electric field) shield charges strongly (large ε_r)
- As ε_r depends on temperature, Eq. 1 resembles, actually, a free energy expression.
- Polarizability arises from: permament dipoles, atomic polarizabilities, hydrogen bonds

Coulomb's law II

BE 2009 12307

Outline

Objective

Basic background

Simulation

Molecular interaction

FΕ

• The Bjerrum length I_B describes the charge separation at which the Coulomb energy U(r) equals the thermal energy $RT_{[2]}$ For example, for $q_1 = q_2 = e$:

$$I_B = \frac{1}{4\pi\varepsilon_0\varepsilon_r} \frac{e^2 N}{RT}$$

At vacuum this occurs around 560 (in water this needs to be divided by $\varepsilon_r = 80$). At bigger distances, the interactions are weaker than thermal energy RT, and particles are governed by Brownian motion.

Charges interact weaker in water

BE 2009 12307

Coulomb

Electrostatic force and field

BE 2009 12307

Outilile

Objective

Basic background

Simulation

Molecular interaction

Coulomb

$$\mathbf{F} = -\nabla U = \frac{1}{4\pi\varepsilon_0\varepsilon_r} \frac{q_1q_2}{r^2} \frac{\mathbf{r}}{r}$$

which, for a unit charge, becomes the electrostatic field if dependent on just one particle with charge q:

$$\mathbf{E}(\mathbf{r}) = \frac{\mathbf{F}(\mathbf{r})}{q_{\text{test}}} = \frac{1}{4\pi\varepsilon_0\varepsilon_r} \frac{q}{r^2} \frac{\mathbf{r}}{r}$$

For more complex settings of charges, one may use Gauss' law, which equals the flux of the electrostatic field through any bounding surface to the sum of all charges enclosed:

$$\phi = \int_{\text{surface}} \varepsilon \mathbf{E} \cdot d\mathbf{s} = \frac{1}{\varepsilon_0} \sum_{i=1}^n q_i$$
 (2)

Electrostatic potentials

BE 2009 12307 Electrostatic field describes forces (vectorial). Electrostatic potential describes energies (scalar). We start by:

$$\delta w = -\mathbf{F}d\mathbf{I} = -q\mathbf{E}d\mathbf{I}$$

which allows us to define the work done *against* the field when moving a charge q between two points as:

$$w_{A\to B} = -q \int_A^B \mathbf{E} d\mathbf{I}$$

and the corresponding difference in electrostatic potentials as:

$$\psi_B - \psi_A = \frac{w_{AB}}{q_{\text{test}}} = -\int_A^B \mathbf{E} d\mathbf{I}$$

(equivalent to $\mathbf{E}=-\nabla\psi$). Thus, the electrostatic potential around a point charge, $\psi_{\text{test}}=\frac{q_{\text{fixed}}}{4\pi\varepsilon_0\varepsilon_r r}$, and that produced by a charge density, $\psi_{\text{test}}=\frac{1}{4\pi\varepsilon_0\varepsilon_r}\int_V \frac{\rho_{\text{fixed}}}{r_{12}}dV$ (r_{12} , distances between all the charges and the test charge).

Outline

Objective

Basic back-

Simulati

Folding

Molecular interactions Coulomb

FE

Electrostatic potential surfaces

BE 2009 12307

Outline

Obiective

Basic back-

Simulatio

Molecular

Coulomb

FΕ

The work along equipotential curves is zero. In addition, electrostatic interactions are conservative forces.

Mixing thermodynamics with electrostatics

BE 2009 12307

Outline

Obiective

Basic back-

Simulation

Molecular interactions

FΕ

We shall investigate two situations:

- Moving charges from one point to another within a fixed electrostatic field (Session V on ion channels)
- Computing free energies for creating the electrostatic fields: "charging up" an assembly of originally uncharged particles:

$$\Delta G_{el} = w_{el} = \frac{1}{2} \sum_{i} q_i \psi_i = \frac{1}{8\pi\epsilon_0 \epsilon_r} \sum_{i} \sum_{j \neq i} \frac{q_i q_j}{r_{ij}}$$

Ion solvation: Born Energy I

BE 2009 12307

Outline

Objective

Basic background

Simulation

Molecular

interactions

ΗE

Charging up a continuous distribution resembles the above equation, but using a continuous description of the charge:

$$\Delta G_{el} = rac{1}{2} \int_{V}
ho \psi_{V} dV$$

or, for a charged sphere or radius a:

$$\Delta G_{el} = \frac{1}{2} \int_{\mathcal{S}} \sigma \psi_{\mathcal{S}} dS = \frac{1}{2} \left(\frac{q}{4\pi a^2} \right) \left(\frac{1}{4\pi \epsilon_0 \epsilon_r} \frac{q}{a} \right) 4\pi a^2 = \frac{1}{4\pi \epsilon_0 \epsilon_r} \frac{q^2}{2a}$$

Ion solvation: Born Energy II

BE 2009 12307

Outline

Objective

Basic back-

Simulatio

Folding

Molecular interaction Coulomb

$$\Delta G_{el} = \Delta G_1 + \underbrace{\Delta G_2}_{\sim 0} + \Delta G_3 = \frac{q^2}{8\pi\epsilon_0 a} \left(\frac{1}{\epsilon_0} - \frac{1}{\epsilon_w}\right)$$

Investigating processes: free energy perturbations (FEP)

BE 2009 12307

Outlin

Objective

Basic background

Simulati

Eoldina

Molecular

FE

Docking

E vs △ G

Absolute value of A (Helmholtz free energy, the "natural" quantity in the canonical, NVT, ensemble) is difficult to get, but its relative value is easier:

$$\Delta A = A_{\rm Y} - A_{\rm X} = -k_{\rm B}T \ln \frac{Q_{\rm Y}}{Q_{\rm X}}$$

Zwanzig developed a better way to evaluate this quantity:

$$\Delta A = -k_B T \ln \langle \exp[(H_Y - H_X)/k_B T] \rangle_X$$

Most times X and Y do not overlap in phase space and thus the evaluation of the above average is dificult.

Free energy perturbations (FEP)

BE 2009 12307

Outline

Objective

Basic background

Ollifiala

Foldin

Molecular

FE
Docking
E vs ΔG

A is a state function, which implies we can use any path to go from one state to the other with identical result.

Free energy perturbations (FEP)

BE 2009 12307

Thus, we can envisage an imaginary path that slowly leads from X to Y:

Outline

Obiective

Basic background

Simulation

Molecular

FE Interaction:

E vs ΔG

$$\begin{split} \Delta A &= A_{\rm Y} - A_{\rm X} \\ &= (A_{\rm Y} - A_{\rm I}) - (A_{\rm I} - A_{\rm X}) \\ &= -k_{\rm B}T \ln \left[\frac{Q_{\rm Y}}{Q_{\rm I}} \frac{Q_{\rm I}}{Q_{\rm X}} \right] \\ &= -k_{\rm B}T \ln < \exp[(H_{\rm I} - H_{\rm X})/k_{\rm B}T] >_{\rm X} \\ &-k_{\rm B}T \ln < \exp[(H_{\rm Y} - H_{\rm I})/k_{\rm B}T] >_{\rm I} \end{split}$$

which can be extended to as many states as we need:

$$\Delta A = A_{\mathrm{Y}} - A_{\mathrm{X}} = -k_{\mathrm{B}} T \ln \left[\frac{Q_{\mathrm{Y}}}{Q_{\mathrm{Y}-1}} \cdots \frac{Q_{3}}{Q_{2}} \frac{Q_{2}}{Q_{1}} \frac{Q_{1}}{Q_{\mathrm{X}}} \right]$$

Free energy perturbations (FEP)

BE 2009 12307

Outline

Objectives

Basic background

Simulation

Folding

interaction

FE Docking E vs ΔG

To efficiently implement a Free Energy Perturbation method, we need to move the systems from X to Y in small steps (even if they have no real physico-chemical meaning!) through a mapping potential:

$$E_m = \lambda_m E_{\rm Y} + (1 - \lambda_m) E_{\rm X}$$

where λ_m goes from 0 to 1.

Alchemical transformations

BE 2009 12307

Outline

Objective

Basic back-

Simulation

om and a con

Molecular

FE

Docking E vs Δ G

We can use FEP to do alchemical transformations

Alchemical transformations

BE 2009 12307

Outline

Objective

Basic back

Simulation

Molecular

FE

Docking E vs Δ G

Docking methods

BE 2009 12307

Outline

Objectives

Basic back-

Simulation

Molecular

FΕ

Docking

E vs $\triangle G$

Drug discovery and drug design

BE 2009 12307

Outline

Ohiooti

Basic back-

Simulation

Molecular

Interaction

Docking E vs ΔG

[Gohlke and Klebe, 2002]

Drug discovery and drug design

BE 2009 12307

Outilile

Objectives

Basic back-

Simulation

Molecular

FE

Docking

E vs ΔG

Energy (docking)

BE 2009 12307

Outilitie

Objectiv

ground

Simulation

Molecular

interactions FF

Docking
E vs ΔG

5100

J. Med. Chem. 1999, 42, 5100-5109

Consensus Scoring: A Method for Obtaining Improved Hit Rates from Docking Databases of Three-Dimensional Structures into Proteins

Paul S. Charifson,* Joseph J. Corkery, Mark A. Murcko, and W. Patrick Walters Vertex Pharmaceuticals, 130 Waverly Street, Cambridge, Massachusetts 02139-4242

Received July 8, 1999

We present the results of an extensive computational study in which we show that combining scoring functions in an intersection-based consensus approach results in an enhancement in the ability to discriminate between active and inactive enzyme inhibitors. This is illustrated in the context of docking collections of three-dimensional structures into three different enzymes of pharmaceutical interest: p58 MAP kinase, inosine monophosphate dehydrogenase, and HIV protease. An analysis of two different docking methods and thirteen scoring functions provides insights into which functions perform well, both singly and in combination. Our data shows that consensus scoring further provides a dramatic reduction in the number of false positives identified by individual scoring functions, thus leading to a significant enhancement in hit-

Energy (docking) vs free energy (binding)

BE 2009 12307

Outline

Objective

Basic back

Simulation

_ ...

Molecular

Docking
Evs ΔG

The LIE method [Aqvist et al., 2002]

Residue contributions to binding in Ras

BE 2009 12307

Basic back-

E vs ∆G

Table 4

Calculated and observed relative binding free energies of GTP and GDP in different p21^{ras} mutants.

Structure	PDLD/S estimate of relative binding energy (kcal mol $^{-1}$)* † ΔG_3	Experimentally determined relative binding energies (kcal mol ⁻¹)‡	
(Chate Ale)=04 CDD	0.7	0.4 [0.4]	
(Gly15→Ala)p21-GDP	0.7	2.1 [24]	
(Gly15→Ala)p21-GTP	3.2	>2.8 [24]	
(Ser17→Asn)p21-GDP	0.9	0.3 [24]	
(Ser17→Asn)p21-GTP	2.5	>2.8 [24]	
(Ser17→Ala)p21-GDP	3.5	3.6 [20]	
(Ser17→Ala)p21-GTP	6.0	5.6 [20]	
(Gly60→Ala)p21-GTP	5.1	-0.2 [30]	

 $^{^\}star\Delta G_3$ and the experimentally determined binding energies are given relative to the binding energies of the wild-type proteins in their GTP- and GDP-bound forms (which are both set to zero). tAll calculations are done with $\varepsilon_p{=}4$. The calculated energies for ΔG_3 correspond to the equilibrium (k_3 and k_{-3}) of Figure 1. tThe relevant reference is given in brackets.

[Muegge et al., 1996]

Residue contributions to binding in Ras

BE 2009 12307

Outline

Obiective

Basic back

Simulation

Molecular

FE

Docking E vs ∆G

Residue contributions to binding in Ras

BE 2009 12307

Outline

Objective

Basic background

Simulati

Folding

Molecular interaction

FE
Docking
E vs ΔG

BE 2009 12307

Basic back-

E vs ΔG

Agvist, J., Luzhkov, V., and Brandsdal, B. (2002).

Ligand binding affinities from md simulations.

Acc. Chem. Res., 35:358-365.

Carlson, H. A. (2002).

Protein flexibility and drug design: how to hit a moving target.

Curr Opin Chem Biol. 6(4):447-52.

Gianni, S., Guydosh, N. R., Khan, F., Caldas, T. D., Mayor, U., White, G. W. N., DeMarco, M. L., Daggett, V., and Fersht, A. R. (2003).

Unifying features in protein-folding mechanisms.

Proc Natl Acad Sci U S A, 100(23):13286-13291.

Gohlke, H. and Klebe, G. (2002).

Approaches to the Description and Prediction of the Binding Affinity of Small-Molecule Ligands to Macromolecular Receptors.

41:2644-2676

Goodsell, D. (1998).

The Machinery of Life. Springer-Verlag, New York.

Guix, F. X., III-Raga, G., Bravo, R., Nakaya, T., de Fabritiis, G., Coma, M., Miscione, G. P., Villà-Freixa, J., Suzuki, T., Fernàndez-Busquets, X., Valverde, M. A., de Strooper, B., and Muñoz, F. J. (2009). Amyloid-dependent triosephosphate isomerase nitrotyrosination induces glycation and tau fibrillation. Brain. 132(Pt 5):1335-45.

BE 2009 12307

Outline

Objective:

Basic background

rolaing

Molecular interactions

Docking

Evs ΔG

Kitchen, D., Decornez, H., Furr, J., and Bajorath, J. (2004).

Docking and scoring in virtual screening for drug discovery: Methods and applications. *Nat. Rev. Drug Disc.*, 3:935–949.

Levitt, M. (2001).

The birth of computational structural biology.

Nat. Struct. Biol., 8(5):392-393.

Muegge, I., Schweins, T., Langen, R., and Warshel, A. (1996).

Electrostatic Control of GTP and GDP Binding in the Oncoprotein p21 ras. Structure, 4:475–489.

Shoichet, B. K. (2007).

No free energy lunch.

Nat Biotechnol, 25(10):1109-10.

Warshel, A., Sharma, P. K., Kato, M., and Parson, W. W. (2006).

Modeling electrostatic effects in proteins.

Biochim Biophys Acta, 1764(11):1647–1676.