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What do we want to achieve?

Use basic classical mechanics as a way to explore
protein conformations (dynamics), to start with.
Be sure we deal with a correct description of the
interactions (energetics) (and if we do a good job we will
be able to go beyond conformations)
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Are we sure?

[Goodsell, 1998]
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Are we sure?

[Goodsell, 1998]

The crowded environment complicates folding in vivo
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Will we stop in structure?
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Thermodynamics: some definitions

State variables or state functions: variables that depend
only on the state of the system: P, V , T , U... Other
variables are dependent of the path followed to obtain
them: w
Mechanical and non mechanical variables: the former
are additive, depending on the amount of particles in the
system (P, V , U...) and the latter are independent of this
value (T ).
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Path-dependant functions

Two important path-dependant functions:
work w =

∫
path Fdx or, in terms of the change in

volume of a gas expanding against an external
pressure: w = −

∫V2
V1

pextdV
heat the heat needed to increase the temperature of

N moles of a given substance can be evaluated
by: qV =

∫T2
T1

nCV ,mdT for a constant volume

process and qP =
∫T2

T1
nCP,mdT for constant

pressure. C is called the heat capacity.



BE 2009
12307

Outline

Objectives

Basic back-
ground
Thermodynamics

Statistical
mechanics

PES

Exploring the
PES:
minimization vs
simulation

Simulation

Folding

Molecular
interactions

FE

Thermodynamics laws

1st law q + w = ∆U, where the internal energy U is a
state function. For an ideal gas the internal
energy is only dependent on the temperature. At
constant pressure, ∆H = qP

2nd law Defining the entropy of a system as ∆Ssys =
qrev
T ,

where qrev is heat given reversivebly (without
change in the temperature). All spontaneous
(non-reversible) processes imply an increase of
the universe entropy:
∆Suniverse = ∆Ssys + ∆Ssurround > 0

3rd law The entropy of all pure substances at 0K is zero.
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Obtaining Gibbs free energy expression

It is easy to see how, for a constant pressure chemical
reaction:

∆Suniverse = ∆Ssys + ∆Ssurround = ∆Ssys −
∆H
T

which, multiplied by T yields the usual expresion for the Gibbs
free energy:

∆G = −T∆Suniverse = ∆H − T∆S

By using normal Gibbs free energies, we can relate
thermodynamic quantities to equilibrium properties in a
chemical reaction:

∆G◦ = −RT ln K ◦
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So, all this was macroscopic... what about the
microscopic view?

[Kitchen et al., 2004]

Statistical mechanics is the answer
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Phase Space of a dynamical system

Phase space is the space of all possible states:

For N atoms, 6N values are required to define its state:
3N positions: rN = x1, y1, z1, x2, . . . , zN

3N momenta: pN = m drN

dt = p1x ,p1y , . . . ,pNz
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Time average

All properties of a macroscopic system depend on the
positions and momenta of all N particles that comprise the
system. We can define a instantaneous value of a certain
observable as A(pN(t), rN(t)). However, this quantity A

suffers fluctuations.

Over time, its average is found doing:

Aave = lim
τ→∞ 1

τ

∫τ
t=0

A(pN(t), rN(t))dt

Which is directly comparable with the experimentally
observable value of A.
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Ensemble average

Virtually impossible to achieve for the phase space in a
macroscopic system.
Instead, by the ergodic hypothesis the time average is
replaced by an ensemble average (or expectation value):

< A >=

∫ ∫
dpNdrNA(pN , rN) ρ(pN , rN)︸ ︷︷ ︸

probability density
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Probability density in NVT

Under conditions of constant N, V , and T , ρ(pN , rN) takes the
form of the Boltzmann distribution:

ρ(pN , rN) =
exp(−E(pN , rN)/kBT )

Q

So, finally we reach the key value: E .
Q is the partition function, E is the energy, kB is the
Boltzmann constant and T is the temperature. In the case of
an NVT system of N identical particles, the classical partition
function is:

QNVT =
1

N!

1
h3N

∫ ∫
dpNdrN exp

[
−

H(pN , rN)

kBT

]
with H(pN , rN) = K (pN) + V (rN)
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How can we use Q?

From the partition function we can
evaluate several thermodynamic
quantities. Among them, some
mechanical properties (U) and other
non-mechanical properties (like the
Helmholtz free energy, A):

U =
kBT 2

Q
∂Q
∂T

A = −kBT ln Q
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Potential energy surface
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Potential energy surface

[Levitt, 2001]
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On functions and derivatives

f (x) = 3x2 − 10x2 − 56x + 5
f ′(x) = 9x2 − 20x − 56
f ′′(x) = 18x − 20
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∑
F = ma
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W=mg

Nf=µN

ma

a

b

α

∑
F = ma
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W=mg

Nf=µN

ma

a

b

α

∑
F = ma{
mg sinα− µN = ma
−mg cosα+ N = 0
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W=mg

Nf=µN

ma

a

b

α

∑
F = ma{
mg sinα− µN = ma
−mg cosα+ N = 0

a = g(sinα− µ cosα)

a = dv
dt = d2x

dt2
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W=mg

Nf=µN

ma

a

b

α

∑
F = ma{
mg sinα− µN = ma
−mg cosα+ N = 0

a = g(sinα− µ cosα)

a = dv
dt = d2x

dt2{
v − v0 =

∫t
0 adt = at

x − x0 =
∫t

0 vdt =
∫t

0(v0 + at)dt = v0t + 1
2at2
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W=mg

Nf=µN

ma

a

b

α

∑
F = ma{
mg sinα− µN = ma
−mg cosα+ N = 0

a = g(sinα− µ cosα)

a = dv
dt = d2x

dt2{
v − v0 =

∫t
0 adt = at

x − x0 =
∫t

0 vdt =
∫t

0(v0 + at)dt = v0t + 1
2at2

dW = F · dx

Wa→b =
∫b

a F · dx

Wa→b =
∫b

a mg(sinα− µ cosα)dx = mg(sinα− µ cosα)∆x
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Hooke’s law

If we define ω2 = k/m we reduce the problem to:

d2x
dt2 +ω2x = 0

Which has the following solution:

x = A sin (ωt + φ)
v = Aω cos (ωt + φ)
a = −Aω2 sin (ωt + φ) = −ω2x

k = mω2

And it is easy to see that the period can be evaluated as:
τ = 2π

√
m/k
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Hooke’s law

In one dimension:

m
d2x
dt2 = −kx
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Hooke’s law and harmonic potential

~F = −k~x = m~a = m
d2~x
dt2

dW = ~F · ~dx

W0→x =

∫x

0
~F · ~dx

W0→x =

∫x

0
(−kx)dx = −

1
2

kx2 = −∆U0→x

F = −
dU
dx

In general, for a system with N coordinates:
~F = −~∇U = −

(
∂
∂x1

, ∂∂x2
, · · · , ∂

∂xN

)
U
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Force and potential

The work done
corresponds to the area
delimited in the F = f (x)
plot
The force is the opposite
of the derivative of the
potential energy with
respect to the
displacement at each
point of the W = f (x) plot
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Exploring PES

Molecular dynamics or Monte Carlo simulations can be used
to generate an ensemble of systems, characterized by their
energy. The canonical (NVT ) ensemble partition function
form can be evaluated from such simulation by:

Q =
∑

i

exp(−εi/kBT )

internal energy U = kBT 2
(
∂ ln Q
∂T

)
V

enthalpy H = kBT 2
(
∂ ln Q
∂T

)
V
+ kBTV

(
∂ ln Q
∂V

)
T

Helmholtz free energy A = −kBT ln Q

Gibbs free energy G = −kBT ln Q + kBTV
(
∂ ln Q
∂V

)
T
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But, before, let us find minima on the PES
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Minimization methods: Gradient search

Starting at point x0. As many times as needed, move from
point xi to xi+1 by minimizing along the line from xi in the
direction of the local downhill gradient −∇f (xi).



BE 2009
12307

Outline

Objectives

Basic back-
ground
Thermodynamics

Statistical
mechanics

PES

Exploring the
PES:
minimization vs
simulation

Simulation

Folding

Molecular
interactions

FE

Minimization methods: Newton-Raphson

From the Taylor expansion of the function:

f (x) ≈ f (xk ) + (x − xk )
T · gk︸ ︷︷ ︸

linear term

+
1
2
(x − xk )

T ·Hk · (x − xk )︸ ︷︷ ︸
quadratic term

we can take derivatives

∇f (x) = gk + Hk · (x − xk )

If we assume that f (x) takes its minimum at x = x∗, the
gradient is zero:

Hk · (x∗ − xk ) + gk = 0

which is a simple linear system. The Newton-Raphson
considers x∗ to be the next point in the iterative formula:

xk+1 = xk − H−1
k · gk
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Minimization methods: Conjugated gradients I

Let’s come back to the gradient search
Let’s minimize f (x) over the hyperplane that contains all
previous search directions.

x0+ < p0,p1,p2, . . . ,pi >

If the vectors pi are chosen to be L.I. we should ideally
perform only N searches.

f (x) ≈ c − g · x +
1
2

x ·H · x

initial gradient g0 and an initial h0 = g0

the CG method will construct gi+1 = gi − λH · hi and
hi+1 = gi+1 + γhi
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Minimization methods: Conjugated gradients II

these vectors satisfy the orthogonality and conjugacy
conditions:

gi · gj = 0

hi ·H · hj = 0

gi · hj = 0

and the scalars are given by:

λi =
gi · gi

hi ·H · hi

γi =
gi+1 · gi+1

gi · gi
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Simulated annealing (I)

SA simulates the finite T dynamics of the system
Starting from r with energy E(r) one generates a new r ′

with energy E(r ′) which replaces the original
configuration with some probability function, e.g.:

P =

{
exp (−β[E(r ′) − E(r)]) if E(r ′) > E(r)

1 otherwise

At a given β SA samples the configurations r of the PES
according to their thermodynamic probability.
basic hopping technique, analogous to Monte
Carlo/Metropolis algorithm when a Boltzmann distribution
is used to decide the probability.
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Simulated annealing (II)

(a) f (x) = Ax2 + cos(x/n) with different ruggedness (b)
Distribution of 10000 SA processes started at random initial
positions for the PES with A=1 (left) and A=0.1(right) at the
given T
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Monte Carlo/Metropolis algorithm

Each iteration is generated by randomly moving one atom or
molecule. The energy of the new configuration is evaluated:

if Vi 6 Vi−1 the new configuration is accepted
if Vi > Vi−1 the new configuration is accepted with a
probability evaluated from the Boltzmann factor of the
differences in energy (when comparing with a random
number in the interval [0,1]

then:

< A >=
1
M

M∑
i=1

A(rN)

It uses only the potential energy function (H(rN) = V (rN))
Specially fitted for the canonical (NVT ) ensemble; its
equilibrium state is characterized by the minimum Helmholt
free energy (A).
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MC vs SA

MC the probability function is Boltzmann distribution.
The final distribution resembles the
thermodynamic equilibrium distribution over
physical states.

SA Any function that is useful to reach a minimum is
ok. We just look for a minima, and no equilibrium
distribution is sought!
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Other ensembles

canonical: NVT : equilibrium state characterized by
minimal A (Helmholtz free energy)
microcanonical: NVE : equilibrium state characterized by
maximum S
isothermal-isobaric: fixed N, T and P; its equilibrium
state is the minimum Gibbs function (G)
grand canonical: fixed µ (chemical potential), V and T ;
its equilibrium state is characterized by the maximum
value of PV .
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NVE vs NVT
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Molecular dynamics

Thermodynamic averages are obtained from molecular
dynamics as time averages using numerical integration of a
given property A:

< A >=
1
M

M∑
i=1

A(pN , rN)

MD provides kinetic energy contribution
(H(pN , rN) = K (pN) + V (rN)) to the total energy. Specially
fitted for the microcanonical (NVE) ensemble; its equlibrium
state is characterized by the maximum entropy (S).
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Molecular dynamics

We need to integrate the following equation

F = −∇U = m
d2x
dt2

All algorithms for integration assume that the positions and
dynamical properties (velocities, accelerations, etc.) can be
approximated as Taylor series expansions. In the case of the
Verlet algorithm:

x(t + δt) = x(t) + δtv(t) +
1
2
δt2a(t)

v(t + δt) = v(t) +
1
2
δt [a(t) + a(t + δt)]
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A "real" system
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Bond interactions

Ub =

Nb∑
i

k i
b(ri − r i

0)
2

F = −∇U

Bond force:
Fb = −

(
∂Ub
∂x1

,
∂Ub
∂x2

, · · · ∂Ub
∂x3N

)
Let’s consider one single bond:

∂Uab
b

∂xa
=
∂Uab

b
∂rab

∂rab
∂xa

∂Uab
b

∂ya
=
∂Uab

b
∂rab

∂rab
∂ya
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Non-bonded interactions

Unb =

Nnb∑
i

4ε
[(σ

r
)12
)
−
(σ

r
)6
)]

︸ ︷︷ ︸
vanderWaals

+

Nnb∑
i

1
4πε0εr

qaqb
r︸ ︷︷ ︸

electrostatics

F = −∇U

Non bonded force:

Fnb = −

(
∂Ub
∂x1

,
∂Ub
∂x2

, · · · ∂Ub
∂x3N

)
Let’s consider a single interaction:

∂Uab
nb

∂xa
=
∂Uab

nb
∂rab

∂rab
∂xa

∂Uab
nb

∂ya
=
∂Uab

nb
∂rab

∂rab
∂ya
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Constant T and/or P

Although mathematically more convenient, running MD on the
NVE ensemble (where naturally the entropy S is obtained
directly from the corresponding partition function) is less
desirable than running in the NVT (to obtain the Helmholtz
free energy, A) or even better in the NPT (to obtain the Gibbs
free energy G).
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Measuring the temperature

In a canonical ensemble (NVT ) the temperature is constant.
In the microcanonical (NVE) it fluctuates.
T is directly linked to the kinetic energy:

K =

N∑
1=1

|p|2

2mi
=

kBT
2

(3N − Nc)

As due to the theorem of the equipartition of energy each
degree of freedom contributes to K by kBT/2. Nc is the
number of constraints in the system.
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Constant T

Thus, in an unconstrained system:

K =
3
2

NkBT

let’s assume that between two different times the velocity has
increased by a factor λ like:

∆T =
1
2

N∑
i=1

2
3

mi(λvi)
2

NkB
−

1
2

N∑
i=1

2
3

miv2
i

NkB

or
∆T = (λ2 − 1)T (t)

which yields λ =
√

Tnew/T ((t). This involves that multiplying
the velocities at each time step by the factor
λ =

√
Ttarget/Tcurrent we ensure the velocities to remain

constant through the simulation.
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Constant T : Berendsen

Alternatively, the Berendsen thermostat couples the
simulation to an external bath. In this case we scale the
velocities in such a way that the rate of change of the
temperature is proportional to the difference between the bath
and the system:

dT (t)
dt

=
1
τ
(Tbath − T (t))

and it yields the scaling factor for the velocities as
λ2 = 1 + δt

τ

(
Tbath
T (t) − 1

)
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Constant P

In this case we will want to control the volume of the system.
In a way analogous to the control of the temperature,
Berendsen proposed a “pressure bath”, yielding a rate of
change of the pressure by:

dP(t)
dt

=
1
τP

(Pbath − P(t))

This yields a scaling factor for the volume:

λ = 1 − κ
δt
τP

(P(t) − Pbath)

which is equivalent to scaling all atomic coordinates by λ1/3:

r ′i = λ
1/3ri
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Microscopic simulations: additional
considerations

Need to describe a water potential: TIP3P, SPC...
Do we include polarization?
Convergence problems
Boundary conditions
Need to introduce cutoffs
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We will need to restrict to a certain region
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Boundary conditions

Why are they necessary?
in 1 liter of water, we have around 3.3 × 1025 water
molecules. Interactions with the walls can extend up to
10 molecules inside the fluid. If the diameter of the water
molecule is approximately 2.8 , the number of water
molecules close to the boundary is about 2 × 1019. One
in 1.5 milion water molecules is close to the wall!!!
in a typical simulation we have the order of 103-104

molecules: most (if not all) will be close to the wall
Bulk properties need to be considered properly.
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Periodic boundary conditions

We may simply repeat the same cell unit adjacent to the
previous one. In two dimensions a central box would be
surrounded by 8 identical cells and in three dimensions this
number would increase up to 26.
The coordinates of the particles in the image boxes can be
computed simply by adding or substracting integral multiples
of the box sides. If the replicated volume is a cube:

xright = xcentral + 2a
yright = ycentral + 2a
zright = zcentral + 2a
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Periodic boundary conditions
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Periodic boundary conditions

Possible geometries (see http://mathworld.wolfram.
com/Space-FillingPolyhedron.html):
cube or general parallelepiped useful for its simplicity of

implementation
hexagonal prism useful for DNA or elongated molecules

simulations
truncated octahedron its spherical shape resembles well a

water droplet
rhombic dodecahedron also spherical
elongated dodecahedron
In some cases it is preferable to use non-standard periodic
boundary conditions. For example, when simulating
absorption on a solid surface, or when simulating an ion
channel within a membrane, it is much more appropriate to
use PBC in two dimensions.

http://mathworld.wolfram.com/Space-FillingPolyhedron.html
http://mathworld.wolfram.com/Space-FillingPolyhedron.html
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Non-periodic boundary conditions

In some cases the system is better approximated by a
spherical simulation. In addition the methods for PBC can
introduce artifacts for long range electrostatic interactions.
In this cases, Non-PBC or stochastic boundary conditions are
needed (SCAAS).
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Non-periodic boundary conditions

In some cases the system is better approximated by a
spherical simulation. In addition the methods for PBC can
introduce artifacts for long range electrostatic interactions.
In this cases, Non-PBC or stochastic boundary conditions are
needed (SCAAS).

[Warshel et al., 2006]
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Cutoffs and minimum image convention

Is it needed to include infinite number of interactions in the
model? Would it be appropriate?
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g(r) I

Let us consider a spherical shell of thickness δr at a distance
r from a chosen atom. The volume of such shell is

V =
4
3
π(r + δr )3 −

4
3
πr3

= 4πr2δr + 4πrδr2 +
4
3
πδr3 ≈ 4πr2δr

Let us imagine that we are considering a perfect fluid with
uncorrelated particles. If the number of particles per unit
volume is ρ, then the total number in the shell is 4πρr2δr and
so the number of atoms in the volume varies as r2.
The pair distribution function, g(r ), gives the probability of
finding an atom (or molecule) at distance R from another
atom (or molecule) compared to the ideal gas distribution.
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g(r) II

[?]
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Mean squared displacement

The mean squared displacement provides a means to
stablish how the simulation is evolving:

∆r2(t) =
1
N

N∑
i=1

[ri(t) − ri(0)]2

For a fluid without structure, the RMSD (square root of the
MSD) increases with time. For a solid lattice the RMSD
fluctuates close to zero with time. In this sense the g(r )
function can perform better to check if the structure of a fluid
is statistically conserved.
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Lucky you!
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What have we learnt and what is next?

Simulations are used to sample the configuration space.
Statistical mechanics takes profit of this sampling to
generate partition functions, leading to free energy
values.
How do we include the effects of the environment?
How do we study differences in free energy?
(processes!)
What if we break bonds?
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Folding
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Folding and simple conformational changes
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Subtile effects on conformational changes

[Guix et al., 2009]
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Subtile effects on conformational changes
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Subtile effects on conformational changes

Miscione, Giupponi, Villà-Freixa, unsubmitted
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A simple abstract example

so...
...in what case do we reach the minimum before?

∆G = ∆H − T∆S
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A simple abstract example

so...
...in what case do we reach the minimum before?

∆G = ∆H − T∆S
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A simple abstract example

so...
...in what case do we reach the minimum before?

∆G = ∆H − T∆S
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Energy and free energy can yield very different
results→ interpretations
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Energy and free energy can yield very different
results→ interpretations
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Different pathways to reach the same native
structure
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nucleation-condensation vs diffusion-collision

[Gianni et al., 2003]
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Binding of cetuximab

[Shoichet, 2007]
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Electrostatics principles

Charge interactions obey Coulomb’s law
When more than two charges interact, the energies are
sums of Coulombic interactions
Electric field, Gauss’s law and electrostatic potentials
allow us to do such calculations
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Electrostatics principles

Charge interactions obey Coulomb’s law
When more than two charges interact, the energies are
sums of Coulombic interactions
Electric field, Gauss’s law and electrostatic potentials
allow us to do such calculations
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Coulomb’s law I

U(r ) =
1

4πε0εr

q1q2
r

(1)

Clearly long ranged (r−1) with respect to dispersion
forces (r−6) and strong

Polarizable media (charges redistribute in response to an
electric field) shield charges strongly (large εr )

As εr depends on temperature, Eq. 1 resembles, actually,
a free energy expression.

Polarizability arises from: permament dipoles, atomic
polarizabilities, hydrogen bonds
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Coulomb’s law II

The Bjerrum length lB describes the charge separation at
which the Coulomb energy U(r ) equals the thermal
energy RT [?]. For example, for q1 = q2 = e:

lB =
1

4πε0εr

e2N
RT

At vacuum this occurs around 560 (in water this needs to
be divided by εr = 80). At bigger distances, the
interactions are weaker than thermal energy RT , and
particles are governed by Brownian motion.
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Charges interact weaker in water

r

U(r )

RT

lB, vacuum
vacuum
water
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Electrostatic force and field

F = −∇U =
1

4πε0εr

q1q2

r2
r
r

which, for a unit charge, becomes the electrostatic field if
dependent on just one particle with charge q:

E(r) =
F(r)
qtest

=
1

4πε0εr

q
r2

r
r

For more complex settings of charges, one may use Gauss’
law, which equals the flux of the electrostatic field through any
bounding surface to the sum of all charges enclosed:

φ =

∫
surface

εE · ds =
1
ε0

n∑
i=1

qi (2)
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Electrostatic potentials

Electrostatic field describes forces (vectorial). Electrostatic
potential describes energies (scalar). We start by:

δw = −Fd l = −qEd l

which allows us to define the work done against the field
when moving a charge q between two points as:

wA→B = −q
∫B

A
Ed l

and the corresponding difference in electrostatic potentials as:

ψB −ψA =
wAB
qtest

= −

∫B

A
Ed l

(equivalent to E = −∇ψ). Thus, the electrostatic potential
around a point charge, ψtest =

qfixed
4πε0εr r , and that produced by a

charge density, ψtest =
1

4πε0εr

∫
V
ρfixed
r12

dV (r12, distances
between all the charges and the test charge).
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Electrostatic potential surfaces

The work along equipotential curves is zero. In addition,
electrostatic interactions are conservative forces.
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Mixing thermodynamics with electrostatics

We shall investigate two situations:
Moving charges from one point to another within a fixed
electrostatic field (Session V on ion channels)
Computing free energies for creating the electrostatic
fields: "charging up" an assembly of originally uncharged
particles:

∆Gel = wel =
1
2

∑
i

qiψi =
1

8πε0εr

∑
i

∑
j 6=i

qiqj

rij
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Ion solvation: Born Energy I

Charging up a continuous distribution resembles the above
equation, but using a continuous description of the charge:

∆Gel =
1
2

∫
V
ρψV dV

or, for a charged sphere or radius a:

∆Gel =
1
2

∫
S
σψSdS =

1
2

( q
4πa2

)( 1
4πε0εr

q
a

)
4πa2 =

1
4πε0εr

q2

2a
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Ion solvation: Born Energy II

q = +1

q = +1 q = 0

q = 0

∆G

Discharge
∆G1

Transfer
∆G2

Charge
∆G3

water/air interface

∆Gel = ∆G1 + ∆G2︸︷︷︸
≈0

+∆G3 =
q2

8πε0a

(
1
ε0

−
1
εw

)
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Investigating processes: free energy
perturbations (FEP)

Absolute value of A (Helmholtz free energy, the “natural”
quantity in the canonical, NVT , ensemble) is difficult to get,
but its relative value is easier:

∆A = AY − AX = −kBT ln
QY

QX

Zwanzig developed a better way to evaluate this quantity:

∆A = −kBT ln < exp[(HY − HX)/kBT ] >X

Most times X and Y do not overlap in phase space and thus
the evaluation of the above average is dificult.
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Free energy perturbations (FEP)

A is a state function, which implies we can use any path to go
from one state to the other with identical result.
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Free energy perturbations (FEP)

Thus, we can envisage an imaginary path that slowly leads
from X to Y:

∆A = AY − AX

= (AY − A1) − (A1 − AX)

= −kBT ln
[

QY

Q1

Q1

QX

]
= −kBT ln < exp[(H1 − HX)/kBT ] >X

−kBT ln < exp[(HY − H1)/kBT ] >1

which can be extended to as many states as we need:

∆A = AY − AX = −kBT ln
[

QY

QY−1
· · · Q3

Q2

Q2

Q1

Q1

QX

]
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Free energy perturbations (FEP)

To efficiently implement a Free Energy Perturbation method,
we need to move the systems from X to Y in small steps
(even if they have no real physico-chemical meaning!)
through a mapping potential:

Em = λmEY + (1 − λm)EX

where λm goes from 0 to 1.
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Alchemical transformations

We can use FEP to
do alchemical
transformations
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Alchemical transformations
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Docking methods
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Drug discovery and drug design

[Gohlke and Klebe, 2002]
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Drug discovery and drug design

[Carlson, 2002]



BE 2009
12307

Outline

Objectives

Basic back-
ground

Simulation

Folding

Molecular
interactions

FE
Docking

E vs ∆G

Energy (docking)

vs free energy (binding)
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Energy (docking) vs free energy (binding)

The LIE method [Aqvist et al., 2002]
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