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1. Definitions

Conformation is the set of 3N coordinates of all N atoms.
Conformational space is the space of all possible conformations

Questions

How big is conformational space?

Can proteins sample all conformational space?
Can proteins fold by random search?

If not, how do they fold?



2. Rubik’s snake

Consider Rubik’s snake as a model of protein:
It consists of 24 fragments

Folded conformation has a function of “rolling”
All other conformations are not functional
Conformational space:
Out of 423 = 7-1013 conformations,
=~ 1013 are spatially possible.

One sec per conformation means = 400 000 yrs for all
possible conformations



3. Proteins

Protein:
One folded functional conformation
Many unfolded non-functional

Conformational space for 100 aa protein:
= 10190 conformations
One ps per conformation gives = 10%° years

Proteins apparently do not fold by sampling all
conformations



3. Proteins

Experimental facts:

Proteins fold into their native structure from
microseconds to hours

Proteins fold into their native structure during
biosynthesis, renaturation, after chemical
synthesis. Then, native structure seems to be the
energy global minimum

There is a free-energy barrier between native and
unfolded structures




4. Levinthal’s paradox

If native structure is the energy global minimum, then how proteins
can find it if they don’t have time to sample all conformations?



4. Levinthal’s paradox

Solution:
Nucleation mechanism

AE,~ —n + p,n?/3
TAS,~ —n —A,n?/3
AF, = AE, — TAS,
AF# = max{AE,} ~N?/3
time = 10ns - exp{(0.5 — 1.5)N?/3} « 10ns - 10V
Thus, we automatically have fast folding pathway to

global minimum. Additional pathways can only
speed up the folding

(a)
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(c)

AF
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Mathematics

1. Taylor approachin 1D

2. Functions in RN

3. The gradient

4. Taylor approach of f: RN ->R

5.Energy as function E: RN ->R

6. Newton-Raphson method
1.Steepest descent
2.Conjugate gradient



1. Taylor approachin 1D

Given f, n+1 times differentiable, and the polynomial P(x), as:

P(x) = f(a)+ f'(a)(x—a) + %f”(a)(x PRI %f‘”)(a)(x —ay

There is a function h(x), such that:

f(x)=P(x)+ h(x)(x - a)"
limh(x) =0

X—a

Proof

Use the following theorem: there is z such that g’(z)(b-a)=g(b)-g(a)
By differentiating up to n and defining g=f("), there is a z, such that the following h
function fulfills the theorem

) F ()
(n+1)!

h(x) (x-a)



2. Functions in RN

f:RY =R

f(xp,.x;,.Xy)
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3. Gradient

Given f:RN->R, we say f is differentiable in a if for all vin RN there is a linear
application T,:RN->R, such that

fla+hv) - f(a)
h

Iim
h—0

=T,(v)

It is easy to see that:

f(a+he)- f(a)
h

Iim
h—0

=T,(e,) = D,f (@)

Then we end with the definition of gradient

T,0)=T,(Yve)= IvT.(e) = 3 v.D.f (@ =(Df(a),..0f (@), ¥y)
(le(a),..DNf(a))(vl,...vN) =V _[=*v



3. Gradient

\/ f(x,y)

y

D,f=df(x,y)/dy

N




3. Gradient

f(x,y)

D, f=df(x,y)/dx



3. Gradient

_dv +dv

N

f =cte= df =0
df =(Vf)*(xdv)= (Vf)L(xdv)



4. Taylor approachof f: RN ->R

Chain Rule:

Let be g:R->RN a curve in RN, and f a function differentiable of RN in R.
We define the composition f*g:R->R by f*g(x)=f(g(x))

Then (f*g)" is:

(f og) =lim f(8(x+h) - f(g(x) _ .. J(8(x)+hg'(x)- f(g(x)) _ V.. f*g

h—0 h h—0 h

Then, let be b and a in RN. We define the curve g(t):R-> RN as g(t)=a+t(b-a) and
the function F as F=f*g. Therefore, F(0)=f(a), F(1)=f(b), and by Taylor approach:

F(1)= F(0)+ F'(0) + %F"(O) + . LM

n!

f(b)=f@+(Vf)b-a)+ %V(Vf “(b-a)*(b-a)+...
f®)=f@+ Y (D.f(@)b,-a)+ %22(1) @), -a)b;-a,)+ ..

1®)=F@+ (DS @)b,-a)+ G-DHG-a) +..

H is named Hessian matrix



5. Energy function

+E (Hydrogen — Bonds) + E (n — .77:)

[

The quadratic terms show the potential origin in non-correlated internal
coordinates, being their constants derived from the second derivative of the
potential



6. Newton-Raphson approach

Given a function f: R->R, there is an iterative approach to find the zeros (x such as
f(x)=0), defined by the series:
Jf(x,)

" f(x,)

| =X

n+

Proof

By Taylor’s expansion up to 2on order:

J(x) = f(xp) + f1(x)(x = x) + A(x)(x — x,)
J(xp) + 1 (xp)(x = x5) =0
_ J (X5)

J'(x0)

X=X,



6. Newton-Raphson approach

The same approach is valid for obtaining the zeros of the derivative, but the series

is then:
f)
Cf(x)
When the function is in RN the series is derived from Taylor’s expansion for functions in RN
x =, = () (f"(x))
X=X~ [H_l]E(Dif(xo))

l

X =X

The method is modified with a lambda to perform small steps and ensure convergence

Xpyg =Xy — )L[H_I]E(Dif(xn))

l



6.1. Steepest Descent

Lambda is selected and modified at each step to fall quickly towards the minimum, by
increasing when x.,; < X, or decreasing and changing sign when x,,; >X,

X, =X, = AVF(x,)

n+l

6.2. Conjugate gradient

Additional modification of steepest descent implies to store several gradients and
modify the new direction with the previous

X, =%, = AVF(x,) = Y AVf(x,.)



Physics

1. Molecular mechanics
2.Phase space
3. Maxwell-Boltzmann distribution of velocities
4. Molecular dynamics
1. Verlets algorithm
2.Ergodic hypothesis
3. Periodic boundary conditions
5. Monte-Carlo simulation
6. Simulation annealing



1. Molecular Mechanics

V=12Kbondd d0l2 12Kanglea a012

+— EK"’”“’"COS L@, +5 +$22qq1

i j>i lJ
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i

EE

i j>i




1. Molecular Mechanics

-PE;

e
P = and S = -R )P xIn(P.
=S S P xIn(p)
where
_ L. Z=Ye™ ; k=R/Na

kT ~

p @)

E,; =K, +V,= ) —+V.(1,1,..1,)



1. Molecular Mechanics

(A)= Y AP = [ A(B,F)p(p.F)dpir

[E u—states
~E(p.)/kpT

(A) = [AB.H” ———dpor




2. Phase space/Conformational space

PHASE SPACEis the space of all possible states, defined by 6N coordinates

(3N positions and 3N momenta). Neglecting the 3N moment, the space
defined by the 3N positions is the CONFORMATIONAL SPACE

— N
F=1" =(X,Y,ZsXynsYn>In)

—_

p = pN = (p1x9p1y 9p1z""pNx’pNy ’pNz)



3. Maxwell-Boltzmann distribution

For an ideal gas E=K and V=0, then

~E(5 )k T Epj/zm'kﬂ
B

Hfff g,
1 3/2
‘- H(znm,.kBT)

e—px/2m kT e—py/2m kg -pi [2mky
i X, s P<) =
JAPEPY P = \ oo T \ 2, T

This is a normal distribution with variance mkgT and m;=m for all i



3. Maxwell-Boltzmann distribution

Normal distribution around 0, with variance mkgT and m=m for all i

Maxwell-Boltzmann Molecular Speed Distribution for Noble Gases
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4. Molecular Dynamics

dv
a=—

dt
v=fadt=at+v0

F 1(av)
a = =

m m\ ox

dx
V= —

dt

1 1 (oV

x=f(at+v0)dt=5at2+v0t+x0=2m(ax)t2+vot+x0
F = L(VV)t2 +V t+ 7,

2m



4.1. Verlet's algorithm

a= E = i(VF) roare the X-ray coordinates
m m Vv, are selected with a random function
r(t+dt) =r(t) + v(t)dt using a Maxwell-Boltzmann distribution

v(t+dt) =v(t) + adt =v(t) + ﬂ(VF)
m

r(t+2dt)=r(t+dt)+v(t+ dt)dt

f 1 i =

F=-k(d-d,)

1
E-= 5k(d-do)2

Vibration determines dt
For dihedral of rotation dt is around 2 fs




4.2. Ergodic hypothesis

(A)=" Y AP = [ A(B,F)p(p.F)dpar

[E u-states

A= Lim [ AG(0).F0)dr

(A)= A



4.3. Periodic Boundary conditions
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Limited distance of interactions:
1 atom cannot interact with itself (a)
1 molecule cannot interact with itself (b)

Cut-off determined by long distance interactions
Coulomb energy is the longest

Cut-off around 12-15 Angstroms

Minimum box-edge L/2 > 15A (a) or L>D+30A (b) with
D the maximum diameter of the protein



5. Monte Carlo simulations

*Start at original coordiantes r,and calculate the energy (E)

*Select few variables (i.e. distances, angles, dihedrals) and or atom coordinates
(i.e. water or ion atoms) and change them with a small deviation.

*Calculate the new energy (E’)

*Apply a criterion of acceptance with probability P using a random function:

1 ifE'<E
e MET fE'SE

"

P =

* Note: by increasing the temperature, large changes of conformation increase
the probability to be accepted



6. Simulated Annealing

Features:

*E=K+V is constant

*K=3/2 NkgT, with N= number of atoms

|f T=0, E=V

*When externally forcing T to be very high at a given conformation, we
are increasing E

*For a given E, searching the conformation with maximum velocities (T)
we obtain the minimum potential V

\/




6. Simulated Annealing

Method:

eStart at T=0 and increase to T=1000 K
*Run short MD or MC simulation

*Select conformers with maximum K
*Run Steepest Descent

*Increase T to 1000K and repeat iteration.

\/

Conclusion: The approach helps to cross very high energy picks and reach

conformations with minimum energy
Application: obtain structures with NMR data
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