
Experimental 
methods to obtain the 

3D structure of 
macromolecules 



1. X‐ray Crystallography 
2. NMR 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X‐ray Crystallography 



1. Basic concepts of Physics and Mathema;cs 
1.  Complex Numbers 

Solving the equa;on x2=‐1, solu;on x=i 

Generaliza;on: X in C is X=A+iB, with A and B in R 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X = A + iB = A,B( )
B = X Sen(θ)
A = X Cos(θ)

X = X Cos θ( ) + iSen θ( )( )
X = X eiθ
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k = 2π /λ
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y = f (x) = ASen(κx)
y = f (x) = ACos(κx + δ)

1. Basic concepts of Physics and Mathema;cs 
2.  Waves (wavelength) 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y = f (t) = ASen(ωt)
y = f (t) = ACos(ωt + ρ)

ω = 2π /T 

1. Basic concepts of Physics and Mathema;cs 
2.  Waves (period) 



1. Basic concepts of Physics and Mathema;cs 
2.  Waves (general equa;on) 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y = f (x, t) = A Cos(κx +ωt) + iSen(κx +ωt)( )
y = f (x, t) = Aei(κx+ωt )
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y = f (x, t) = Aei(  κ •
 
x +ωt )



1. Basic concepts of Physics and Mathema;cs 
 3. Fourier Transform 



1. Basic concepts of Physics and Mathema;cs 
 4. Electromagne;c wave 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Poynting vector 



Δx=dSen(θ) 

Wave from d+ is E=E0ei(k*x+ϖt) 

Wave from d-  is E=E0ei(k*(x+Δx)+ϖt) 

On phase: k*Δx=m2π (m=0,1,2,..)
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2. Diffraction 

1. Bragg’s law 



2. Diffraction 
1. Bragg’s law 

Ordered matter results in diffraction 



2. Diffraction 
1. Bragg’s law 
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3. Crystal 



3. Crystal 
1. Laue conditions 
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3. Crystal 
1. Laue conditions 
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 r = x a + y
 
b + z c 

 r ∗ Δ
 
S 
λ

= xh + yk + z

And for any position (r) in the 
crystal, using the directions of the 
unit cell: 
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F(ΔS) = ρ
 r ( )e

i 2π
 
r Δ
 
S 
λ dV

Cell
∫

F(h,k,l) =V ρ x,y,z( ) ei 2π hx +ky + lz( )dxdydz
0,1( )
∫∫∫

3. Crystal 
1. Structure Factor 
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ρ x,y,z( ) =
1
V

F h,k,l( ) 
l
∑

k
∑

h
∑ e− i 2π hx +ky + lz( )

3. Crystal 
1. Structure Factor 

By Fourier Transform we can solve the electronic 
density of the macromolecule within the cell 



4.  Phase problem 

€ 

F h,k,l( ) = F h,k,l( )e i α h,k,l( )

Using the definitions for complex numbers, and 
being the structure factor a complex number, we 
have: 
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ρ x,y,z( ) =
1
V

F h,k,l( )  
l
∑

k
∑

h
∑ e−2πi hx +ky + lz( )+ iα h,k,l( )

Therefore, we re-write the electron density map 
as: 
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Where, |F| is the real part and can be known 
experimentally by the intensity of the reflection I: 

However, α(h,k,l) is not known. This is the phase problem. 



4.  Phase problem 

1. Solutions 

1. Direct determina;on 
2. MIR: Mul;ple Isomorphous replacement 
3. MAD: Mul;ple anomalous diffrac;on 
4. MR: Molecular Replacement 



4.  Phase problem 

1.1 Direct determination 

€ 

Φ h,k,l( ) =  Fobs h,k,l( ) − Fcalc h,k,l( )  { }
2

hkl
∑

For a small number of atoms, we teste all possible positions in the 
cristallographic cell, then we minimize the following function: 

obs, is the observed factor of structure  
calc is the structure factor using the atomic predicted coordinates 



4.  Phase problem 

1.2 MIR 

We introduce a heavy metal in the protein by immersion of the cristal in 
a solution with a salt of the heavy metal. 

The heavy metal gets into the protein, close to negatively charged 
residues. 

The inclusion of metals should not change the conformation of the 
protein. 

After obtaining the factor of structure of the protein with the metal, we 
substitute the metal by another similar one (i.e. exchanging Ca+2  by  
Mg+2 or Se+2). The substitution should not affect the conformation and 
the location of the metal should remain unchanged.  

The result of this experiment is the Multiple Isomorphous Replacement. 



4.  Phase problem 

1.2 MIR 
Let be FP the factor of structure of the protein and FPH the factor of 
structure of the protein with the first metal.  The Factor of structure of 
only the metal is FH.  Then FPH = FP + FH  , where we know |FP|, |FPH| 
and FH (by direct determination) 
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4.  Phase problem 

1.2 MIR 
With the substitution of 
metal H1 by H2 

FH1 

FPH1 

FPH1 

FP 

FP 

FPH2 
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4.  Phase problem 

1.3 MAD 

The experiment is the same as for MIR. However, 
the first metal has already the property of diffracting 
different as a function of the wavelength of the Xray. 
Therefore, we don’t need a second metal, just two 
different diffractions using different wavelengths of 
the Xray beam. 



4.  Phase problem 

1.4 MR 

We use the known of structure of an homolog to 
calculate the factor of structure. Then we superpose 
both electronic maps by rotation and translation and 
we minimize the R factor, defined as: 

€ 

R =

F(obs) − k F(calc)
hkl
∑

F(obs)
hkl
∑

The conformation is modified until the R factor is 
minimum.  



1. Basic concepts of Physics 
1. Nuclear Spin 
2. Chemical displacement 
3. Nuclear Overhauser Effect 

2. NMR bi‐dimensional and mul;dimension 
1. Scalar coupling 2D 
2. COSY and TOCSY 
3. NOESY 

3. Applica;on on macromolecules 

Nuclear Magne;c Resonance 



Magnetic field 

B0 

Oriented spins 
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E = −mIγB0

γ =
e
2m

Field B0 

E 

ΔE =hν 

State of spin mI= 1/2 

State of spin mI= -1/2 

Some isotopes (i.e. 1H, 13C, 15N, 31P …) under a magnetic field have a 
nuclear spin (behaving like a little magnet). A small radiofrequency can 
change the spin state of a nucleus. 



Nucleus with spin affect other neighboring magnetized nucleus. This is 
done through bonds transmission because of the electric field of the 
electrons of a bond. This implies a displacement of the original energy, 
detected as chemical displacement and scalar coupling. 
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Nuclear spin can also be 
affected by those magnetized 
nucleus in close proximity in 
the three dimensional space. 
This is known as Overhausser 
effect.  

NOE ⇒  distances  INOE ∝ 1/r6 
NOEs high:    1.8 < rHH < 2.8 Å 
NOEs medium:    1.8 < rHH < 3.5 Å 
NOEs weak:    1.8 < rHH < 5 Å 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Scalar coupling between double bonds is forbidden  
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Experiment 2D COSY 
(COrrelaNon SpectroscopY): 
correla;on between 1H scalar 
couplings, through 3JHH 

    Experiment 2D TOCSY (TOtal 
CorrelaNon SpectroscopY): 
correlation between 1H scalar 
couplings, through 3JHH 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3. Application on macromolecules 

(1) Assigning 1H frequencies on the NMR spectrum to Aa 

(2) Identify secondary structure elements 

(3) Extract distance constraints and torsion angles. 

(4) Obtain the 3D structure by distance geometry optimization  



3. Application on macromolecules 
 1. Assigning 1H frequencies on the NMR spectrum to Aa 
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3. Application on macromolecules 
 2. Identify secondary structure elements 

d(N-N) 



3. Application on macromolecules 
 2. Identify secondary structure elements 

helix 



3. Application on macromolecules 
 3. Extract distance constraints and torsion angles. 



3. Application on macromolecules 
 4. Obtain the 3D structure by distance geometry optimization  

€ 

Ebonding =
1
2
ki di − di

0( )2
bonds
∑ +

1
2
k j α j −α j

0( )2
angles
∑ +

1
2
kn ωn −ωn

0( )2
improper
dihedral

∑ + EmCos ωmφm +ϕm( )2
angles
∑

Enon−bonding =
1
4πε0

qiq j

rijj> i
∑

i
∑ +

C6
ij

rij
6 −

C12
ij

rij
12

j> i
∑

i
∑

ENMR =
1
2
kl Rl − Rl

0( )2
restrictions
∑

E = Ebonding + Enon−bonding + ENMR






