
PRACTICE SBI 4P (SBI 7 + SBI 8 + SBI 9)
COMPARATIVE HOMOLOGY MODELING
MODEL BUILDING
Nuria B. Centeno. Modified by B. Oliva
Model building by Modeller

Modeller is an implementation of an automated approach to
comparative protein structure modeling by satisfaction of spatial
restraints.
First, the known template 3D structures are aligned to the target
sequence to be modeled. Second, spatial features, such as Ca-Ca
distances, hydrogen bonds, and mainchain and sidechain angles, are
transferred from the templates to the target. Thus, a number of spatial
restraints on its structure are obtained. Third, the 3D model I obtained
by satisfying all the restraints as well as possible:

	

Getting started

Download the target and example of a modeller input file from Aula
Global

It is advisable to create two different directories: one for the models
we will obtain from our sequence alignment and the second one for the
models we will obtain from our alignment based on the structural
alignment of our templates. In each directory we will need a copy of
the corresponding alignment, the pdb files for the templates and the
modeller input file.

Using MODELLER
Before running the program, we will need to do the following steps:

1. Convert the alignment into pir format
The alignment used by modeller must be in pir format. We can use the
program aconvert to do this format change.
The input format depens on how we have obtained the alignment:
"c" if it comes from clustalw and "h" if it comes from hmmer.
The output format is pir ("p"). The resulting alignment will have as
many blocks as sequences we have in our alignment. Each block has a
header of two lines with some labels, which must be the same as in
the input file (see below).

The file will look like:

	

	

	

	

2. Modeller input file (extension .py)
The input file contains all the parameters needed by MODELLER and
the options we want to use for building up the 3D models of our
target. It is advisable that this file has the extension .py

It will look like:

Homology modeling with multiple templates from modeller import *
Load standard Modeller classes from modeller.automodel import *
Load the automodel class log.verbose()
request verbose output

env = environ() # create a new MODELLER environment to build this model in

directories for input atom files

env.io.atom_files_directory = ['.', '../atom_files']
a = automodel(env,
alnfile = 'P11018_1scjA_1gciA.pir', # alignment filename
knowns = ('1scj', '1gciA'), # codes of the templates
sequence = 'P11018') # code of the target
a.starting_model= 1 # index of the first model
a.ending_model = 2 # index of the last model

(determines how many models to calculate)
a.make() # do the actual homology modeling

Therefore, we need to modify the input file, which is only an example,
to incorporate our data:

a. In alnfile we will set the name of our alignment file (in pir format)
from which we will build up the models. The name of the file is written
between single quotation marks.

b. In knowns we will set the label for each template. These labels
must be consistent (i.e the same) with those appearing in the
alignment file (first and second line of each template block) and with
the prefix of its pdb file. Template codes are written between single
quotation marks,and they are spaced by commas and a blank space.

c. In sequence we will set our target label. This label must be
consistent with the one appearing in the alignment file (first and
second line of the target block). It is written between single quotation
marks.

d. By default pdb files must be in our working directory. If not, we
need to state its location at env.io.atom_files_directory.

e. We can build up as many models as we want, since there is more
than one solution satisfying the spatial restrains. In our case, we will
only build up two models for each alignment. To do so, we will set 2 in

a.ending_model. The instruction a.make() is for doing the homology
modeling in its most simple formulation.

f. Modeller can work with several chains. However, the simplest form is
to use a single chain for templates. In order to get the structures of
single chains we run the script PDBtoSplitChain.pl

PDBtoSplitChain.pl -i <PDB-file> -o <root-name>

Where the output will be as many files as chains in the PDB file with
the PDB and FASTA files of the chains (i.e. for a PDB with chains A and
B, using a root name “root” we get rootA.pdb, rootB.pdb, rootA.fa and
rootB.fa files)

The command for running MODELLER is:
$mod9.13 file

where file is the file with extension py that we have just modified.

However, in the next steps we plan to include python commands of
MODELLER. This implies the use of specific libraries that we may wish
to apply. Consequently, we have a second option to run MODELLER,
indicating what python we plan to use

$modpy.sh python file

Loop modeling, refinement and assessment

The input file uses a standard procedure (it’s actually a python class)
“automodel” for modeling. However, we can improve the modeling of
loops by using the class “loopmodel” .

a. Change automodel by loop model in the input file

a=loopmodel(
b. Include the assessment by adding a new parameter within the

parenthesis
…, assess_methods=assess.DOPE

c. Sort the output according to DOPE energy. After the execution of
modeling (i.e. a.make()), you have to add the following lines:

 ok_mdl=filter(lambda x:x[‘failure’] is None,a.outputs) #remove fail
 key=’DOPE score’
 ok_mdl.sort(lambda a,b: cmp(a[key],b[key]) #sort OK models
 #list the ranking
 for m in ok_models:
 print(“Model: %s (DOPE score %.3f)”%(m[‘name’],m[key]))

d. Refinement. This can be done at two levels: 1) refining the whole

model; and 2) refining only the loops.

a. To refine the whole model add a line after the definition of the
number of ending model
a.md_level=refine.fast

b. To refine the loop add three more lines
a.loop.starting_model=1 #First loop model as *.BL0001
a.loop.ending_model=4 #Last loop model as *.BL0004
a.loop.md_level=refine.fast

However, if we wish to evaluate also the assessment of the
loops, we add in the execution, instead of assess_methods,
loop_assess_methods. Then, we report in the ok_mdl
dictionary the selection of acceptable a.loop.outputs, instead
of a.outputs.

e. In case we wish to have only a selected set of loops to modify, then
we need to use restrictions. Therefore we have to define our class,
this being a child of loopmodel. For example, if we wish to select
residues 19-28 and 45-50 from the model, we define MyLoop class
as:

Class MyLoop(loopmodel):
 def select_loop_atoms(self):
 return selection(self.residue_range(’19:’,’28:’),
 self.residue_range(’45:’,’50:’))

Then we run MyLoop class instead of loopmodel class.

Macro-complex modeling and restrictions

a. Modeller also handles the modeling of a complex with more than
one chain. The class is the same (automodel), but the alignment needs

to handle with the different behavior.
The alignment places a slash “/” to show the end of a chain. Then it
gives the residue position at the start and end of the template(s) (i.e.
1:A and 74:B). If more than one chain is to be built, see the following
example:

C; example for building multi-chain protein models

>P1;2abx
structureX:2abx: 1 :A:74 :B:bungarotoxin:bungarus multicinctus:2.5:-1.00
IVCHTTATIPSSAVTCPPGENLCYRKMWCDAFCSSRGKVVELGCAATCPSKKPYEEVTCCSTDKCNHPPKRQPG/
IVCHTTATIPSSAVTCPPGENLCYRKMWCDAFCSSRGKVVELGCAATCPSKKPYEEVTCCSTDKCNHPPKRQPG*

>P1;1hc9
sequence:1hc9: 1 :A:148:B:undefined:undefined:-1.00:-1.00
IVCHTTATSPISAVTCPPGENLCYRKMWCDVFCSSRGKVVELGCAATCPSKKPYEEVTCCSTDKCNPHPKQRPG/
IVCHTTATSPISAVTCPPGENLCYRKMWCDAFCSSRGKVVELGCAATCPSKKPYEEVTCCSTDKCNPHPKQRPG*

b. However, in many occasions there is symmetry between both chains
(in case of an homodimer). Constraints are applied by defining a new
class inheriting the automodel

class MyModel(automodel):
 def special_restraints(self, aln):
 # Constrain the A and B chains to be identical

 # (but only restrain
 # the C-alpha atoms, to reduce the number of interatomic

 # distances that need to be calculated):
 s1 = selection(self.chains['A']).only_atom_types('CA')
 s2 = selection(self.chains['B']).only_atom_types('CA')
 self.restraints.symmetry.append(symmetry(s1, s2, 1.0))

c. For a more general use of restraints, we can add as many new
restraints as we wish, forcing specific distances between CA atoms (or
any specific selected atom) of residues. Restraints are stored in the set
“restraints” within automodel. They can be specific of secondary
structures (alpha or beta) or any specific distance forced by the user.
See the following example:

Create the class

class MyModel(automodel):
 def special_restraints(self, aln):

Define the sets

 rsr = self.restraints
 at = self.atoms

Use a file with restraints if available

Add some restraints from a file:
rsr.append(file='my_rsrs1.rsr')

Define secondary structure restraints

Residues 20 through 30 should be an alpha helix:
 rsr.add(secondary_structure.alpha(self.residue_range('20:', '30:')))

Two beta-strands:
 rsr.add(secondary_structure.strand(self.residue_range('1:', '6:')))
 rsr.add(secondary_structure.strand(self.residue_range('9:', '14:')))

An anti-parallel sheet composed of the two strands:
Requires the location of the starting Hbond and the total of residue-pairs
that will form the ladder witha - sign
 rsr.add(secondary_structure.sheet(at['N:1'], at['O:14'],
 sheet_h_bonds=-5))
Use the following instead for a *parallel* sheet:
Requires the location of the starting Hbond and the total of residue-pairs
that will form the ladder witha + sign
rsr.add(secondary_structure.sheet(at['N:1'], at['O:9'],
sheet_h_bonds=5))

Use your own selected restraints

Restrain the specified CA-CA distance to 10 angstroms (st. dev.=0.1)
Use a harmonic potential and X-Y distance group.
 rsr.add(forms.gaussian(group=physical.xy_distance,
 feature=features.distance(at['CA:35'],
 at['CA:40']),
 mean=10.0, stdev=0.1))

Possible error sources when executing modeller

The most frequent error sources while executing MODELLER are three:

1. File names and their location
2. Inconsistencies between labels stated in the alignment and input
files.
3. Inconsistencies between sequences in the alignment and in the
template files. This may occur in different situations:
	

a. if the sequence used in the alignment was obtained from
Swissprot rather than from the PDB. Usually the sequence at the
pdb is not the complete sequence.
b. if in the protein structure there is one main chain segment
with more than one position (occupacy < 1). In that case, the
program PDBtoSplitChain interprets that we have different
aminoacids instead of one aminoacid with different positions,

making a mistake while extracting the sequence. In this case, in
the log file will appear an error like this:

read_te_291E> Sequence difference between alignment and pdb :
x (mismatch at alignment position 258)
Alignment TTTKLLGGDSFYYGKGLINVQAAAQ
PDB TTTKLGDSFYYGKGLINVQAAAQ
Match ***** * *

Once we have identified the flexible zones, we need to manually
modify the FastA file with the correct sequence (eliminating duplicities)
and obtain a new alignment. However, in this practice, due to time
reasons, we can just eliminate this kind of templates.

Once we have successfully executed the program, we will obtain a
series of output files. All of them will have as prefix the label we set in
the sequence option. The important files for us are those containing
the three-dimensional coordinates of the generated models in pdb
format, which will have as extension .B9999000N.pdb, where N is
the number of the different models we have generated (1 and 2 in our
case).

It is really important to change the name of these files
(sequence.B9999000N.pdb) to simpliest and more meaningful names.
Keep in mind that if we execute again MODELLER in the same
directory, these files will be overwritten.

After executing MODELLER with the two alignments we have, we will
have four models: two coming from the sequence-based alignment
and two more coming from the alignment based on the templates
structural alignment.

At this point, it is worth to visualize the obtained models and even
superimpose their structures to realize similarities and differences
between them. It is also worth comparing our models with the
templates from which we have obtained them.

In some cases, this kind of analysis may prompt us to refine the used
alignments. Two examples would be:

1. We observe a loop located in such a way that it breaks a secondary
structural element. This is an indication that the alignment has opened
a gap without taking into account the structural information of the
templates. This is more likely to happen in a sequence-based

alignment.

2. We observe that in the N-term and/or C-term of the model there
are disordered segments. This is because there are gaps at the
beginning and/or the end of the alignment. In this situation, it is
advisable to build up a model without these segments. On the other
hand, the presence of loops with different conformation from the one
observed in the templates, are indicative of gap regions in our
alignment. These zones, in which we have less information to build up
the model, deserve a close attention in our analysis.

	

