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Modeller is an implementation of an automated approach to 
comparative protein structure modeling by satisfaction of spatial 
restraints. 
First, the known template 3D structures are aligned to the target 
sequence to be modeled. Second, spatial features, such as Ca-Ca 
distances, hydrogen bonds, and mainchain and sidechain angles, are 
transferred from the templates to the target. Thus, a number of spatial 
restraints on its structure are obtained. Third, the 3D model I obtained 
by satisfying all the restraints as well as possible: 

	

Getting started 

 
Download the target and example of a modeller input file from Aula 
Global 
 



It is advisable to create two different directories: one for the models 
we will obtain from our sequence alignment and the second one for the 
models we will obtain from our alignment based on the structural 
alignment of our templates. In each directory we will need a copy of 
the corresponding alignment, the pdb files for the templates and the 
modeller input file. 
 
Using MODELLER 
Before running the program, we will need to do the following steps: 
 
1. Convert the alignment into pir format 
The alignment used by modeller must be in pir format. We can use the 
program aconvert to do this format change.  
The input format depens on how we have obtained the alignment: 
"c" if it comes from clustalw and "h" if it comes from hmmer. 
The output format is pir ("p"). The resulting alignment will have as 
many blocks as sequences we have in our alignment. Each block has a 
header of two lines with some labels, which must be the same as in 
the input file (see below). 
 
The file will look like: 

	

	

	

	



2. Modeller input file (extension .py) 
The input file contains all the parameters needed by MODELLER and 
the options we want to use for building up the 3D models of our 
target. It is advisable that this file has the extension .py 
 
It will look like: 
 
# Homology modeling with multiple templates from modeller import *  
# Load standard Modeller classes from modeller.automodel import *  
# Load the automodel class log.verbose()  
# request verbose output 
 
env = environ() # create a new MODELLER environment to build this model in 
 
# directories for input atom files 
 
env.io.atom_files_directory = ['.', '../atom_files'] 
a = automodel(env, 
alnfile = 'P11018_1scjA_1gciA.pir', # alignment filename 
knowns = ('1scj', '1gciA'), # codes of the templates  
sequence = 'P11018') # code of the target 
a.starting_model= 1 # index of the first model 
a.ending_model = 2 # index of the last model 
 
# (determines how many models to calculate) 
a.make() # do the actual homology modeling 

 
Therefore, we need to modify the input file, which is only an example, 
to incorporate our data: 
 
a. In alnfile we will set the name of our alignment file (in pir format) 
from which we will build up the models. The name of the file is written 
between single quotation marks. 
 
b. In knowns we will set the label for each template. These labels 
must be consistent (i.e the same) with those appearing in the 
alignment file (first and second line of each template block) and with 
the prefix of its pdb file. Template codes are written between single 
quotation marks,and they are spaced by commas and a blank space. 
 
c. In sequence we will set our target label. This label must be 
consistent with the one appearing in the alignment file (first and 
second line of the target block). It is written between single quotation 
marks. 
 
d. By default pdb files must be in our working directory. If not, we 
need to state its location at env.io.atom_files_directory. 
 
e. We can build up as many models as we want, since there is more 
than one solution satisfying the spatial restrains. In our case, we will 
only build up two models for each alignment. To do so, we will set 2 in 



a.ending_model. The instruction a.make() is for doing the homology 
modeling in its most simple formulation. 
 
f. Modeller can work with several chains. However, the simplest form is 
to use a single chain for templates. In order to get the structures of 
single chains we run the script PDBtoSplitChain.pl 
 
PDBtoSplitChain.pl -i <PDB-file> -o <root-name> 
 
Where the output will be as many files as chains in the PDB file with 
the PDB and FASTA files of the chains (i.e. for a PDB with chains A and 
B, using a root name “root” we get rootA.pdb, rootB.pdb, rootA.fa and 
rootB.fa files) 
 
The command for running MODELLER is: 
$mod9.13 file 
 
where file is the file with extension py that we have just modified. 
 
However, in the next steps we plan to include python commands of 
MODELLER. This implies the use of specific libraries that we may wish 
to apply. Consequently, we have a second option to run MODELLER, 
indicating what python we plan to use 
 
 
$modpy.sh  python file 
 
 
 
Loop modeling, refinement and assessment  
 
 
The input file uses a standard procedure (it’s actually a python class) 
“automodel” for modeling. However, we can improve the modeling of 
loops by using the class “loopmodel” . 
 
a. Change automodel by loop model in the input file 

a=loopmodel( 
b. Include the assessment by adding a new parameter within the 

parenthesis 
…, assess_methods=assess.DOPE 

c. Sort the output according to DOPE energy. After the execution of 
modeling (i.e. a.make()), you have to add the following lines: 
 



    ok_mdl=filter(lambda x:x[‘failure’] is None,a.outputs) #remove fail 
    key=’DOPE score’ 
    ok_mdl.sort(lambda a,b: cmp(a[key],b[key]) #sort OK models 
    #list the ranking 
    for m in ok_models: 
     print(“Model: %s  (DOPE score %.3f)”%(m[‘name’],m[key])) 
 
 
d. Refinement. This can be done at two levels: 1) refining the whole 

model; and 2) refining only the loops. 
 

a. To refine the whole model add a line after the definition of the 
number of ending model 
a.md_level=refine.fast 
 

b. To refine the loop add three more lines 
a.loop.starting_model=1  #First loop model as *.BL0001 
a.loop.ending_model=4   #Last loop model as *.BL0004 
a.loop.md_level=refine.fast 
 
However, if we wish to evaluate also the assessment of the 
loops, we add in the execution, instead of assess_methods, 
loop_assess_methods. Then, we report in the ok_mdl 
dictionary the selection of acceptable a.loop.outputs, instead 
of a.outputs. 
 

e. In case we wish to have only a selected set of loops to modify, then 
we need to use restrictions. Therefore we have to define our class, 
this being a child of loopmodel. For example, if we wish to select 
residues 19-28 and 45-50 from the model, we define MyLoop class 
as: 
 
Class MyLoop(loopmodel): 
 def select_loop_atoms(self): 
  return selection(self.residue_range(’19:’,’28:’), 
     self.residue_range(’45:’,’50:’)) 
 
Then we run MyLoop class instead of loopmodel class. 

 
 
Macro-complex modeling and restrictions 
 
a. Modeller also handles the modeling of a complex with more than 
one chain. The class is the same (automodel), but the alignment needs 



to handle with the different behavior. 
The alignment places a slash “/” to show the end of a chain. Then it 
gives the residue position at the start and end of the template(s) (i.e. 
1:A and 74:B). If more than one chain is to be built, see the following 
example: 
 
 
C; example for building multi-chain protein models 
 
>P1;2abx 
structureX:2abx:   1 :A:74 :B:bungarotoxin:bungarus multicinctus:2.5:-1.00 
IVCHTTATIPSSAVTCPPGENLCYRKMWCDAFCSSRGKVVELGCAATCPSKKPYEEVTCCSTDKCNHPPKRQPG/ 
IVCHTTATIPSSAVTCPPGENLCYRKMWCDAFCSSRGKVVELGCAATCPSKKPYEEVTCCSTDKCNHPPKRQPG* 
 
>P1;1hc9 
sequence:1hc9:   1 :A:148:B:undefined:undefined:-1.00:-1.00 
IVCHTTATSPISAVTCPPGENLCYRKMWCDVFCSSRGKVVELGCAATCPSKKPYEEVTCCSTDKCNPHPKQRPG/ 
IVCHTTATSPISAVTCPPGENLCYRKMWCDAFCSSRGKVVELGCAATCPSKKPYEEVTCCSTDKCNPHPKQRPG* 

 
 
b. However, in many occasions there is symmetry between both chains 
(in case of an homodimer). Constraints are applied by defining a new 
class inheriting the automodel 
 
class MyModel(automodel): 
    def special_restraints(self, aln): 
        # Constrain the A and B chains to be identical  

  # (but only restrain 
        # the C-alpha atoms, to reduce the number of interatomic  

  # distances that need to be calculated): 
        s1 = selection(self.chains['A']).only_atom_types('CA') 
        s2 = selection(self.chains['B']).only_atom_types('CA') 
        self.restraints.symmetry.append(symmetry(s1, s2, 1.0)) 
 

c. For a more general use of restraints, we can add as many new 
restraints as we wish, forcing specific distances between CA atoms (or 
any specific selected atom) of residues. Restraints are stored in the set 
“restraints” within automodel. They can be specific of secondary 
structures (alpha or beta) or any specific distance forced by the user. 
See the following example: 
 
Create the class 
 
class MyModel(automodel): 
    def special_restraints(self, aln): 
 
# Define the sets 
 
        rsr = self.restraints 
        at = self.atoms 

 
 



Use a file with restraints if available 
 
#       Add some restraints from a file: 
#       rsr.append(file='my_rsrs1.rsr') 
 
 

Define secondary structure restraints  
 
#       Residues 20 through 30 should be an alpha helix: 
        rsr.add(secondary_structure.alpha(self.residue_range('20:', '30:'))) 
 
 
#       Two beta-strands: 
        rsr.add(secondary_structure.strand(self.residue_range('1:', '6:'))) 
        rsr.add(secondary_structure.strand(self.residue_range('9:', '14:'))) 
 
#       An anti-parallel sheet composed of the two strands: 
#  Requires the location of the starting Hbond and the total of residue-pairs 
#  that will form the ladder witha - sign 
        rsr.add(secondary_structure.sheet(at['N:1'], at['O:14'], 
                                          sheet_h_bonds=-5)) 
#       Use the following instead for a *parallel* sheet:  
#  Requires the location of the starting Hbond and the total of residue-pairs 
#  that will form the ladder witha + sign 
#       rsr.add(secondary_structure.sheet(at['N:1'], at['O:9'], 
#                                         sheet_h_bonds=5)) 
 

 
Use your own selected restraints 
 
 
#       Restrain the specified CA-CA distance to 10 angstroms (st. dev.=0.1) 
#       Use a harmonic potential and X-Y distance group. 
        rsr.add(forms.gaussian(group=physical.xy_distance, 
                               feature=features.distance(at['CA:35'], 
                                                         at['CA:40']), 
                               mean=10.0, stdev=0.1)) 

 
 
Possible error sources when executing modeller 
 
The most frequent error sources while executing MODELLER are three: 
 
1. File names and their location 
2. Inconsistencies between labels stated in the alignment and input 
files. 
3. Inconsistencies between sequences in the alignment and in the 
template files. This may occur in different situations: 
	

a. if the sequence used in the alignment was obtained from 
Swissprot rather than from the PDB. Usually the sequence at the 
pdb is not the complete sequence. 
b. if in the protein structure there is one main chain segment 
with more than one position (occupacy < 1). In that case, the 
program PDBtoSplitChain interprets that we have different 
aminoacids instead of one aminoacid with different positions, 



making a mistake while extracting the sequence. In this case, in 
the log file will appear an error like this: 
 
 
read_te_291E> Sequence difference between alignment and pdb : 
x (mismatch at alignment position 258) 
Alignment TTTKLLGGDSFYYGKGLINVQAAAQ 
PDB       TTTKLGDSFYYGKGLINVQAAAQ 
Match     *****        *       * 
 

 
Once we have identified the flexible zones, we need to manually 
modify the FastA file with the correct sequence (eliminating duplicities) 
and obtain a new alignment. However, in this practice, due to time 
reasons, we can just eliminate this kind of templates. 
 
Once we have successfully executed the program, we will obtain a 
series of output files. All of them will have as prefix the label we set in 
the sequence option. The important files for us are those containing 
the three-dimensional coordinates of the generated models in pdb 
format, which will have as extension .B9999000N.pdb, where N is 
the number of the different models we have generated (1 and 2 in our 
case). 
 
It is really important to change the name of these files 
(sequence.B9999000N.pdb) to simpliest and more meaningful names. 
Keep in mind that if we execute again MODELLER in the same 
directory, these files will be overwritten. 
 
After executing MODELLER with the two alignments we have, we will 
have four models: two coming from the sequence-based alignment 
and two more coming from the alignment based on the templates 
structural alignment. 
 
At this point, it is worth to visualize the obtained models and even 
superimpose their structures to realize similarities and differences 
between them. It is also worth comparing our models with the 
templates from which we have obtained them. 
 
In some cases, this kind of analysis may prompt us to refine the used 
alignments. Two examples would be: 
 
1. We observe a loop located in such a way that it breaks a secondary 
structural element. This is an indication that the alignment has opened 
a gap without taking into account the structural information of the 
templates. This is more likely to happen in a sequence-based 



alignment. 
 
2. We observe that in the N-term and/or C-term of the model there 
are disordered segments. This is because there are gaps at the 
beginning and/or the end of the alignment. In this situation, it is 
advisable to build up a model without these segments. On the other 
hand, the presence of loops with different conformation from the one 
observed in the templates, are indicative of gap regions in our 
alignment. These zones, in which we have less information to build up 
the model, deserve a close attention in our analysis. 
 
 
 
	


