Comparative Modelling

Summary

1. Basic concepts of Homology Modeling
2. Schema of the method
3. Fold assignment
4. Template selection
5. Model building
6. Evaluation
7. Improvement
8. Basic concepts of Homology Modeling Definition

Extrapolation of the structure for a new (target) sequence from the known 3D-structures of related family members (templates).

1. Basic concepts of Homology Modeling

The number of different protein folds is limited:

1. Basic concepts of Homology Modeling Sequence similarity implies structural similarity?

2. Basic concepts of Homology Modeling

- Fold is more conserved than sequence.
- Secondary structure are the most conserved parts
- Loops have the higher variability in structure.

1. Basic concepts of Homology Modeling Structural Genomics

express \& purify
cristallize
X-ray
analises
structure

1．Basic concepts of Homology Modeling Structural Genomics

pdbx＿SG＿project．full＿name＿of＿center			
		Total Count（not null）： 8862	
	0	2672	
RIKEN Structural Genomics／Proteomics Initiative			葴
Midwest Center for Structural Genomics			䦠
Joint Center for Structural Genomics			雨
New York SGX Research Center for Structural Genomics			品
Structural Genomics Consortium			
Northeast Structural Genomics Consortium			
Center for Eukaryotic Structural Genomics			箓
TB Structural Genomics Consortium			
Seattle Structural Genomics Center for Infectious Disease			䑦
Center for Structural Genomics of Infectious Diseases			焥
Southeast Collaboratory for Structural Genomics			罭
Structural Proteomics in Europe			㖪
Berkeley Structural Genomics Center			号
Montreal－Kingston Bacterial Structural Genomics Initiative	\square		喏
Structural Genomics of Pathogenic Protozoa Consortium	\square		第
Structure 2 Function Project	I		
Ontario Centre for Structural Proteomics	I		㘓
Medical Structural Genomics of Pathogenic Protozoa			雨
Oxford Protein Production Facility			感
Mycobacterium Tuberculosis Structural Proteomics Project			
Accelerated Technologies Center for Gene to 3D Structure			㖪
Israel Structural Proteomics Center			啊
Center for Structures of Membrane Proteins			号
Integrated Center for Structure and Function Innovation			咢
Marseilles Structural Genomics Program＠AFMB			感
New York Consortium on Membrane Protein Structure			喏
Structural Proteomics in Europe 2			啔
Scottish Structural Proteomics Facility			号
Center for High－Throughput Structural Biology			第
Paris－Sud Yeast Structural Genomics			号
Bacterial targets at IGS－CNRS，France			第
New York Structural Genomix Research Consortium			咢
Structural Genomics Consortium for Research on Gene Expression			
Protein Structure Factory			開

1. Basic concepts of Homology Modeling Structural Genomics

2. Schema of the method
1.Fold assignment
2.Template selection
3.Model building
4.Evaluation
5.Improvement

MODEL BUILDING

2. Schema of the method

1. Fold assignment

Sequence search with the target

1. Compares the sequence of the target with a set of sequences with known structure
2. Ranking the comparisons by scores.
3. Scores are related to P-values or E-values (high score implies low Pvalue). P-value is the probability of obtaining the same alignment by chance.
4. Scores are calculated using a residue-substitution matrix:
5. PAM: based on the alignment of sequences of homologs
6. BLOSUM: based on the alignment of blocs of similar sequences
7. One sequence can have more than one domain, therefore we can obtain the best scores for partial parts of the target.
8. Methods (see practice)
9. BLAST algorithm, matches words from a pre-calculated and indexed set and joints them into sentences (forming the sequence)
10. FastA: Smith \& Waterman algorithm
11. Scanning PFAM: algorithm of Hidden Markov Models

2. Schema of the method

2. Template selection

Selecting the best target-alignment template

1. The template(s) should be the closest homolog(s) to the target
2. Small number of templates to avoid stress on model building
3. Multi-domain proteins require the use of at least one template with the largest coverage of sequence (containing the largest number of domains)
4. Structural alignment of homologs gives the information on positionspecific substitutions
5. Detection of structurally conserved regions (SCR) and variable regions (VR)
6. Aligning the target sequence and template sequences using a multiple sequence profile helps to avoid misalignments
7. Methods (see practice)
8. ClustalW
9. T-coffee
10. HMMER
11. alignment with a known family profile (PFAM)
12. Alignment with a profile built with the structure of homologs

2. Schema of the method

 2. Template selection

 2. Template selection}

2. Schema of the method
 2. Template selection

$\begin{array}{llllllll}10 & 20 & 30 & 40 & 50 & 60 & 70 & 80\end{array}$

2. Schema of the method

3. Model building

1. Rigid Body Assembly

1. Core framework (SCR)
2. Loop modeling (VR)
3. Energy minimization
4. Spatial restraints
5. Probability Density Functions (PDF)
6. Distance restraints
7. Simulated Annealing
8. Loop modeling
9. Side-chain modeling
10. Back-bone dependent rotamer libraries
11. Energetic and packing criteria

2. Schema of the method

3. Model building: Rigid Body Assembling (core framework)

- Averaging core template backbone atoms
(weighted by local sequence similarity with the target sequence)
- Leave non-conserved regions (loops) for later

2. Schema of the method
3. Model building: Rigid Body Assembling (loop modeling)
4. Use the "spare part" algorithm to find compatible fragments in a Loop-Database
5. "ab-initio" rebuilding of loops (Monte Carlo, molecular dynamics, genetic algorithms, etc.)

2. Schema of the method

3. Model building: Rigid Body Assembling (loop modeling)
4. Use the "spare part" algorithm to find compatible fragments in a Loop-Database

EF-Hand
Calcium binding
aa\{baalal\}bb
Xh\{DXDPDG\}Xh

P-loop GTP binding

$$
\begin{aligned}
& \text { bb }\{\text { eppgag }\} a a \\
& \text { hh }\{\mathrm{GhXXpG}\} \mathrm{Kp}
\end{aligned}
$$

NAD(P)/FAD binding
bb \{eab\}aa
hh $\{$ GhG $\}$ hx
2. Schema of the method
3. Model building: Rigid Body Assembling (loop modeling)

1. Use the "spare part" algorithm to find compatible fragments in a Loop-Database

2. Schema of the method
3. Model building: Rigid Body Assembling (loop modeling)
4. Use the "spare part" algorithm to find compatible fragments in a Loop-Database

2. Schema of the method

3. Model building: Rigid Body Assembling (Energy minimization)

$$
\begin{aligned}
& E_{\text {noo-boonturs }}=\frac{1}{4 \pi \varepsilon_{0}} \sum_{i} \sum_{j>i} \frac{q q_{j}}{r_{i j}}+\sum_{i} \sum_{j ; i} \frac{C_{i j}^{i j}}{r_{i j}^{i j}}-\frac{C_{1 i}^{i j}}{r_{i j}^{i}} \\
& E=E_{\text {bonting }}+E_{\text {non-bonting }}
\end{aligned}
$$

- modeling will produce unfavorable contacts and bonds: idealization of local bond and angle geometry
- extensive energy minimization will move coordinates away: keep it to a minimum
- Methods: Newton Rapson; Steepest Descent; Conjugate Gradient

2. Schema of the method

3. Model building: Rigid Body Assembling (Energy minimization)

$$
\begin{aligned}
& x_{i+1}=x_{i}+\lambda \nabla E \\
& \lambda=\left\{\begin{array}{l}
E\left(x_{i+1}\right)<E\left(x_{i}\right) \Rightarrow \lambda=\lambda+\varepsilon \\
E\left(x_{i+1}\right)>E\left(x_{i}\right) \Rightarrow \lambda=\lambda / 2 \\
\lambda<\lambda_{\max } \\
E\left(x_{i+1}\right) \approx E\left(x_{i}\right) \Rightarrow \text { STOP }
\end{array}\right.
\end{aligned}
$$

2. Schema of the method

3. Model building: Spatial restraints (Probability Density Functions)

Feature properties can be associated with

- a protein (e.g. X-ray resolution)
- residues (e.g. solvent accessibility)
- pairs of residues (e.g. $\mathrm{C}_{\mathrm{a}}-\mathrm{C}_{\mathrm{a}}$ distance)
- other features (e.g. main chain classes)

Example: Ramachandran Plot Distribution of (ϕ, ψ) angles

2. Schema of the method

3. Model building: Spatial restraints
(Probability Density Functions)

Example:
Distribution of $\mathrm{C} \alpha-\mathrm{C} \alpha$ distances
How can we derive modeling restraints from this data?

A restraint is defined as probability density function (pdf), $\mathrm{p}(\mathrm{x})$:

$$
p(x 1 \leq x<x 2)=\int_{x 2}^{x 1} p(x) d x \quad \text { with } \quad p(x)>0
$$

2. Schema of the method

3. Model building: Spatial restraints
(Probability Density Functions)

Example:
Distribution of $\mathrm{C} \alpha-\mathrm{C} \alpha$ distances
How can we derive modeling restraints from this data?

2. Schema of the method

3. Model building: Spatial restraints
(Distance restraints)

2. Schema of the method

3. Model building: Spatial restraints
(Distance restraints)

2. Schema of the method

3. Model building: Spatial restraints
(Distance restraints)

Distance restraints between Aa in SCR \& VR (required to locate the conformation of the VR)

2. Schema of the method

3. Model building: Spatial restraints
(Distance restraints)

Distance restraints between Aa in VR \& VR (required to obtain the conformation of the VR)

2. Schema of the method

3. Model building: Spatial restraints
(Simulated annealing)

Optimizing a target function:

1. Start with e.g. a random conformation model and use only local restraints
2. Minimize some steps using a conjugate gradient optimization and molecular dynamics steps
3. Repeat, introducing more and more long range restraints until all restraints are used

$$
\begin{aligned}
& E_{\text {non-bondings }}=\frac{1}{4 \pi \varepsilon_{0}} \sum_{i} \sum_{j ; i} \frac{q q_{j}}{r_{i j}}+\sum_{i} \sum_{j>i} \frac{C_{i}^{i j}}{r_{i j}^{i j}}-\frac{C_{12}^{i j}}{r_{i j}^{2}} \\
& E_{\text {dist }}=\sum_{\text {rest }} \frac{1}{2} k_{r}\left(d_{r}-\left\langle d_{r}^{0}\right\rangle\right)^{2} \\
& E=E_{\text {bonting }}+E_{\text {non-bonding }}+E_{p \text { pif }}+E_{\text {dist }}
\end{aligned}
$$

2. Schema of the method
3. Model building: Spatial restraints
(Simulated annealing)

2. Schema of the method

3. Model building: Spatial restraints
(Simulated annealing)

2. Schema of the method

3. Model building: Spatial restraints
(Loop modeling using a database of loops)

 -ETFVGDQVLEIVPSNEEQIKNLLQLEAQEHLQLDFWKSPTTPGETAHVRVPFVNVQ-----LESQGIAYSIMIEDVQVL KEDFVGHQVLRITAADEAEV-----LEDLEHLQLDFWRGPGQPGSPIDVRVPFPSLQAVKVFLEAHGIRYRIMIEDVQSL template 1

2. Schema of the method

3. Model building: Spatial restraints
(Loop modeling using a database of loops)

Obtain restraints

Using the structure of a known loop:

1. The C-tail and N -tail of the loop (template 2) when superposed with the core of the main template (template 1) produce a low RMSD
2. The selection of the loop follow two criteria: similar sequence profile with the target and similar anchoring geometry of the loop with the main template

2. Schema of the method

3. Model building: Spatial restraints
(Loop modeling ab initio)

Using PDF of loops and minimization methods:

1. Calculate specific PDF residue properties of loops
2. Minimize by simulated annealing the loops
3. Extract main motion from normal modes on templates and apply them as restrictions on the conformational changes of the model
4. Methods:
5. Loop-model from MODELLER
6. ArchPred
7. Rosetta

2. Schema of the method

3. Model building: Side-chains

Let be a rotamer library, we define the probability of sidechain " i " in conformation " k " as $\mathbf{C M}(\mathrm{i}, \mathrm{k})$.
Initially CM(i,k)=1/Ki, where Ki is the total of rotamers of residue "i".

Multi-copy.
Koehl and Delarue J.Mol. Biol. (1994) 239, 249-275
2. Schema of the method
3. Model building: Side-chains

2. Schema of the method

3. Model building: Side-chains

Given U the total potential energy of the protein and its environment, we define the effective potential of rotamer "k" of residue "i" as $E(i, k)$, where:

$$
\begin{aligned}
& E(i, k)=\int \rho(x) U(i, k, X) \mathrm{dX} \\
& \mathrm{X}=\left(x_{0}, x_{1}, . .\right)
\end{aligned}
$$

U is obtained with $E_{\text {non-bonding }}, E_{\text {bonding }}$ on a system that includes the protein and water molecules

2. Schema of the method

3. Model building: Side-chains

$$
\begin{aligned}
& \rho\left(x_{0}, x_{1}, . .\right)=\prod_{j=0}^{N} \rho\left(x_{j}\right) \\
& \rho\left(x_{0}\right)=\delta\left(x_{0}-x C_{0}\right) ; \\
& x C_{0} \text { backbone coordinates }
\end{aligned}
$$

2. Schema of the method

3. Model building: Side-chains

$$
\rho\left(x_{0}, x_{1}, . .\right)=\prod_{j=0}^{N} \rho\left(x_{j}\right)
$$

$$
\rho\left(x_{0}\right)=\delta\left(x_{0}-x C_{0}\right) ;
$$

$x C_{0}$ backbone
$\rho\left(x_{i}\right)=C M(i, k) * \delta\left(x_{i}-x C_{i}^{k}\right) ;$
$x C_{i}^{k}$ residue "i" coordinates
with conformation "k"
2. Schema of the method
3. Model building: Side-chains

$$
\begin{gathered}
\rho\left(x_{0}, x_{1}, . .\right)=\prod_{j=0}^{N} \rho\left(x_{j}\right) \\
\rho\left(x_{j}\right)=\sum_{k=1}^{K_{j}} C M(j, k) \delta\left(x_{j}-x C_{j}^{k}\right)
\end{gathered}
$$

2. Schema of the method
3. Model building: Side-chains

4. Schema of the method
5. Model building: Side-chains

By Statistical Mechanics we know that

$$
\begin{aligned}
& \mathrm{CM}(\mathrm{i}, \mathrm{k})=\frac{e^{-E(i, k) / R T}}{Z} \\
& Z=\sum_{l=1}^{K_{i}} e^{-E(i, l) / R T}
\end{aligned}
$$

2. Schema of the method

3. Model building: Side-chains

Iterative optimization

$$
\begin{array}{|l}
E(i, k)=\int \rho(x) U(i, k, X) d X ; \quad \mathrm{X}=\left(x_{0}, x_{1}, . .\right) \\
\rho\left(x_{0}, x_{1}, . .\right)=\prod_{j=0}^{N} \rho\left(x_{j}\right) ; \\
\rho\left(x_{0}\right)=\delta\left(x_{0}-x C_{0}\right) ; \\
x C_{0} \text { backbone } \\
\\
\rho\left(x_{i}\right)=\delta\left(x_{i}-x C_{i}^{k}\right) ; \\
x C_{i}^{k} \text { residue "i" coordinates in conformation "k" } \\
\\
\rho\left(x_{j}\right)=\sum_{l=1}^{K_{j}} C M(j, l) \delta\left(x_{j}-x C_{j}^{l}\right) ; \\
\\
\\
C M(\mathrm{i}, \mathrm{k})=\frac{e^{-E(i, k) / R T}}{Z} ; Z=\sum_{l=1}^{K_{i}} e^{-E(i, l) / R T}
\end{array}
$$

MODEL BUILDING

2. Schema of the method

4. Evaluation

Types of Errors

1. Errors in side-chain packing .
2. Shifts of correctly aligned residues .
3. Regions without template .
4. Errors due to misalignments .
5. Errors produced by incorrect templates .

2. Schema of the method

4. Evaluation

Shifts of correctly aligned residues

```
HHHHHHHH HHH . HHC
GARFIELD THE .CAT
GARFIELD THE CCAT
```

Solution
нннннннн ннн ннС.
GARFIELD THE CAT.
GARFIELD THE CCAT

2. Schema of the method

4. Evaluation

Errors due to misalignments .
GARFIELD THE CAT ...
GARFIELD THE FAT CAT
Solution

```
GARFIELD THE ... CAT
GARFIELD THE FAT CAT
```


2. Schema of the method

4. Evaluation

How to test the model?

1. Compare the RMSD between the model and the real structure
2. Check that secondary structures are correctly aligned
3. Calculate the percentage of residues that are closer than a threshold after superposing the model and the real structure
4. Calculate the percentage of identical residues aligned when superposing the real structure and the model.
5. Check the energy of threading to compare the real structure and the model (see next chapter)

2. Schema of the method

4. Evaluation

Model Accuracy Evaluation

CASP
Community Wide Experiment on the Critical Assessment of Techniques for Protein Structure Prediction
http://PredictionCenter.IInl.gov/casp5/

EVA
Evaluation of Automatic protein structure prediction
[Burkhard Rost, Andrej Sali, http://maple.bioc.columbia.edu/eva/]

3D - Crunch
Very Large Scale Protein Modeling Project
http://www.expasy.org/swissmod/SM_LikelyPrecision.html

2. Schema of the method

5. Improvement

How to detect possible errors in the model if we don't know the solution?

1. Compare the model and all the templates
2. Check that secondary structures are not broken
3. Check if the prediction of secondary structure agrees with the secondary structure of the model
4. Check if the loops of the target are similar to some loops in the database of loops and they agree in sequence and anchoring geometry
5. Check the capping of helices
6. Check pseudo-energies of threading and compare the model with the templates.

2. Schema of the method

5. Improvement

How to improve the model?

1. Decide the changes in the alignment according to the secondary structure prediction or the structure of the templates and recalculate the model
2. Change the main template and recalculate the model
3. Include new templates
4. Calculate the main motion of normal modes from the templates of the homologous family and optimize by molecular dynamics under motion restrictions the conformation
5. Recalculate the pseudo energy profile of the new model and compare with the original model to test the improvement

EXAMPLE

PRO-CARBOXIPEPTIDASA

Activation segment

PRO-CARBOXYPEPTIDASES

Bovine
Pro Carboxypeptidase A1 PCPA1b

Porcine
Pro Carboxypeptidase A1 PCPA1p

Porcine
Pro Carboxypeptidase B PCPBp

SEQUENCE ALIGNMENT OF PRO-CARBOXYPEPTIDASES

10	20	30	40	50	60	70	80

-ETFVGDQVLEIVPSNEEQIKNLLQLEAQEHLQLDFWKSPTTPGETAHVRVPFVNVQAVKVFLESQGIAYSIMIEDVQVL KEDFVGHQVLRISVDDEAQVQKVKELEDLEHLQLDFWRGPARPGFPIDVRVPFPSIQAVKVFLEAHGIRYTIMIEDVQLL

90	100	110	120	130	140	150	160

LDKENEEMLFNRRRERSGN-FNFGAYHTLEEISQEMDNLVAEHPGLVSKVNIGSSFENRPMNVLKFSTGG-DKPAIWLDA PCPA2h LDEEQEQMFASQSRARSTNTFNYATYHTLDEIYDFMDLLVAEHPQLVSKLQIGRSYEGRPIYVLKFSTGGSNRPAIWIDL LDEEQEQMFASQGRARTTSTFNYATYHTLEEIYDFMDILVAEHPALVSKLQIGRSYEGRPIYVLKFSTGGSNRPAIWIDS

170	180	190	200	210	220	230	240

GIHAREWVTQATALWTANKIVSDYGKDPSITSILDALDIFLLPVTNPDGYVFSQTKNRMWRKTRSKVSGSLCVGVDPNRN GIHSREWITQATGVWFAKKFTEDYGQDPSFTAILDSMDIFLEIVTNPDGFAFTHSQNRLWRKTRSVTSSSLCVGVDANRN GIXSRXWITQASGVWFAKKITENYGQNSSFTAILDSMDIFLEIVTNPNGFAFTHSDNRLWRKTRSKASGSLCVGSDSNRN

250	260	270	280	290	300	310	320

WDAGFGGPGASSNPCSDSYHGPSANSEVEVKSIVDFIKSHGKVKAFIILHSYSQLLMFPYGYKCTKLDDFDELSEVAQKA WDAGFGKAGASSSPCSETYHGKYANSEVEVKSIVDFVKDHGNFKAFLSIHSYSQLLLYPYGYTTQSIPDKTELNQVAKSA WDAGFGGAGASSSPCAETYHGKYPNSEVEVKSITDFVKNNGNIKAFISIXSYSQLLLYPYGYKTQSPADKSELNQIAKSA

Secondary Structure Prediction and Multiple Alignment of Pro-Carboxypeptidases

20	30

EEEEE

60

нннннннннн

80
ЕеЕенннннннн -ETFVGDQVLEIVPSNEEQIKNLLQLEAQEHLQLDFWKSPTTPGETAHVRVPFVNVQAVKVFLESQGIAYSIMIEDVQVL KEDFVGHQVLRITAADEAEVQTVKELEDLEHLQLDFWRGPGQPGSPIDVRVPFPSLQAVKVFLEAHGIRYRIMIEDVQSL KEDFVGHQVLRISVDDEAQVQKVKELEDLEHLQLDFWRGPARPGFPIDVRVPFPSIQAVKVFLEAHGIRYTIMIEDVQLL

PCPA2h PHD

90	100	110	120	130	140	150	160
нннннннннннннн							
LDKENEEMLFNRRRERSGN-FNFGAYHTLEEISQEMDNLVAEHPGLVSKVNIGSSFENRPMNVLKFSTGG-DKPAIWLDA							
LDEEQEQMFASQSRARSTNTFNYATYHTLDEIYDFMDLLVAEHPQLVSKLQIGRSYEGRPIYVLKFSTGGSNRPAIWIDL							
LDEEQEQMFASQGRARTTSTFNYATYHTLEEIYDFMDILVAEHPALVSKLQIGRSYEGRPIYVLKFSTGGSNRPAIWIDS							
170	180	190	200	210	220	230	240

GIHAREWVTQATALWTANKIVSDYGKDPSITSILDALDIFLLPVTNPDGYVFSQTKNRMWRKTRSKVSGSLCVGVDPNRN GIHSREWITQATGVWFAKKFTEDYGQDPSFTAILDSMDIFLEIVTNPDGFAFTHSQNRLWRKTRSVTSSSLCVGVDANRN GIXSRXWITQASGVWFAKKITENYGQNSSFTAILDSMDIFLEIVTNPNGFAFTHSDNRLWRKTRSKASGSLCVGSDSNRN
$\begin{array}{llllllll}250 & 260 & 270 & 280 & 290 & 300 & 310 & 320\end{array}$
WDAGFGGPGASSNPCSDSYHGPSANSEVEVKSIVDFIKSHGKVKAFIILHSYSQLLMFPYGYKCTKLDDFDELSEVAQKA WDAGFGKAGASSSPCSETYHGKYANSEVEVKSIVDFVKDHGNFKAFLSIHSYSQLLLYPYGYTTQSIPDKTELNQVAKSA WDAGFGGAGASSSPCAETYHGKYPNSEVEVKSITDFVKNNGNIKAFISIXSYSQLLLYPYGYKTQSPADKSELNQIAKSA

| 330 | 340 | 350 | 360 | 370 | 380 | 390 | 400 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | AQSLRSLHGTKYKVGPICSVIYQASGGSIDWSYDYGIKYSFAFELRDTGRYGFLLPARQILPTAEETWLGLKAIMEHVRD VEALKSLYGTSYKYGSIITTIYQASGGSIDWSYNQGIKYSFTFELRDTGRYGFLLPASQIIPTAQETWLGVLTIMEHTLN VAALKSLYGTSYKYGSIITVIYQASGGVIDWTYNQGIKYSFSFELRDTGRRGFLLPASQIIPTAQETWLALLTIMEHTLN

PCPA2h PHD
PCPA2h
PCPA1b
PCPA1p

PCPA2h
PCPA1b
PCPA1p

PCPA2h
PCPA1b
PCPA1p

PCPA2h
PCPA1b
PCPA1p

ox-Helix C-cap
 Schellman Motif

Refinement of the Model

Annex

Protein Structure Resources

PDB http://www.pdb.org
PDB - Protein Data Bank of experimentally solved structures (RCSB)
CATH http://www.biochem.ucl.ac.uk/bsm/cath/
Hierarchical classification of protein domain structures
SCOP http://scop.mrc-Imb.cam.ac.uk/scop/
Alexey Murzin's Structural Classification of proteins
DALI http://www2.ebi.ac.uk/dali/
Lisa Holm and Chris Sander's protein structure comparison server

SS-Prediction and Fold Recognition

PHD http://cubic.bioc.columbia.edu/predictprotein/
Burkhard Rost's Secondary Structure and Solvent Accessibility Prediction Server
3DPSSM http://www.sbg.bio.ic.ac.uk/~3dpssm/
Fold Recognition Server using 1D and 3D Sequence Profiles coupled with Secondary Structure and Solvation Potential Information.

Annex

Protein Homology Modeling Resources

```
SWISS MODEL: http://www.expasy.ch/swissmod/
Deep View - SPDBV:
homepage: http://www.expasy.ch/spdbv/
Tutorials http://www.usm.maine.edu/~rhodes/SPVTut/
    http://www.bbsrc.ac.uk/molbiol/
WhatIf http://www.cmbi.kun.nl/whatif/
Gert Vriend's protein structure modeling analysis program WhatIf
Modeller: http://guitar.rockefeller.edu/modeller/
Andrej Sali's homology protein structure modelling by satisfaction of spatial restraints
FAMS: http://physchem.pharm.kitasato-u.ac.jp/FAMS/fams.html
Full Automatic Modelling System (FAMS); Kitasato University; Tokyo, Japan
3D-JIGSAW: http://www.bmm.icnet.uk/people/paulb/3dj/form.html
Comparative Modelling Server; Imperial Cancer Research Fund; London, UK
CPHmodels: http://www.cbs.dtu.dk/services/CPHmodels/
Centre for Biological Sequence Analysis; The Technical University of Denmark; Denmark
SDSC1: http://cl.sdsc.edu/hm.html
SDSC Structure Homology Modelling Server; San Diego Supercomputing Centre
```

