Comparative Modelling

Summary

- 1. Basic concepts of Homology Modeling
- 2. Schema of the method
 - 1. Fold assignment
 - 2. Template selection
 - 3. Model building
 - 4. Evaluation
 - 5. Improvement

1. Basic concepts of Homology Modeling **Definition**

Extrapolation of the structure for a new (target) sequence from the known 3D-structures of related family members (templates). 1. Basic concepts of Homology Modeling

The number of different protein folds is limited:

1. Basic concepts of Homology Modeling Sequence similarity implies structural similarity?

1. Basic concepts of Homology Modeling

- Fold is more conserved than sequence.
- Secondary structure are the most conserved parts
- Loops have the higher variability in structure.

1. Basic concepts of Homology Modeling Structural Genomics

express & purify cristallize X-ray

analises

structure

1. Basic concepts of Homology Modeling Structural Genomics

pdbx_SG_project.full_name_of_center		
	Total Count (not null)	: 8862
	0 2672	
RIKEN Structural Genomics/Proteomics Initiative		5
Midwest Center for Structural Genomics		5
Joint Center for Structural Genomics		5
New York SGX Research Center for Structural Genomics		5
Structural Genomics Consortium		5
Northeast Structural Genomics Consortium		5
Center for Eukaryotic Structural Genomics		5
TB Structural Genomics Consortium		5
Seattle Structural Genomics Center for Infectious Disease		5
Center for Structural Genomics of Infectious Diseases		5
Southeast Collaboratory for Structural Genomics		5
Structural Proteomics in Europe		5
Berkeley Structural Genomics Center		5
Montreal-Kingston Bacterial Structural Genomics Initiative		1
Structural Genomics of Pathogenic Protozoa Consortium		8
Structure 2 Function Project	I contract of the second s	5
Ontario Centre for Structural Proteomics	I contract of the second s	5
Medical Structural Genomics of Pathogenic Protozoa		3
Oxford Protein Production Facility		5
Mycobacterium Tuberculosis Structural Proteomics Project		5
Accelerated Technologies Center for Gene to 3D Structure		5
Israel Structural Proteomics Center		5
Center for Structures of Membrane Proteins		6
Integrated Center for Structure and Function Innovation		5
Marseilles Structural Genomics Program @ AFMB		8
New York Consortium on Membrane Protein Structure		1
Structural Proteomics in Europe 2		5
Scottish Structural Proteomics Facility		8
Center for High-Throughput Structural Biology		5
Paris-Sud Yeast Structural Genomics		1
Bacterial targets at IGS-CNRS, France		1
New York Structural GenomiX Research Consortium		đ
Structural Genomics Consortium for Research on Gene Expression		8
Protein Structure Factory		5

1. Basic concepts of Homology Modeling Structural Genomics

2. Schema of the method
1.Fold assignment
2.Template selection
3.Model building
4.Evaluation
5.Improvement

MODEL BUILDING

1. Fold assignment

Sequence search with the target

- 1. Compares the sequence of the target with a set of sequences with known structure
- 2. Ranking the comparisons by scores.
- Scores are related to P-values or E-values (high score implies low P-value). P-value is the probability of obtaining the same alignment by chance.
- 4. Scores are calculated using a residue-substitution matrix:
 - 1. PAM: based on the alignment of sequences of homologs
 - 2. BLOSUM: based on the alignment of blocs of similar sequences
- 5. One sequence can have more than one domain, therefore we can obtain the best scores for partial parts of the target.
- 6. Methods (see practice)
 - 1. BLAST algorithm, matches words from a pre-calculated and indexed set and joints them into sentences (forming the sequence)
 - 2. FastA: Smith & Waterman algorithm
 - 3. Scanning PFAM: algorithm of Hidden Markov Models

2. Template selection

Selecting the best target-alignment template

- 1. The template(s) should be the closest homolog(s) to the target
- 2. Small number of templates to avoid stress on model building
- 3. Multi-domain proteins require the use of at least one template with the largest coverage of sequence (containing the largest number of domains)
- 4. Structural alignment of homologs gives the information on positionspecific substitutions
- Detection of structurally conserved regions (SCR) and variable regions (VR)
- 6. Aligning the target sequence and template sequences using a multiple sequence profile helps to avoid misalignments
- 7. Methods (see practice)
 - 1. ClustalW
 - 2. T-coffee
 - 3. HMMER
 - 1. alignment with a known family profile (PFAM)
 - 2. Alignment with a profile built with the structure of homologs

2. Template selection

2. Template selection

3. Model building

1. Rigid Body Assembly

- 1. Core framework (SCR)
- 2. Loop modeling (VR)
- 3. Energy minimization

2. Spatial restraints

- 1. Probability Density Functions (PDF)
- 2. Distance restraints
- 3. Simulated Annealing
- 4. Loop modeling

3. Side-chain modeling

- 1. Back-bone dependent rotamer libraries
- 2. Energetic and packing criteria

3. Model building: Rigid Body Assembling (core framework)

• Averaging core template backbone atoms

(weighted by local sequence similarity with the target sequence)

• Leave non-conserved regions (loops) for later

- 3. Model building: Rigid Body Assembling (loop modeling)
- 1. Use the "spare part" algorithm to find compatible fragments in a Loop-Database
- 2. "*ab-initio*" rebuilding of loops (Monte Carlo, molecular dynamics, genetic algorithms, etc.)

- 3. Model building: Rigid Body Assembling (loop modeling)
- Use the "spare part" algorithm to find compatible fragments in a Loop-Database

EF-Hand Calcium binding

aa{baalal}bb Xh{**D**X**D**p**D**G}Xh **P-loop GTP binding**

bb{eppgag}aa hh{GhXXpG}**Kp** NAD(P)/FAD binding

bb{eab}aa hh{**GhG**}hX

- 3. Model building: Rigid Body Assembling (loop modeling)
- 1. Use the "spare part" algorithm to find compatible fragments in a Loop-Database

- 3. Model building: Rigid Body Assembling (loop modeling)
- 1. Use the "spare part" algorithm to find compatible fragments in a Loop-Database

3. Model building: Rigid Body Assembling (Energy minimization)

$$\begin{split} E_{bonding} &= \sum_{bonds} \frac{1}{2} k_i \left(d_i - d_i^0 \right)^2 + \sum_{angles} \frac{1}{2} k_j \left(\alpha_j - \alpha_j^0 \right)^2 + \sum_{improper} \frac{1}{2} k_n \left(\omega_n - \omega_n^0 \right)^2 + \sum_{angles} E_m Cos \left(\omega_m \phi_m + \varphi_m \right)^2 \\ E_{non-bonding} &= \frac{1}{4\pi\varepsilon_0} \sum_i \sum_{j>i} \frac{q_i q_j}{r_{ij}} + \sum_i \sum_{j>i} \frac{C_6^{ij}}{r_{ij}^6} - \frac{C_{12}^{ij}}{r_{ij}^1} \\ E &= E_{bonding} + E_{non-bonding} \end{split}$$

- modeling will produce unfavorable contacts and bonds: idealization of local bond and angle geometry
- extensive energy minimization will move coordinates away: keep it to a minimum
- Methods: Newton Rapson; Steepest Descent; Conjugate Gradient

3. Model building: Rigid Body Assembling (Energy minimization)

$$\begin{aligned} x_{i+1} &= x_i + \lambda \nabla E \\ \lambda &= \begin{cases} E(x_{i+1}) < E(x_i) \Longrightarrow \lambda = \lambda + \varepsilon \\ E(x_{i+1}) > E(x_i) \Longrightarrow \lambda = \lambda/2 \\ \lambda < \lambda_{\max} \\ E(x_{i+1}) \approx E(x_i) \Longrightarrow STOP \end{aligned}$$

3. Model building: Spatial restraints (Probability Density Functions)

Feature properties can be associated with

- a protein (e.g. X-ray resolution)
- residues (e.g. solvent accessibility)
- pairs of residues (e.g. C_a C_a distance)
- other features (e.g. main chain classes)

Example: Ramachandran Plot Distribution of (ϕ, ψ) angles

3. Model building: Spatial restraints (Probability Density Functions)

Example: Distribution of $C\alpha$ - $C\alpha$ distances

How can we derive modeling restraints from this data?

A restraint is defined as probability density function (*pdf*), p(x):

$$p(x1 \le x < x2) = \int_{x2}^{x1} p(x)dx \quad \text{with} \quad p(x) > 0$$

3. Model building: Spatial restraints (Probability Density Functions)

$$E_{pdf}(x) = -RT\log(p(x))$$

Example: Distribution of $C\alpha$ - $C\alpha$ distances

How can we derive modeling restraints from this data?

Distance restraints between Aa in SCR & VR (required to locate the conformation of the VR)

Distance restraints between Aa in VR & VR (required to obtain the conformation of the VR)

3. Model building: Spatial restraints (Simulated annealing)

Optimizing a target function:

- 1. Start with e.g. a random conformation model and use only local restraints
- 2. Minimize some steps using a conjugate gradient optimization and molecular dynamics steps
- 3. Repeat, introducing more and more long range restraints until all restraints are used

$$E_{bonding} = \sum_{bonds} \frac{1}{2} k_i (d_i - d_i^0)^2 + \sum_{angles} \frac{1}{2} k_j (\alpha_j - \alpha_j^0)^2 + \sum_{improper dihedral} \frac{1}{2} k_n (\omega_n - \omega_n^0)^2 + \sum_{angles} E_m Cos(\omega_m \phi_m + \varphi_m)^2$$

$$E_{non-bonding} = \frac{1}{4\pi\varepsilon_0} \sum_{i} \sum_{j>i} \frac{q_i q_j}{r_{ij}} + \sum_{i} \sum_{j>i} \frac{C_6^{ij}}{r_{ij}^6} - \frac{C_{12}^{ij}}{r_{ij}^{12}}$$
$$E_{dist} = \sum_{rest} \frac{1}{2} k_r \left(d_r - \left\langle d_r^0 \right\rangle \right)^2$$
$$E = E_{bonding} + E_{non-bonding} + E_{pdf} + E_{dist}$$

3. Model building: Spatial restraints (Simulated annealing)

3. Model building: Spatial restraints (Simulated annealing)

Using the structure of a known loop:

- The C-tail and N-tail of the loop (template 2) when superposed with the core of the main template (template 1) produce a low RMSD
- 2. The selection of the loop follow two criteria: similar sequence profile with the target and similar anchoring geometry of the loop with the main template

3. Model building: Spatial restraints (Loop modeling *ab initio*)

Using PDF of loops and minimization methods:

- 1. Calculate specific PDF residue properties of loops
- 2. Minimize by simulated annealing the loops
- 3. Extract main motion from normal modes on templates and apply them as restrictions on the conformational changes of the model
- 4. Methods:
 - 1. Loop-model from MODELLER
 - 2. ArchPred
 - 3. Rosetta

3. Model building: Side-chains

Let be a rotamer library, we define the probability of sidechain "i" in conformation "k" as **CM**(i,k). Initially **CM**(i,k)=1/Ki, where Ki is the total of rotamers of residue "i".

Multi-copy. Koehl and Delarue *J.Mol. Biol.* (1994) **239**, 249-275

3. Model building: Side-chains

3. Model building: Side-chains

Given U the total potential energy of the protein and its environment, we define the effective potential of rotamer "k" of residue "i" as E(i,k), where:

$$E(i,k) = \int \rho(x)U(i,k,X)dX;$$

X = (x₀, x₁,..)

U is obtained with E_{non-bonding}, E_{bonding} on a system that includes the protein and water molecules

3. Model building: Side-chains

$$\rho(x_0, x_1, ...) = \prod_{j=0}^{N} \rho(x_j);$$

$$\rho(x_0) = \delta(x_0 - xC_0);$$

$$xC_0 \text{ backbone coordinates}$$

3. Model building: Side-chains

$$\rho(x_0, x_1, ...) = \prod_{j=0}^{N} \rho(x_j);$$
$$\rho(x_0) = \delta(x_0 - xC_0);$$

 xC_0 backbone

 $\rho(x_i) = CM(i,k) * \delta(x_i - xC_i^k);$ $xC_i^k \text{ residue "i" coordinates}$ with conformation "k"

2. Schema of the method

3. Model building: Side-chains

$$\rho(x_0, x_1, ...) = \prod_{j=0}^{N} \rho(x_j);$$

$$\rho(x_j) = \sum_{k=1}^{K_j} CM(j, k) \delta(x_j - xC_j^k);$$

3. Model building: Side-chains

3. Model building: Side-chains

By Statistical Mechanics we know that

$$CM(i,k) = \frac{e^{-E(i,k)/RT}}{Z};$$

$$Z = \sum_{l=1}^{K_i} e^{-E(i,l)/RT}$$

3. Model building: Side-chains

Iterative optimization

	$- E(i,k) = \int \rho(x)U(i,k,X)dX; \mathbf{X} = (x_0, x_1,) \blacktriangleleft$	2					
3	$\rho(x_0, x_1,) = \prod_{j=0}^{N} \rho(x_j);$						
	$\rho(x_0) = \delta(x_0 - xC_0);$						
	xC_0 backbone						
	$\rho(x_i) = \delta(x_i - xC_i^k);$						
	xC_i^k residue "i" coordinates in conformation "k"						
	$\rho(x_j) = \sum_{l=1}^{K_j} CM(j,l)\delta(x_j - xC_j^l);$						
	$CM(i,k) = \frac{e^{-E(i,k)/RT}}{Z}; Z = \sum_{l=1}^{K_i} e^{-E(i,l)/RT}$	4					

MODEL BUILDING

4. Evaluation

Types of Errors

1. Errors in side-chain packing .

- 2. Shifts of correctly aligned residues .
- 3. Regions without template .
- 4. Errors due to misalignments .
- 5. Errors produced by incorrect templates .

2. Schema of the method 4. Evaluation

Shifts of correctly aligned residues

HHHHHHHH HHH .HHC GARFIELD THE .CAT GARFIELD THE CCAT

Solution

HHHHHHHH HHH HHC. GARFIELD THE CAT. GARFIELD THE CCAT

2. Schema of the method 4. Evaluation

Errors due to misalignments .

GARFIELD THE CAT ... GARFIELD THE FAT CAT

Solution

GARFIELD THE ... CAT GARFIELD THE FAT CAT

4. Evaluation

How to test the model?

- 1. Compare the RMSD between the model and the real structure
- 2. Check that secondary structures are correctly aligned
- 3. Calculate the percentage of residues that are closer than a threshold after superposing the model and the real structure
- 4. Calculate the percentage of identical residues aligned when superposing the real structure and the model.
- 5. Check the energy of threading to compare the real structure and the model (see next chapter)

2. Schema of the method 4. Evaluation

Model Accuracy Evaluation

CASP

EVA

Community Wide Experiment on the Critical Assessment of Techniques for Protein Structure Prediction

http://PredictionCenter.IInl.gov/casp5/

Evaluation of Automatic protein structure prediction

[Burkhard Rost, Andrej Sali, http://maple.bioc.columbia.edu/eva/]

3D - Crunch Very Large Scale Protein Modeling Project

http://www.expasy.org/swissmod/SM_LikelyPrecision.html

5. Improvement

How to detect possible errors in the model if we don't know the solution?

- 1. Compare the model and all the templates
- 2. Check that secondary structures are not broken
- 3. Check if the prediction of secondary structure agrees with the secondary structure of the model
- 4. Check if the loops of the target are similar to some loops in the database of loops and they agree in sequence and anchoring geometry
- 5. Check the capping of helices
- 6. Check pseudo-energies of threading and compare the model with the templates.

5. Improvement

How to improve the model?

- Decide the changes in the alignment according to the secondary structure prediction or the structure of the templates and recalculate the model
- 2. Change the main template and recalculate the model
- 3. Include new templates
- 4. Calculate the main motion of normal modes from the templates of the homologous family and optimize by molecular dynamics under motion restrictions the conformation
- Recalculate the pseudo energy profile of the new model and compare with the original model to test the improvement

EXAMPLE

PRO-CARBOXYPEPTIDASES

Bovine Pro Carboxypeptidase A1 PCPA1b

Porcine Pro Carboxypeptidase A1 PCPA1p

Porcine Pro Carboxypeptidase B PCPBp

SEQUENCE ALIGNMENT OF PRO-CARBOXYPEPTIDASES

10	20	30	40	50	60	70	80		
-ETFV	GDQVLEIVPSI	NEEQIKNLL	QLEAQEHLQ L	DFWKSPTTPGE	TAHVRVPFV	NVQAVKVFLI	ESQGIAYSIMI	EDVQVL	PCPA2h
KEDFV	GHQVLRITAA	DEAEVQTVK	ELEDLEHLQL	DFWRGPGQPGS	SPIDVRVPFP	SLQAVKVFL	EAHGIRYRIMI	EDVQSL	PCPA1b
KEDFV	GHQVLRISVDI	DEAQVQKVK	ELEDLEHLQL	DFWRGPARPGI	PIDVRVPFP	SIQAVKVFL	EAHGIRYTIMI	EDVQLL	PCPA1p
	90	100	110	120	130	140	150	160	
LDKEN	EEMLFNRRREI	RSGN-FNFG	AYHTLEEISQ	EMDNLVAEHPO	GLVSKVNIGS	SFENRPMNVI	LKFSTGG-DKP	AIWLDA	PCPA2h
LDEEQ	EQMFASQSRA	RSTNTFNYA'	TYHTLDEIYD	FMDLLVAEHPG	LVSKLQIGR	SYEGRPIYVI	LKFSTGGSNRP	AIWIDL	PCPA1b
LDEEQ	EQMFASQGRA	RTTSTFNYA'	TYHTLEEIYD	FMDILVAEHPA	LVSKLQIGR	SYEGRPIYVI	LKFSTGGSNRP	AIWIDS	PCPA1p
	170	180	190	200	210	220	230	240	
GIHAR	EWVTQATALW'	TANKIVSDY	GKDPSITSIL	DALDIFLLPVI	[NPDGYVFSQ	TKNRMWRKTI	RSKVSGSLCVG	VDPNRN	PCPA2h
GIHSR	EWITQATGVW	FAKKFTEDY	GQDPSFTAIL	DSMDIFLEIVI	INPDGFAFTH	SQNRLWRKTH	RSVTSSSLCVG	VDANRN	PCPA1b
GIXSR	XWITQASGVW	FAKKITENY	GQNSSFTAIL	DSMDIFLEIVI	INPNGFAFTH	SDNRLWRKTI	RSKASGSLCVG	SDSNRN	PCPA1p
	250	260	270	280	290	300	310	320	
WDAGF	GGPGASSNPC	SDSYHGPSA	NSEVEVKSIV	DFIKSHGKVK#	AFIILHSYSQ	LLMFPYGYK	CTKLDDFDELS	EVAQKA	PCPA2h
WDAGF	GKAGASSSPC	SETYHGKYA	NSEVEVKSIV	DFVKDHGNFKA	AFLSIHSYSQ	LLLYPYGYT	IQSIPDKTELN	QVAKSA	PCPA1b
WDAGF	GGAGASSSPC	AETYHGKYP	NSEVEVKSIT	DFVKNNGNIKA	FISIXSYSQ	LLLYPYGYK	FQSPADKSELN	QIAKSA	PCPA1p
	330	340	350	360	370	380	390	400	
AQSLR	SLHGTKYKVG	PICSVIYQA	SGGSIDWSYD	YGIKYSFAFEI	LRDTGRYGFL	LPARQILPT	AEETWLGLKAI	MEHVRD	PCPA2h
VEALK	SLYGTSYKYG	SIITTIYQA	SGGSIDWSYN	QGIKYSFTFEI	LRDTGRYGFL	LPASQIIPTA	AQETWLGVLTI	MEHTLN	PCPA1b
VAAT.K	SLYGTSYKYG	STTTVTYOA	SGGVTDWTYN	OGTKYSESEET	RDTGRRGFT	T.PASOTTPT/	OETWI.AT.T.TT	MEHTTN	PCPA1p

Secondary Structure Prediction and Multiple Alignment of Pro-Carboxypeptidases

10	20	30	40	50	60	70	80			
	EEEEE	нннннннн	<mark>ннннн</mark> ен	EEE	EEEEE	нннннннн	IH EEEEHI	нннннн	PCPA2h	PHD
-ETFVG	DQVLEIV	PSNEEQIKNLL	QLEAQEHLQI	DFWKSPTTP	GETAHVRVPFV	NVQAVKVFLE	SQGIAYSIM	LEDVQVL	PCPA2h	
KEDFVG	HQVLRIT	AADEAEVQTVK	ELEDLEHLQI	DFWRGPGQP	GSPIDVRVPFP	SLQAVKVFLE	AHGIRYRIM	EDVQSL	PCPA1b	
KEDFVG	HQVLRIS	VDDEAQVQKVK	ELEDLEHLQI	DFWRGPARP	GFPIDVRVPFP	SIQAVKVFLE	AHGIRYTIM	EDVQLL	PCPA1p	
	90	100	110	120	130	140	150	160		
нннннн	нннннн	H							PCPA2h	PHD
LDKENE	EMLFNRRI	RERSGN-FNFG	AYHTLEEISÇ)EMDNLVAEH	PGLVSKVNIGS	SFENRPMNVI	KFSTGG-DK	PAIWLDA	PCPA2h	L
LDEEQE	QMF <mark>ASQS</mark> I	<mark>RARSTNTF</mark> NYA	TYHTLDEIYI	FMDLLVAEH	PQLVSKLQIGR	SYEGRPIYVI	KFSTGGSNR	PAIWIDL	PCPA1b)
LDEEQE	QMF <mark>ASQG</mark> I	RARTTSTFNYA	TYHTLEEIYI	FMDILVAEH	PALVSKLQIGR	SYEGRPIYVI	KFSTGGSNR	PAIWIDS	PCPA1p	
	170	180	190	200	210	220	230	240		
GIHARE	WVTQATA	LWTANKIVSDY	GKDPSITSII	DALDIFLLP	VTNPDGYVFSQ	TKNRMWRKTR	SKVSGSLCV	GVDPNRN	PCPA2h	L
GIHSRE	WITQATG	WFAKKFTEDY	GQDPSFTAII	LDSMDIFLEI	VTNPDGFAFTH	SQNRLWRKTR	SVTSSSLCV	GVDANRN	PCPA1b	
GIXSRX	WITQASG	VWFAKKITENY	GQNSSFTAII	LDSMDIFLEI	VTNPNGFAFTH	SDNRLWRKTR	SKASGSLCV	SSDSNRN	PCPA1p	
	250	260	270	280	290	300	310	320		
WDAGFG	GPGASSN	PCSDSYHGPSA	NSEVEVKSIV	DFIKSHGKV	KAFIILHSYSQ	LLMFPYGYKC	TKLDDFDEL	SEVAQKA	PCPA2h	L
WDAGFG	KAGASSS	PCSETYHGKYA	NSEVEVKSIV	DFVKDHGNF	KAFLSIHSYSQ	LLLYPYGYTI	QSIPDKTELI	NQVAKSA	PCPA1b)
WDAGFG	GAGASSS	PCAETYHGKYP	NSEVEVKSI	DFVKNNGNI	KAFISIXSYSQ	LLLYPYGYKI	QSPADKSELI	NQIAKSA	PCPA1p)
	330	340	350	360	370	380	390	400		
AQSLRSLHGTKYKVGPICSVIYQASGGSIDWSYDYGIKYSFAFELRDTGRYGFLLPARQILPTAEETWLGLKAIMEHVRD							PCPA2h			
VEALKSLYGTSYKYGSIITTIYQASGGSIDWSYNQGIKYSFTFELRDTGRYGFLLPASQIIPTAQETWLGVLTIMEHTLN							PCPA1b)		
VAALKSLYGTSYKYGSIITVIYQASGGVIDWTYNQGIKYSFSFELRDTGRRGFLLPASQIIPTAQETWLALLTIMEHTLN								PCPA1p		

α-Helix C-cap Schellman Motif

Refinement of the Model

Annex

Protein Structure Resources

PDB http://www.pdb.org PDB - Protein Data Bank of experimentally solved structures (RCSB)

CATH http://www.biochem.ucl.ac.uk/bsm/cath/ Hierarchical classification of protein domain structures

SCOP http://scop.mrc-lmb.cam.ac.uk/scop/ Alexey Murzin's Structural Classification of proteins

DALI http://www2.ebi.ac.uk/dali/ Lisa Holm and Chris Sander's protein structure comparison server

SS-Prediction and Fold Recognition

PHD http://cubic.bioc.columbia.edu/predictprotein/ Burkhard Rost's Secondary Structure and Solvent Accessibility Prediction Server

3DPSSM http://www.sbg.bio.ic.ac.uk/~3dpssm/ Fold Recognition Server using 1D and 3D Sequence Profiles coupled with Secondary Structure and Solvation Potential Information.

Annex

Protein Homology Modeling Resources

SWISS MODEL: http://www.expasy.ch/swissmod/

Deep View - SPDBV: homepage: http://www.expasy.ch/spdbv/ Tutorials http://www.usm.maine.edu/~rhodes/SPVTut/ http://www.bbsrc.ac.uk/molbiol/

WhatIf http://www.cmbi.kun.nl/whatif/ Gert Vriend's protein structure modeling analysis program WhatIf

Modeller: http://guitar.rockefeller.edu/modeller/ Andrej Sali's homology protein structure modelling by satisfaction of spatial restraints

FAMS: http://physchem.pharm.kitasato-u.ac.jp/FAMS/fams.html Full Automatic Modelling System (FAMS); Kitasato University; Tokyo, Japan

3D-JIGSAW: http://www.bmm.icnet.uk/people/paulb/3dj/form.html Comparative Modelling Server; Imperial Cancer Research Fund; London, UK

CPHmodels: http://www.cbs.dtu.dk/services/CPHmodels/ Centre for Biological Sequence Analysis; The Technical University of Denmark; Denmark

SDSC1: http://cl.sdsc.edu/hm.html SDSC Structure Homology Modelling Server; San Diego Supercomputing Centre