Comparative
Modelling



Summary

1. Basic concepts of Homology Modeling
2.Schema of the method

1.Fold assignment

2. Template selection

3. Model building

4. Evaluation

5. Improvement



1. Basic concepts of Homology Modeling
Definition

Extrapolation of the structure for

a new (target) sequence from the
known 3D-structures of related

family members (templates).




1. Basic concepts of Homology Modeling
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1. Basic concepts of Homology Modeling

Sequence similarity implies structural similarity?
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1. Basic concepts of Homology Modeling

 Fold is more conserved than sequence.

« Secondary structure are the most conserved parts

» Loops have the higher variability in structure.



1. Basic concepts of Homology Modeling
Structural Genomics

express & purify
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1. Basic concepts of Homology Modeling

Structural Genomics
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1. Basic concepts of Homology Modeling
Structural Genomics
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2. Schema of the method

1.Fold assignment
2.Template selection
3.Model building
4.Evaluation
5.Improvement
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2. Schema of the method

1. Fold assignment

Sequence search with the target

1.
2.
3. Scores are related to P-values or E-values (high score implies low P-

Compares the sequence of the target with a set of sequences with
known structure
Ranking the comparisons by scores.

value). P-value is the probability of obtaining the same alignment by
chance.

. Scores are calculated using a residue-substitution matrix:

1. PAM: based on the alignment of sequences of homologs
2. BLOSUM: based on the alignment of blocs of similar sequences

. One sequence can have more than one domain, therefore we can obtain

the best scores for partial parts of the target.

. Methods (see practice)

1. BLAST algorithm, matches words from a pre-calculated and indexed
set and joints them into sentences (forming the sequence)

2. FastA: Smith & Waterman algorithm

3. Scanning PFAM: algorithm of Hidden Markov Models



Target

sequence

TEMPLATES
| SELECTION

Target-Templates

v

Alignment

— T
SCR SVR

— T
Loops
Database

ab initio




2. Schema of the method

2. Template selection

Selecting the best target-alignment template

1.

The template(s) should be the closest homolog(s) to the target

2. Small number of templates to avoid stress on model building

3.

Multi-domain proteins require the use of at least one template with the
largest coverage of sequence (containing the largest number of domains)

. Structural alignment of homologs gives the information on position-

specific substitutions

. Detection of structurally conserved regions (SCR) and variable regions

(VR)

. Aligning the target sequence and template sequences using a multiple

sequence profile helps to avoid misalignments

. Methods (see practice)

1. ClustalW
2. T-coffee
3. HMMER
1. alignment with a known family profile (PFAM)
2. Alignment with a profile built with the structure of homologs



2. Schema of the method

2. Template selection

10 20 30 40 50 60 70 80
-ETFVGDQVLEIVPSNEEQIKNLLOLEAQEHLQLDFWKSPTTPGETAHVRVPFVNVQ-—-——--— LESQGIAYSIMIEDVQVL

KEDFVGHQVLRITAADEAEV----- LEDLEHLQLDFWRGPGQPGSPIDVRVPFPSLOAVKVFLEAHGIRYRIMIEDVQSL
KEDFVGHQVLRISVDDEAQVQOKVKELEDLEHLQLDFWRGPA----PIDVRVPFPSIQAVKVFLEAHGIRYTIMIEDVQLL

1

target

SCR

_ _ VR (deletion)
VR (insertion)



2. Schema of the method

2. Template selection

10 20 30 40 50 60 70 80
-ETFVGDQVLEIVPSNEEQIKNLLQLEAQEHLOLDFWKSPTTPGETAHVRVPFVNVQ---—- LESQGIAYSIMIEDVQVL target
KEDFVGHQVLRITAADEAEVLEDLEHLQLDEWRG— = = = = = = = = = = — = = — e e e e e e e e e

KEDFVGHQVLRITAADEAEVLEDLELEDLEHLQLDFWRGPGQPGSPIDVRVPFPSLQAVKVFLEAHGIRYRIMIEDVQSL

Domain 1 Domain 2
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2. Schema of the method
3. Model building

1. Rigid Body Assembly

1. Core framework (SCR)
2. Loop modeling (VR)
3. Energy minimization

2. Spatial restraints

1. Probability Density Functions (PDF)
2. Distance restraints

3. Simulated Annealing

4. Loop modeling

3. Side-chain modeling

1. Back-bone dependent rotamer libraries
2. Energetic and packing criteria



2. Schema of the method
3. Model building: Rigid Body Assembling
(core framework)

» Averaging core template backbone atoms
(weighted by local sequence similarity with the target sequence)

 Leave non-conserved regions (loops) for later ....



2. Schema of the method
3. Model building: Rigid Body Assembling
(loop modeling)

1. Use the “spare part” algorithm to find compatible
fragments in a Loop-Database

2. “ab-initio” rebuilding of loops (Monte Carlo,
molecular dynamics, genetic algorithms, etc.)



2. Schema of the method
3. Model building: Rigid Body Assembling
(loop modeling)

1. Use the “spare part” algorithm to find compatible
fragments in a Loop-Database

/
&

EF-Hand P-loop GTP binding NAD(P)/FAD
Calcium binding binding
aa{baalal}bb bb{eppgag}aa bb{eab}aa

Xh {DXDpDG } Xh hh {GhXXpG } Kp hh{GhG}hX



2. Schema of the method
3. Model building: Rigid Body Assembling
(loop modeling)

1. Use the “spare part” algorithm to find compatible
fragments in a Loop-Database




2. Schema of the method
3. Model building: Rigid Body Assembling
(loop modeling)

1. Use the “spare part” algorithm to find compatible
fragments in a Loop-Database




2. Schema of the method
3. Model building: Rigid Body Assembling
(Energy minimization)
1 1 1

E piing = E Ekl.(di —dl.o)z + E Ekj(aj —a?)z + E Ekn(a)n —w2)2 + EEmCos(a)mrpm +q,)

bonds angles improper angles

dihedral
Ermin == 202+ 33

TTE, r

i j>i i j>i

ij ij
C6 _ C12

6 12
T

E=F +E

bonding non—bonding

» modeling will produce unfavorable contacts and bonds: idealization of
local bond and angle geometry

 extensive energy minimization will move coordinates away: keep it to a
minimum

» Methods: Newton Rapson; Steepest Descent; Conjugate Gradient



2. Schema of the method
3. Model building: Rigid Body Assembling
(Energy minimization

)
=

X, =X, +AVE
rE(xm) <E(x)=>A=A+¢

E(x,,)>E(x;)=A=2/2
9
A< A

max

E(x,,)~ E(x,) = STOP




2. Schema of the method

3. Model building: Spatial restraints
(Probability Density Functions)

Feature properties can be associated with
* a protein (e.g. X-ray resolution)

* residues (e.g. solvent accessibility)

» pairs of residues (e.g. C, - C, distance)

« other features (e.g. main chain classes)

180 1 TS 5

o A B« Example: Ramachandran Plot
: 62 R - @ ° Distribution of (¢,y) angles

—60*% - : .- utl< i:.‘ ‘-E ; B , . 2

-1201 Hgn }Iu B 1

180 8 o111
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2. Schema of the method

3. Model building: Spatial restraints
(Probability Density Functions)

_ ®)
_ ] Example:
5 24 Distribution of Ca-Ca distances
8 161

81 How can we derive modeling

o LU L restraints from this data“

d, C, - C, distance  [A]

A restraint is defined as probability density function (pdf), p(x):

f p(x)dx =1
p(xl=x<x2)= fp(x)dx with p(x)>0



2. Schema of the method

3. Model building: Spatial restraints
(Probability Density Functions)

_ ®)
_ ] Example:
5 24 Distribution of Ca-Ca distances
8 161
81 How can we derive modeling
o LU L restraints from this data“

d, C,-C,distance  [A] s

Epdf(x) = —RTlog(p(x)) j:

0
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

d, C, - C, distance  [A]



2. Schema of the method

3. Model building: Spatial restraints

(Distance restraints)
d

l l Apply restraints

50 60 70 80
—-ETFVGDQVLEIVPSNEEQIKNLLOLEAQEHLQLDFWKSPTTPGETAHVRVPFVNVQ-—-——--— LESQGIAYSIMIEDVQVL target
KEDFVGHQVLRITAADEAEV----- LEDLEHLQLDFWRGPGQPGSPIDVRVPFPSLQAVKVFLEAHGIRYRIMIEDVQSL template 1
KEDFVGHQVLRISVDDEAQVQOKVKELEDLEHLQLDFWRGPA----PIDVRVPFPSIQAVKVFLEAHGIRYTIMIEDVQLL template 2

Obtain restraints
d &d, Short distance restraints
de {d

templatel®

d <d<d,

d

template?2 }



2. Schema of the method

3. Model building: Spatial restraints

(Distance restraints)
d

l l Apply restraints

70 80
-ETFVGDQVLEIVPSNEEQIKNLLOLEAQEHLQLDFWKSPTTPGETAHVRVPFVNVQ-—-—---— LESQGIAYSIMIEDVQVL target
KEDFVGHQVLRITAADEAEV----- LEDLEHLQLDFWRGPGQPGSPIDVRVPFPSLQAVKVFLEAHGIRYRIMIEDVQSL template 1
KEDFVGHQVLRISVDDEAQVQOKVKELEDLEHLQLDFWRGPA----PIDVRVPFPSIQAVKVFLEAHGIRYTIMIEDVQLL template 2

Obtain restraints
d &d,

d

templatel® " template2 }

d <d<d,

de{d

\/

Long distance restraints



2. Schema of the method

3. Model building: Spatial restraints

(Distance restraints)
d

1 l Apply restraints

40 50 60 70 80
-ETFVGDQVLEIVPSNEEQIKNLLOLEAQEHLQLDFWKSPTTPGETAHVRVPFVNVQ-—-—--— LESQGIAYSIMIEDVQVL

KEDFVGHQVLRITAADEAEV----- LEDLEHLQLDFWRGPGQPGSPIDVRVPFPSLOAVKVFLEAHGIRYRIMIEDVQSL
KEDFVGHQVLRISVDDEAQVQOKVKELEDLEHLQLDFWRGPA----PIDVRVPFPSIQAVKVFLEAHGIRYTIMIEDVQLL

target
template 1
template 2

Obtain restraints
dl

d € {,ompa}
=d

Distance restraints between Aa in SCR & VR
(required to locate the conformation of the VR)



2. Schema of the method

3. Model building: Spatial restraints

(Distance restraints)
d

Apply restraints
10 20 30 40 50 60 70 80

-ETFVGDQVLEIVPSNEEQIKNLLOLEAQEHLQLDFWKSPTTPGETAHVRVPFVNVQ-—-—--— LESQGIAYSIMIEDVQVL

KEDFVGHQVLRITAADEAEV----- LEDLEHLQLDFWRGPGQPGSPIDVRVPFPSLOAVKVFLEAHGIRYRIMIEDVQSL
KEDFVGHQVLRISVDDEAQVQOKVKELEDLEHLQLDFWRGPA----PIDVRVPFPSIQAVKVFLEAHGIRYTIMIEDVQLL

target
template 1
template 2

Obtain restraints
dl

d € {,ompa}
=d

Distance restraints between Aa in VR & VR
(required to obtain the conformation of the VR)



2. Schema of the method

3. Model building: Spatial restraints
(Simulated annealing)

Optimizing a target function:

1. Start with e.g. a random conformation model and use
only local restraints

2. Minimize some steps using a conjugate gradient
optimization and molecular dynamics steps

3. Repeat, introducing more and more long range restraints
until all restraints are used

Epiing = E %ki(di —dio)2 + E %kj(aj —oc?)2 + E %kn(a)n —w2)2 + ElEmCos(a)m(pm +¢,)
angles

bonds angles improper
dihedral

E,

] C]
on—bonding 4n€022qu —_i

i j>i ij i ]

Far-Sifa- ()

rest

E = Ebonding + Enon—bonding + Epdf + Edist



2. Schema of the method

3. Model building: Spatial restraints
(Simulated annealing)

IEP Et = Ep + Ek

Search level




2. Schema of the method

3. Model building: Spatial restraints
(Simulated annealing)

average shift [A]

—log(molecular pdf)
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2. Schema of the method
3. Model building: Spatial restraints
(Loop modeling using a database of loops)

Apply restraints
10 20 30 40 50 60 70

80
-ETFVGDQVLEIVPSNEEQIKNLLOLEAQEHLOLDFWKSPTTPGETAHVRVPEFVNVQ

————— LESQGIAYSIMIEDVQVL target
LEDLEHLQLDFWRGPGQPGSPIDVRVPFPSLQAVKVFLEAHGIRYRIMIEDVQSL template 1

template 2

Obtain restraints LOOP Geometry /
D Distance Loop
6 Packing angle

& Hoist angle — — -l .

P Meridian angle /

e
......




2. Schema of the method

3. Model building: Spatial restraints
(Loop modeling using a database of loops)

Apply restraints

10 20 40 50 60 70 80

-ETFVGDQVLEIVPSNEEQIKNLLQLEAQEHLQLDFWKSPTTPGETAHVRVPFVNVQ-~-—~— LESQGIAYSIMIEDVQVL target
KEDFVGHQVLRITAADEAEV---—- LEDLEHLQLDFWRGPGQPGSPIDVRVPFPSLQAVKVFLEAHGIRYRIMIEDVQSL
————————————— VDDEAQVQKVKELEDLEH- === === — ===~ =~ = = — e e

Obtain restraints

Using the structure of a known loop:

1. The C-tail and N-tail of the loop (template 2) when
superposed with the core of the main template (template
1) produce a low RMSD

2. The selection of the loop follow two criteria: similar
sequence profile with the target and similar anchoring
geometry of the loop with the main template



2. Schema of the method

3. Model building: Spatial restraints
(Loop modeling ab initio)

Using PDF of loops and minimization methods:

1. Calculate specific PDF residue properties of loops

2. Minimize by simulated annealing the loops

3. Extract main motion from normal modes on templates
and apply them as restrictions on the conformational
changes of the model

4. Methods:
1. Loop-model from MODELLER
2. ArchPred
3. Rosetta
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2. Schema of the method

4. Evaluation

Types of Errors

1. Errors in side-chain packing .

2. Shifts of correctly aligned residues .
3. Regions without template .

4. Errors due to misalignments .

5. Errors produced by incorrect templates .



2. Schema of the method

4. Evaluation

Shifts of correctly aligned residues

HHHHHHHH HHH .HHC
GARFIELD THE .CAT
GARFIELD THE CCAT

Solution

HHHHHHHH HHH HHC.
GARFIELD THE CAT.
GARFIELD THE CCAT



2. Schema of the method

4. Evaluation

Errors due to misalignments .

GARFIELD THE CAT
GARFIELD THE FAT CAT

Solution

GARFIELD THE ... CAT
GARFIELD THE FAT CAT



2. Schema of the method

4. Evaluation

How to test the model?

1.

W N

Compare the RMSD between the model and the real
structure

Check that secondary structures are correctly aligned
Calculate the percentage of residues that are closer
than a threshold after superposing the model and the
real structure

Calculate the percentage of identical residues aligned
when superposing the real structure and the model.
Check the energy of threading to compare the real
structure and the model (see next chapter)



2. Schema of the method

4. Evaluation

Model Accuracy Evaluation

CASP
g, E Community Wide Experiment on the Critical Assessment of
21 Techniques for Protein Structure Prediction

@ http://PredictionCenter.linl.gov/casp5/

EVA ...
 Evaluation of Automatic protein structure prediction

"

CM

L 7, B e

[ Burkhard Rost, Andrej Sali, http://maple.bioc.columbia.edu/eva/ ]

3D - Crunch
! @) Very Large Scale Protein Modeling Project

http://www.expasy.org/swissmod/SM_LikelyPrecision.html




2. Schema of the method

5. Improvement

How to detect possible errors in the model if
we don’t know the solution?

1. Compare the model and all the templates

Check that secondary structures are not broken
Check if the prediction of secondary structure agrees
with the secondary structure of the model

4. Check if the loops of the target are similar to some
loops in the database of loops and they agree in
sequence and anchoring geometry

Check the capping of helices

Check pseudo-energies of threading and compare the
model with the templates.

W N

® o



2. Schema of the method

5. Improvement

How to improve the model?

1.

B> WN

Decide the changes in the alignment according to the
secondary structure prediction or the structure of the
templates and recalculate the model

Change the main template and recalculate the model
Include new templates

Calculate the main motion of normal modes from the
templates of the homologous family and optimize by
molecular dynamics under motion restrictions the
conformation

Recalculate the pseudo energy profile of the new
model and compare with the original model to test the
Improvement



Fold Prediction



Fold prediction

1. Fold recognition (threading)
2. ab initio fold prediction
3. Protein folding (MD with explicit solvent)



Threading

Idea: Find the optimal structure for a

new (target) sequence 1n the set
of known 3D-structures
(templates) by threading the
target sequence.




Fold recognition / Threading

Principle: Find a compatible fold for a given sequence ....

>Protein XY
MSTLYEKLGGTTAVDL
AVDKFYERVLQDDRIK
HFFADVDMAKQRAHQ
KAFLTYAFGGTDKYDG
RYMREAHKELVENHGL
NGEHFDAVAEDLLATLK
EMGVPEDLIAEVAAVAG
APAHKRDVLNQ

Using ...

* 1D — 3D profile matching,

» mean force potentials,

* secondary structure predictions,

* position specific scoring matrices (PSSM),
* keyword statistics,



1. Fold recognition (threading)
1. Knowledge-base potentials
1. Distance dependent potentials
» Atom-centered
« Sequence distance
» Reference state
2. Solvation
3. Z-scores and energy profiles
4. Methods: Prosa, Anolea, DOPE,S?PServer
2. Distance homology matrices (PSSM)
1. Function association
2. Methods: FUGUE, PHYRE, ModLink
3. Secondary structure alignment
1. Secondary structure prediction
 Machine learning theory
* Neural Networks
2. Methods: TOPITS



1. Knowledge-base potentials
1. Distance dependent potentials

According to Boltzmann law

|
P X =_e—E(x)/kBT
(x) ~

Therefore, energy is related with probability

P(Asp,Asp,d =10A) = E(Asp,Asp,d =10A)



1. Knowledge-base potentials
1. Distance dependent potentials

Asp
S
§ Glu-Arg Glu-Asp
\ﬁ O
o

Glu

distance



1. Knowledge-base potentials
1. Distance dependent potentials

1. Distances are calculated between atoms: We have to

select what atom are we going to use
*The best choice is Cf because it indicates the
direction of the side-chain




1. Knowledge-base potentials
1. Distance dependent potentials

2. The database of structures to extract distances has to
avoid redundant structures (between homologs and
members of the same family/superfamily)

* |f we use all the structures of the same or similar
protein there will be a bias. Thus, we use a set with
less than 40% of sequence similarities



1. Knowledge-base potentials
1. Distance dependent potentials

(139}

3. The frequency of a pair of residues at distance “r" is
different if the residues are close or distant along
the sequence
« We split the calculation of frequencies

depending on the sequence distance between
residues




1. Knowledge-base potentials
1. Distance dependent potentials

4. Reference state: The density of residues around one
residue 1s not a continuous model, it depends on the size
and shape of the protein.

e  We need to normalize by the density (4mr?e(r)) and
thus defining a reference state




1. Knowledge-base potentials
1. Distance dependent potentials

4. Reference state: the simplest definition of the reference
state 1s to use the whole data set of residue pairs, thus
instead of using energies we use incremental energies.

* Let be a pair of residues Asp and Glu at distance n in
sequence. Let be N(r/ED,n) the number of pairs ED
like this at distance r between their Cp atoms, and
N(r/n) the total of pairs of residues at distance n in
sequence and r between their Cp atoms



1. Knowledge-base potentials
1. Distance dependent potentials

Asp(i) i
D D
Glu(i+n) i+n

AE (1 [(Glu,Asp,CB,CB.n)) = —len(N (r/ED ’”))

N(r/n)



1. Knowledge-base potentials
1. Distance dependent potentials

Example of distance dependent knowledge-based potentials

1.5 |-

Glu-Asp (n>10)

Energy (kcal/mol)

Glu-Arg (n>10)

Distance CB-CP



1. Knowledge-base potentials
2. Solvation

1.

Solvation of a residue is calculated as proportional to

accessible surface area (ASA)

* The factor of proportion depends on the tendency
of the residue (1.e. Asp in position “1” of the
sequence) to be solvated (hydrophobicity
calculated with water-octanol partition
coefficient)

E ()=0

Asp

ASA(1)

Solvation can also be calculated using the frequency
of the residue to be exposed on the surface



1. Knowledge-base potentials
3. Z-scores and energy profiles

Once we have a set of energies for pairs of residues (force
field) we can calculate the energy of each residue along the
sequence 1n a specific conformation

E(i) is the energy
on placing the
residue (i.e. Asp)
in this position

(i)



1. Knowledge-base potentials
3. Z-scores and energy profiles

E. =EEZ.J.(r,n =‘j—i‘)

J=i

E,(r.n=|j-i]) = AE(r (Glu(}),Asp(i),CB.CB.n))

E, () =0,,ASA()
i/f\
{7V

Note: we have assumed that in position | we have
placed Asp and Glu in position j=i+n



1. Knowledge-base potentials
3. Z-scores and energy profiles

The total energy of a protein is obtained by the sum of
the pair-energies and the energy from its surface
(solvation)

E=YE+BY E,()

The profile energy is obtained by the curves of the pair-
energies, surface energy and combined energy of both
with respect to the residue position



1. Knowledge-base potentials
3. Z-scores and energy profiles

Example of profile energy from PROSA

3ldh 6ldh




1. Knowledge-base potentials
3. Z-scores and energy profiles

Often the curve 1s smoothed by windowing the curve: the value on
each point 1s defined by the average of a window of W residues and
the window moves along the X axis.

3

— window size 10
= Wwindow size 40

Knowledge-based energy

Sequence position



MSD

Z-score /R

1. Knowledge-base potentials
3. Z-scores and energy profiles

Energy profiles can be used to detect errors in modeling

7.0
6.0
5.0F
4.0F
3.0
2.0
1.0F
0.0F

1.0 W"’\”/ WVV\\\,,.

2Oy S0 0 ““60 100 120

residue number




1. Knowledge-base potentials
3. Z-scores and energy profiles

Question:
Can we use the total energy to discriminate correct folds among
wrong conformations (decoys)?

E, El > E2

Wrong solution



1. Knowledge-base potentials
3. Z-scores and energy profiles

Question:
Can we use the total energy to discriminate correct folds among
wrong conformations (decoys)?

O>E >E >E,--->E

n

Many solutions 1s a wrong solution

Solution:
Define a new function statistically meaningful, the Z-score



1. Knowledge-base potentials
3. Z-scores and energy profiles

Threading Z-score is defined by comparing the energy on one fold
(j) with the average of the real folds from the database (1.e.
transforms the function “energy’ into a Gaussian distribution

centered at zero)

Zscore ;=

N foias

real
DE
— i=1

E)=
< > N folds

N toid

> (5~(E)

o=\
Nfolds -1

This 1s the same problem as the
following:

Consider the final marks in the class
after the exam. We can calculate the 10
best alumni according to their marks.
Are these the best alumni of SBI in the
world?

We have to weight their marks with the
best students of the world, assuming
the exam was the same.

To do that, we use the set of marks of
the total of SBI teachers 1in the world,

and e acaritme theavy are the Waot cat




1. Knowledge-base potentials
3. Z-scores and energy profiles
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1. Knowledge-base potentials
3. Z-scores and energy profiles

Zscores can also be presented as a function of the length of the
protein sequence

X-ray
» NMR

Non-acceptable folds

Z-score

-15

Surprisingly good folds?

0 200 400 600 800 1000
Number of residues



2. Remote homologs (PSSM)

We can use sequence alignments with position specific substitution
matrices (PSSM) (see theory in practices)

1. Alignment between one sequence and a Hidden Markov
Model profile (hmmpfam, hmmscan)

2. Alignment between two Hidden Markov Model profiles
(HHSearch, HBIlitz, PRC)

3. Alignment between sequences using PSSMs (BLAST, fugue)



2. Remote homologs (PSSM)
1. Function association

PHYRE / 3D-PSSM

Remotely homologous structures that can't be found by conventional methods
are detected by using profiles (or PSSMs) generated by PSI-Blast for both
target sequence and the sequences of the known structures. Phyre performs a
profile-profile matching algorithm together with predicted secondary structure
matching.

The functional keywords are found by gathering homologues of the target
sequence from Swissprot, taking the keywords associated with the Swissprot
homologues and weighting them according to their background frequency
across the whole Swissprot database using SAWTED



1. Knowledge-base potentials
3. Z-scores and energy profiles

SAWTED

What is SAWTED?

SAWTED stands for Structure Assignment With Text Description. It is a method to
improve the coverage of the detection of remote homologues of known structure
by sequence searches (e.g. PSI-BLAST) and fold recognition programs.

What does it do?

When sequence database searches return only hits with scores worse than an
accepted threshold for reliability the user will often compare what is known
about the function of the query sequence with that known about the poor
scoring hits. Some hits may appear more sensible than others and deserve closer
inspection. In SAWTED this comparison is made automatically using an algorithm
to compare the text of SWISS-PROT annotations related to the query and to the
poor scoring hits. A single E-value is given for the user to assess the similarity of
function.

SAWTED is currently implemented to enhance PSI-BLAST searches against the
PDB, and as part of our 3D-PSSM fold recognition server



1. Knowledge-base potentials
3. Z-scores and energy profiles

SAWTED in PHYRE & 3D-PSSM

QUERY

Y

BLAST against PDB

E-value < 0.0001 no hits or E-value > 0.0001

Trivial answer PSI-BLAST against NCBI-nr
M]SS-PROT seq. EDB seq.
E-value < 0.0001 any E-value

SWISS-PROT entry for query

SWISS-PROT~ L-value < 0.1 -~ PDB hit

entry
BLAST
SWISS-PRO T~agg—. Lk~ PDB hit

swrsst-PROTf SWISS-PROT[™ o hit
entry

Re-assess PDB hits with SAWTED E-values



3. Secondary structure alignment
1. secondary structure prediction (machine learning)

M = { set of data obtained with a predictive model}
D = { set of data known}

Bayes Theorem

P(DNM)
P(M)

P(DNM)
P(D)

P(D/ M) =

P(M/D)=

_ PM)
P(M/D)=P(DI/M) P D)



3. Secondary structure alignment
1. secondary structure prediction (machine learning)

M = { set of data obtained with a predictive model}
D = { set of data known}

Optimizing Function ® (minimum @)

® =-log(P(M /D))
® =-log(P(D/M))-log(P(M)) +log(P(D))
Min(®) = Min(-log(P(D/M))-log(P(M))) ~ Maximum a priori

Min(®) ~ Min(-log(P(D/M))) Maximum likelihood



3. Secondary structure alignment
1. secondary structure prediction (machine learning)

Training set
Set of data without redundancies (i.€. a set of non-homologous sequences).
This 1s used to optimize the parameters describing the model

Test set

Set of data without any element used on the training set or similar to some
element of the training set (i.e. a set of sequences non-homologous between
them and non-homologous to any of the elements of the training set). This
set 1s used to test the approach and validate the statistical accuracy of the
method.



3. Secondary structure alignment
1. secondary structure prediction (Neural Network)

input = {v,/v,1=1,n}
output = {u. / u. j=1,m}

Vi U
v, Neuron u,
V, —> —> u,




3. Secondary structure alignment
1. secondary structure prediction (Neural Network)

Parameters for the model: w

— J J
k

yj=f(xj)— :

[+

We need to optimize the parameters in order to get
y; as close as possible to u,



3. Secondary structure alignment
1. secondary structure prediction (Neural Network)

Working hypothesis:

The error between the expected output values (u) and the
output obtained with this “neuron” approach follows a
multiple gaussian distribution. Therefore, the probability to
obtain the output data, given the parameters of the neuron (w
and function f), is: ~(u, _yj)z

P(DlM)=P(u|a),f)=ﬁm/lﬂ xe 7

i(”f‘yf)z

O’=\ /=]
m—1




3. Secondary structure alignment
1. secondary structure prediction (Neural Network)

Maximum Likelihood solution:

This implies we can solve the optimization by means of the
maximum likelihood approach. It also can be further
simplified by assuming a constant standard deviation.

1

D = 22;2(14 —y) —510g2n—log0
J

0= o =—(uj_yj)>< e’ XV,

&w,{ O (1 Y )2




3. Secondary structure alignment
1. secondary structure prediction (Neural Network)

Neural Network

The protein sequence can be transformed into a set of vectors on
the space of residues (dimension 20)

Inputs can check by windows of 15 Aa along the sequence

We can use more than one neuron, forming a layer of neurons.
We can add multiple layers formed by neurons.

Single layer
Vi Uy
\L) U,
NER Us;



3. Secondary structure alignment
1. secondary structure prediction (Neural Network)

Neural Network (PHD)
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3. Secondary structure alignment
2. Method of fold recognition TOPITS and THREADER

----- EEEEE ———-EEEEEE————— —==—=EEEEE - ——— -EEHHHH- ——— predict 1D
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\ struche(s)
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good match to one of the known structures?

+ predict fold of matching structure
* model 3D coordinates by homology




Fold prediction

2. ab initio fold prediction (Rosetta)
1.Revisiting the knowledge-based potential
2.New potential based on conditional probabilities
3.9-Fragment database of structures
4.Simulated Annealing construction
5.Mutual Information
6.Examples



1. Reuvisiting the knowledge-based potential

Given the radius of gyration of a protein structure (RG), we
approximate the probability that this is the structure for a
given sequence, where the sequence is defined as the
vector (aa,, aa,,aa,,.....aay)

P(sequence | structure)

P(structure | sequence) = P(structure) x

P(sequence)
P(r.|aa.,aa )
P(sequence | structure) = | | P(aa.,aa ) x —-——
(seq )[J[u,) P0r)
, P(r |aa,,aa )
P(structure | sequence) = e "¢ xn / / (Equation 1)
i<j P(rl])

Where the term on the right contains the distance dependent
knowledge-based potential: P(r; | aa;,aa)) /P(rij)



2. New potential based on conditional probabilities

By applying Bayes theorem on a sequence (set of elements
amino-acids), we can approach the conditional probability
with respect to the structure in which the sequence is
folded with the first two terms of the expansion:

P(x.x.
P(xpxzax3,...,xn) EHP(XZ)XHP()E);ZP)E;))

i<j

P(sequence | structure) = P(aa,,aa,,...aa, | structure)

E)x n P(aa.

i<j 1

P(aa;,aa,

B E;)P(aa;

riEE )
i ELE )

P(aa,,aaq,,...aa, | structure) = nP(aai

2
P(structure | sequence) = e RO % P(aa,,aa,,...aa, | structure) (Equaﬁon 2)

Where E, is the environment (secondary structure, accessibility, etc.) of resi



2. New potential based on conditional probabilities
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potentials calculated with
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Equation 1 is in continuous line

Equation 2 for two buried
residues is in dotted line
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3. 9-Fragment database of structures

Rosetta splits the sequence in fragments of 9 residues,
using a window-like method

Rosetta contains a database of 9-residue fragments
extracted from the total set of protein structures

Rosetta assigns the first 25 most probable 9-fragment
segments to a 9-residue fragment of the target sequence
by selecting those with smallest score:

9 20
score = E E‘S(aa,i) — X(aa,i)

i=1 aa=1

Where S(aa,i) is the frequency of residue aa in position i of the target sequence and
its homologs in the same 9-residues fragment. Similarly, X(aa,i) is the frequency of
amino-acid aa in position i for all similar 9-residue fragments (with the same
structure)



4. Simulated annealing construction

Rosetta applies small changes in torsional angles for each
fragment considered in order to join the 9-residue
fragmented structures assigned to the 9-residue segment
of the target

A conformation is selected according to the most probable
structure-score: P(structure|sequence). A Metropolis-
Montecarlo simulation is applied using a simulated
annealing

The structure-score is first calculated with equation 1, and
when the simulation obtains a closer and more definite
structure equation 2 (with more detailed potential) is
applied.



5. 1ITASSER

iITASSER uses LOMETS threading. LOMETS uses the results
of several threading approaches based on remote
homology (i.e. FUGUE, HHSEARCH, etc.) and selects the
common fragment-templates to assemble the target
structure. Then it follows a similar approach to Rosetta

Global and local
e Structure assembly Structure reassembly structure matches

PDB library

, REMO H-bond
optimization

Structural analogy

EC classification
GO terms
Binding site

Template Cluster centroid Final model Function prediction



5. Mutual Information
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5. Mutual Information

MI; — ny (4B) In fi(A.B) A

7 (A)f;(B)
P (4,B)
dir)
Dl = ZFj A8 In g o By
fitd) = Y P (A.B),
B
fj(B) = ) P;"(A.B).
A
P;™(4.B) = 1 exp{e,](A,B)+h (A) + h; (B)}

top DI pairs top Ml pairs

Marks DS et al.. PLoS One. 2011;6(12):e28766. Epub 2011

Morcos F, et al. . Proc Natl Acad Sci U S A. 2011 Dec 6;108(49):E1293-301.



5. Mutual Information
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5. Mutual Information
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6. Examples

Rosetta



6. Examples Direct information

predicted observed
blind top ranked crystal structure
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