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1. Basic concepts of Homology Modeling 
Definition 

Extrapolation of the structure for 
a new (target) sequence from the 
known 3D-structures of related 
family members (templates). 



The number of different 
protein folds is limited: 

[ last update: Oct 2001 ] 

1. Basic concepts of Homology Modeling 
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(B.Rost, Columbia, NewYork) 

Sequence identity 
implies structural 
similarity 

Don’t  
             know  
                              region ..... 

Sequence similarity implies structural similarity? 



•  Fold is more conserved than sequence. 

•  Secondary structure are the most conserved parts 

•  Loops have the higher variability in structure. 

1. Basic concepts of Homology Modeling 



1. Basic concepts of Homology Modeling 
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1. Basic concepts of Homology Modeling 
Structural Genomics  



1. Basic concepts of Homology Modeling 
Structural Genomics  
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2. Schema of the method 
1. Fold assignment 
2. Template selection 
3. Model building 
4. Evaluation 
5. Improvement 
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2. Schema of the method 
1. Fold assignment 
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2. Schema of the method 
2. Template selection 
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2. Template selection 
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2. Schema of the method 
2. Template selection 

Domain 1 Domain 2 
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2. Schema of the method 
3. Model building 

1.  Rigid Body Assembly 
1.  Core framework (SCR) 
2.  Loop modeling (VR) 
3.  Energy minimization 

2.  Spatial restraints 
1.  Probability Density Functions (PDF) 
2.  Distance restraints 
3.  Simulated Annealing 
4.  Loop modeling 

3.  Side-chain modeling 
1.  Back-bone dependent rotamer libraries 
2.  Energetic and packing criteria 



2. Schema of the method 
3. Model building: Rigid Body Assembling 

(core framework) 

•  Averaging core template backbone atoms  

  (weighted by local sequence similarity with the target sequence)  

•  Leave non-conserved regions (loops)  for later …. 



2. Schema of the method 
3. Model building: Rigid Body Assembling 

(loop modeling) 
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3. Model building: Rigid Body Assembling 

(loop modeling) 



2. Schema of the method 
3. Model building: Rigid Body Assembling 

(Energy minimization) 
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•  modeling will produce unfavorable contacts and bonds: idealization of 
local bond and angle geometry 

•  extensive energy minimization will move coordinates away: keep it to a 
minimum 

•  Methods: Newton Rapson; Steepest Descent; Conjugate Gradient 



2. Schema of the method 
3. Model building: Rigid Body Assembling 

(Energy minimization) 
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xi+1 = xi + λ∇E

λ =
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2. Schema of the method 
3. Model building: Spatial restraints  
(Probability Density Functions) 

Feature properties can be associated with 

•  a protein (e.g. X-ray resolution) 

•  residues (e.g. solvent accessibility) 

•  pairs of residues (e.g. Ca - Ca distance) 

•  other features (e.g. main chain classes) 

Example: Ramachandran Plot  
Distribution of (φ,ψ) angles 



2. Schema of the method 
3. Model building: Spatial restraints  
(Probability Density Functions) 

Example: 
Distribution of Cα-Cα distances 

How can we derive modeling 
restraints from this data? 

A restraint is defined as probability density function (pdf), p(x): 

with 

€ 

p(x) > 0



2. Schema of the method 
3. Model building: Spatial restraints  
(Probability Density Functions) 

Example: 
Distribution of Cα-Cα distances 

How can we derive modeling 
restraints from this data? 

€ 

Epdf x( ) = −RT log p(x)( )



2. Schema of the method 
3. Model building: Spatial restraints  
(Distance restraints) 
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d ∈ dtemplate1;dtemplate2{ }
d1 < d < d2€ 
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2. Schema of the method 
3. Model building: Spatial restraints  
(Distance restraints) 

€ 

d ∈ dtemplate1;dtemplate2{ }
d1 < d < d2€ 
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2. Schema of the method 
3. Model building: Spatial restraints  
(Distance restraints) 
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d

Distance restraints between Aa in SCR & VR 
(required to locate the conformation of the VR) 
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Obtain restraints 



2. Schema of the method 
3. Model building: Spatial restraints  
(Distance restraints) 

€ 

d ∈ dtemplate1{ }
d1 = d€ 

d1

€ 

d

Distance restraints between Aa in VR & VR 
(required to obtain the conformation of the VR) 

Apply restraints 

Obtain restraints 



 Optimizing a target function: 
1.  Start with e.g. a random conformation model and use 

only local restraints 
2.  Minimize some steps using a conjugate gradient 

optimization and molecular dynamics steps 
3.  Repeat, introducing more and more long range restraints 

until all restraints are used 

2. Schema of the method 
3. Model building: Spatial restraints  
(Simulated annealing) 
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2. Schema of the method 
3. Model building: Spatial restraints  
(Simulated annealing) 



2. Schema of the method 
3. Model building: Spatial restraints  
(Simulated annealing) 



2. Schema of the method 
3. Model building: Spatial restraints  
(Loop modeling using a database of loops) 

Apply restraints 

Obtain restraints 



2. Schema of the method 
3. Model building: Spatial restraints  
(Loop modeling using a database of loops) 

Apply restraints 

Obtain restraints 

 Using the structure of a known loop: 
1.  The C-tail and N-tail of the loop (template 2) when 

superposed with the core of the main template (template 
1) produce a low RMSD 

2.  The selection of the loop follow two criteria: similar 
sequence profile with the target and similar anchoring 
geometry of the loop with the main template 



2. Schema of the method 
3. Model building: Spatial restraints  
(Loop modeling ab initio) 

 Using PDF of loops and minimization methods: 

1.  Calculate specific PDF residue properties of loops 
2.  Minimize by simulated annealing the loops 
3.  Extract main motion from normal modes on templates 

and apply them as restrictions on the conformational 
changes of the model 

4.  Methods: 
1.  Loop-model from MODELLER 
2.  ArchPred 
3.  Rosetta 
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2. Schema of the method 
4. Evaluation 



2. Schema of the method 
4. Evaluation 

Shifts of correctly aligned residues 

HHHHHHHH HHH .HHC

GARFIELD THE .CAT

GARFIELD THE CCAT


HHHHHHHH HHH HHC.

GARFIELD THE CAT.

GARFIELD THE CCAT


Solution 



2. Schema of the method 
4. Evaluation 

GARFIELD THE CAT ...

GARFIELD THE FAT CAT


Solution 

GARFIELD THE ... CAT

GARFIELD THE FAT CAT




2. Schema of the method 
4. Evaluation 

How to test the model? 

1.  Compare the RMSD between the model and the real 
structure 

2.  Check that secondary structures are correctly aligned 
3.  Calculate the percentage of residues that are closer 

than a threshold after superposing the model and the 
real structure 

4.  Calculate the percentage of identical residues aligned 
when superposing the real structure and the model. 

5.  Check the energy of threading to compare the real 
structure and the model (see next chapter) 



2. Schema of the method 
4. Evaluation 

EVA  

Evaluation of Automatic protein structure prediction  

[ Burkhard Rost, Andrej Sali, http://maple.bioc.columbia.edu/eva/ ]  

CASP 
Community Wide Experiment on the Critical Assessment of 
Techniques for Protein Structure Prediction 
http://PredictionCenter.llnl.gov/casp5/ 

3D - Crunch 
Very Large Scale Protein Modeling Project  
http://www.expasy.org/swissmod/SM_LikelyPrecision.html 

Model Accuracy Evaluation 



2. Schema of the method 
5. Improvement 

How to detect possible errors in the model if 
we don’t know the solution? 

1.  Compare the model and all the templates 
2.  Check that secondary structures are not broken 
3.  Check if the prediction of secondary structure agrees 

with the secondary structure of the model 
4.  Check if the loops of the target are similar to some 

loops in the database of loops and they agree in 
sequence and anchoring geometry 

5.  Check the capping of helices 
6.  Check pseudo-energies of threading and compare the 

model with the templates. 



2. Schema of the method 
5. Improvement 

How to improve the model? 

1.  Decide the changes in the alignment according to the 
secondary structure prediction or the structure of the 
templates and recalculate the model 

2.  Change the main template and recalculate the model 
3.  Include new templates 
4.  Calculate the main motion of normal modes from the 

templates of the homologous family and optimize by 
molecular dynamics under motion restrictions the 
conformation 

5.  Recalculate the pseudo energy profile of the new 
model and compare with the original model to test the 
improvement 





Fold prediction 

1. Fold recognition (threading) 
2.  ab initio fold prediction 
3. Protein folding (MD with explicit solvent) 



Threading 

Idea:  Find the optimal structure for a 
new (target) sequence in the set 
of known 3D-structures 
(templates) by threading the 
target sequence. 



Fold recognition / Threading  

Principle: Find a compatible fold for a given sequence .... 

>Protein XY 
MSTLYEKLGGTTAVDL
AVDKFYERVLQDDRIK
HFFADVDMAKQRAHQ
KAFLTYAFGGTDKYDG
RYMREAHKELVENHGL
NGEHFDAVAEDLLATLK
EMGVPEDLIAEVAAVAG
APAHKRDVLNQ  

≈ ? 

Using ... 
•  1D – 3D profile matching, 
•  mean force potentials, 
•  secondary structure predictions,  
•  position specific scoring matrices (PSSM), 
•  keyword statistics,  
•  .... 



1. Fold recognition (threading) 
1. Knowledge-base potentials 

1. Distance dependent potentials 
•  Atom-centered 
•  Sequence distance 
•  Reference state 

2. Solvation 
3. Z-scores and energy profiles 
4. Methods: Prosa, Anolea, DOPE,S2PServer 

2. Distance homology matrices (PSSM) 
1. Function association 
2. Methods: FUGUE, PHYRE, ModLink 

3. Secondary structure alignment 
1. Secondary structure prediction 

•  Machine learning theory 
•  Neural Networks 

2. Methods: TOPITS 



1. Knowledge-base potentials 
1. Distance dependent potentials 

€ 

P(x) =
1
Z
e−E(x ) / kBT

According to Boltzmann law 

Therefore, energy is related with probability 

€ 

P(Asp,Asp,d =10A)⇒ E(Asp,Asp,d =10A)



1. Knowledge-base potentials 
1. Distance dependent potentials 

Asp 

Glu 

Glu‐Arg  Glu‐Asp 

distance 

fr
eq

ue
nc
y 

Arg 



1. Knowledge-base potentials 
1. Distance dependent potentials 

1.  Distances are calculated between atoms: We have to 
select what atom are we going to use 
• The best choice is Cβ because it indicates the 
direction of the side-chain


Cα
 Cα
Cβ
Cβ




1. Knowledge-base potentials 
1. Distance dependent potentials 

2. The database of structures to extract distances has to 
avoid redundant structures (between homologs and 
members of the same family/superfamily) 
•  If we use all the structures of the same or similar 

protein there will be a bias. Thus, we use a set with 
less than 40% of sequence similarities  



1. Knowledge-base potentials 
1. Distance dependent potentials 

Asp 

Glu 

Glu 

3. The frequency of a pair of residues at distance “r” is 
different if the residues are close or distant along 
the sequence 
•  We split the calculation of frequencies 

depending on the sequence distance between 
residues  



1. Knowledge-base potentials 
1. Distance dependent potentials 

r 
1Å 

4. Reference state: The density of residues around one 
residue is not a continuous model, it depends on the size 
and shape of the protein. 
•  We need to normalize by the density (4πr2ε(r)) and 

thus defining a reference state 



1. Knowledge-base potentials 
1. Distance dependent potentials 

4. Reference state: the simplest definition of the reference 
state is to use the whole data set of residue pairs, thus 
instead of using energies we use incremental energies. 
•  Let be a pair of residues Asp and Glu at distance n in 

sequence. Let be N(r/ED,n) the number of pairs ED 
like this at distance r between their Cβ atoms, and 
N(r/n) the total of pairs of residues at distance n in 
sequence and r between their Cβ atoms 



1. Knowledge-base potentials 
1. Distance dependent potentials 

Asp(i) 

Glu(i+n) 

r 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ΔE(r /(Glu,Asp,Cβ,Cβ,n)) = −kT ln N(r /ED,n)
N(r /n)
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1. Knowledge-base potentials 
1. Distance dependent potentials 

Distance Cβ‐Cβ


En
er
gy
 (k
ca
l/
m
ol
) 

Glu‐Asp (n>10) 

Glu‐Arg (n>10) 

Example of distance dependent knowledge‐based potenIals 



1. Knowledge-base potentials 
2. Solvation 

1.  Solvation of a residue is calculated as proportional to 
accessible surface area (ASA) 
•  The factor of proportion depends on the tendency 

of the residue (i.e. Asp in position “i” of the 
sequence)  to be solvated (hydrophobicity 
calculated with water-octanol partition 
coefficient) 

€ 

Esol (i) =σAspASA(i)

2.  Solvation can also be calculated using the frequency 
of the residue to be exposed on the surface 



1. Knowledge-base potentials 
3. Z-scores and energy profiles 

Once we have a set of energies for pairs of residues (force 
field) we can calculate the energy of each residue along the 
sequence in a specific conformation 

E(i) is the energy 
on placing the 
residue (i.e. Asp) 
in this posiIon 
(i) 

i 



1. Knowledge-base potentials 
 3. Z-scores and energy profiles 

i 

€ 

Ei = Eij r,n = j − i( )
j≠ i
∑

Eij r,n = j − i( ) = ΔE(r /(Glu( j),Asp(i),Cβ,Cβ,n))
Esol (i) =σAspASA(i)

Note:  we have assumed that in posiIon I we have 
placed Asp and Glu in posiIon j=i+n  



1. Knowledge-base potentials 
 3. Z-scores and energy profiles 

€ 

E = Ei
i
∑ + β Esol (i)

i
∑

The total energy of a protein is obtained by the sum of 
the pair-energies and the energy from its surface 
(solvation) 

The profile energy is obtained by the curves of the pair-
energies,  surface energy and combined energy of both 
with respect to the residue position 



1. Knowledge-base potentials 
 3. Z-scores and energy profiles 

Example of profile energy from PROSA 



Often the curve is smoothed by windowing the curve: the value on 
each point is defined by the average of a window of W residues and 
the window moves along the X axis. 

1. Knowledge-base potentials 
 3. Z-scores and energy profiles 



Energy profiles can be used to detect errors in modeling 

1. Knowledge-base potentials 
 3. Z-scores and energy profiles 



Question: 
Can we use the total energy to discriminate correct folds among 
wrong conformations (decoys)? 

1. Knowledge-base potentials 
 3. Z-scores and energy profiles 

€ 

E1 > E2E1 

E2 

Wrong solution 



Question: 
Can we use the total energy to discriminate correct folds among 
wrong conformations (decoys)? 

1. Knowledge-base potentials 
 3. Z-scores and energy profiles 

  

€ 

0 > E1 > E2 > E3> En

Many solutions is a wrong solution 

Solution: 
Define a new function statistically meaningful, the Z-score 



1. Knowledge-base potentials 
 3. Z-scores and energy profiles 

Threading Z-score is defined by comparing the energy on one fold 
(j) with the average of the real folds from the database (i.e. 
transforms the function “energy” into a Gaussian distribution 
centered at zero) 

€ 

Zscorej =
Ej − E
σ

E =

Ei
real

i=1

N folds

∑
N folds

σ =

Ei − E( )2
i=1

N folds

∑
N folds −1

This is the same problem as the 
following:  
Consider the final marks in the class 
after the exam. We can calculate the 10 
best alumni according to their marks. 
Are these the best alumni of SBI in the 
world? 
We have to weight their marks with the 
best students of the world, assuming 
the exam was the same. 
To do that, we use the set of marks of 
the total of SBI teachers in the world, 
and we assume they are the best set. 



1. Knowledge-base potentials 
 3. Z-scores and energy profiles 
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1. Knowledge-base potentials 
 3. Z-scores and energy profiles 

Zscores can also be presented as a function of the length of the 
protein sequence 

Non‐acceptable folds 

Surprisingly good folds? 



2. Remote homologs (PSSM) 

We can use sequence alignments with posiIon specific subsItuIon 
matrices (PSSM) (see theory in pracIces) 

1.  Alignment between one sequence and a Hidden Markov 
Model profile (hmmpfam, hmmscan) 

2.  Alignment between two  Hidden Markov Model profiles 
(HHSearch, HBlitz, PRC) 

3.  Alignment between sequences using PSSMs (BLAST, fugue) 



2. Remote homologs (PSSM) 
 1. Function association 

PHYRE / 3D‐PSSM  

Remotely homologous structures that can't be found by convenIonal methods 
are detected by using profiles (or PSSMs) generated by PSI‐Blast for both 
target sequence and the sequences of the known structures. Phyre performs a 
profile‐profile matching algorithm together with predicted secondary structure 
matching. 

The funcIonal keywords are found by gathering homologues of the target 
sequence from Swissprot, taking the keywords associated with the Swissprot 
homologues and weighIng them according to their background frequency 
across the whole Swissprot database using SAWTED 



1. Knowledge-base potentials 
 3. Z-scores and energy profiles 

SAWTED 

What is SAWTED? 
SAWTED stands for Structure Assignment With Text DescripIon. It is a method to 
improve the coverage of the detecIon of remote homologues of known structure 
by sequence searches (e.g. PSI‐BLAST) and fold recogniIon programs. 

What does it do? 
When sequence database searches return only hits with scores worse than an 
accepted threshold for reliability the user will o]en compare what is known 
about the funcIon of the query sequence with that known about the poor 
scoring hits. Some hits may appear more sensible than others and deserve closer 
inspecIon. In SAWTED this comparison is made automaIcally using an algorithm 
to compare the text of SWISS‐PROT annotaIons related to the query and to the 
poor scoring hits. A single E‐value is given for the user to assess the similarity of 
funcIon.  
SAWTED is currently implemented to enhance PSI‐BLAST searches against the 
PDB, and as part of our 3D‐PSSM fold recogniIon server 



1. Knowledge-base potentials 
 3. Z-scores and energy profiles 

SAWTED in PHYRE & 3D‐PSSM 



3. Secondary structure alignment 
 1. secondary structure prediction (machine learning)  

M = { set of data obtained with a predictive model} 
D = { set of data known} 

Bayes Theorem 

  

€ 

P(D /M) =
P DM( )
P(M)

P(M /D) =
P DM( )
P(D)

P(M /D) = P(D /M) P(M)
P(D)



3. Secondary structure alignment 
 1. secondary structure prediction (machine learning)  

D = { set of data known} 

OpImizing FuncIon  Φ (minimum Φ) 

€ 

Φ = −log P(M /D)( )
Φ = −log P(D /M)( ) − log P(M)( ) + log P(D)( )
Min Φ( ) = Min −log P(D /M)( ) − log P(M)( )( )
Min Φ( ) ≈ Min −log P(D /M)( )( )

Maximum a priori 

Maximum likelihood 

M = { set of data obtained with a predictive model} 



Training set 
Set of data without redundancies (i.e. a set of non-homologous sequences). 
This is used to optimize the parameters describing the model 

Test set 
Set of data without any element used on the training set or similar to some 
element of the training set (i.e. a set of sequences non-homologous between 
them and non-homologous to any of the elements of the training set). This 
set is used to test the approach and validate the statistical accuracy of the 
method. 

3. Secondary structure alignment 
 1. secondary structure prediction (machine learning)  



input    = {vi / vi i=1,n} 
output = {ui / ui j=1,m} 

v1 
v2 
v3 
v4 
v5 

u1 
u2 
u3 
u4 

Neuron 

3. Secondary structure alignment 
 1. secondary structure prediction (Neural Network)  



€ 

x j = ωk
jvk

k
∑ +ω0

j

y j = f x j( ) =
1

1+ e−x j

Parameters for the model: ω


We need to opImize the parameters in order to get 
yj as close as possible to uj 

3. Secondary structure alignment 
 1. secondary structure prediction (Neural Network)  



Working hypothesis: 
The error between the expected output values (u) and the 
output obtained with this “neuron” approach follows a 
mulIple gaussian distribuIon. Therefore, the probability to 
obtain the output data, given the parameters of the neuron (ω 
and funcIon f), is: 

€ 

P D |M( ) = P u |ω, f( ) =
1

σ 2πj=1

m

∏ × e
− u j −y j( )2

2σ 2

σ =

u j − y j( )
2

j=1

m

∑

m −1

3. Secondary structure alignment 
 1. secondary structure prediction (Neural Network)  



€ 

Φ ≈
1
2σ 2

j
∑ u j − y j( )

2
−
1
2
log2π − logσ

0 =
∂Φ
∂ωk

j = −
u j − y j( )
σ 2 ×

e−x j

1+ e−x j( )
2 × vk

Maximum Likelihood soluIon: 
This implies we can solve the opImizaIon by means of the 
maximum likelihood approach. It also can be further 
simplified by assuming a constant standard deviaIon. 

3. Secondary structure alignment 
 1. secondary structure prediction (Neural Network)  



Neural Network 
The protein sequence can be transformed into a set of vectors on 
the space of residues (dimension 20) 
Inputs can check by windows of 15 Aa along the sequence 
We can use more than one neuron, forming a layer of neurons. 
We can add mulIple layers formed by neurons. 

v1 
v2 
v3 
v4 
v5 

u1 
u2 
u3 
u4 

Single layer 

3. Secondary structure alignment 
 1. secondary structure prediction (Neural Network)  



Neural Network (PHD) 

3. Secondary structure alignment 
 1. secondary structure prediction (Neural Network)  



3. Secondary structure alignment 
 2. Method of fold recognition TOPITS and THREADER 



2. ab initio fold prediction (Rosetta) 
1. Revisiting the knowledge-based potential 
2. New potential based on conditional probabilities 
3. 9-Fragment database of structures 
4. Simulated Annealing construction 
5. Mutual Information 
6. Examples 

Fold prediction 



1. Revisiting the knowledge-based potential 

€ 

P(structure | sequence) = P(structure) × P(sequence | structure)
P(sequence)

P(sequence | structure) = P(aai,aa j ) ×
P(rij aai,aa j )

P(rij )i< j
∏

P(structure | sequence) ≅ e−RG
2

×
P(rij aai,aa j )

P(rij )i< j
∏

Given the radius of gyraIon of a protein structure (RG), we 
approximate the probability that this is the structure for a 
given sequence, where the sequence is defined as the 
vector (aa1, aa2,aa3,…..aaN) 

Where the term on the right contains the distance dependent 
knowledge‐based potenIal: P(rij|aai,aaj) /P(rij) 

(EquaIon 1) 



2. New potential based on conditional probabilities 

  

€ 

P(x1,x2,x3,…,xn ) ≅ P(xi) ×
P(xi,x j )
P(xi)P(x j )i< j

∏
i
∏ 

P(sequence | structure) = P(aa1,aa2,…aan | structure)

P(aa1,aa2,…aan | structure) ≅ P(aai Ei) ×
P(aai,aa j rij ,Ei,E j )

P(aai rij ,Ei,E j )P(aa j rij ,Ei,E j )i< j
∏

i
∏

P(structure | sequence) ≅ e−RG
2

× P(aa1,aa2,…aan | structure)

By applying Bayes theorem on a sequence (set of elements 
amino‐acids), we can approach the condiIonal probability 
with respect to the structure in which the sequence is 
folded with the first two terms of the expansion: 

Where Ei is the environment (secondary structure, accessibility, etc.) of residue aai 

(EquaIon 2) 



2. New potential based on conditional probabilities 

Example of differences between 
potenIals calculated with 
equaIon 1 and equaIon 2. 

EquaIon 1 is in conInuous line 

EquaIon 2 for two buried 
residues is in doged line 

EquaIon 2 for two exposed 
residues is in dashed line 



3. 9-Fragment database of structures 

Rosega splits the sequence in fragments of 9 residues, 
using a window‐like method 

Rosega contains a database of 9‐residue fragments 
extracted from the total set of protein structures 

Rosega assigns the first 25 most probable 9‐fragment 
segments to a 9‐residue fragment of the target sequence 
by selecIng those with smallest score: 

€ 

score = S(aa,i) − X(aa,i)
aa=1

20

∑
i=1

9

∑

Where S(aa,i) is the frequency of residue aa in posiIon i of the target sequence and  
its homologs in the same 9‐residues fragment. Similarly, X(aa,i) is the frequency of 
amino‐acid aa in posiIon i for all similar 9‐residue fragments (with the same 
structure)  



4. Simulated annealing construction 

Rosega applies small changes in torsional angles for each 
fragment considered in order to join the 9‐residue 
fragmented structures assigned to the 9‐residue segment 
of the target 

A conformaIon is selected according to the most probable 
structure‐score: P(structure|sequence). A Metropolis‐
Montecarlo simulaIon is applied using a simulated 
annealing  

The structure‐score is first calculated with equaIon 1, and 
when the simulaIon obtains a closer and more definite 
structure equaIon 2 (with more detailed potenIal) is 
applied. 



5. iTASSER 

iTASSER uses LOMETS threading. LOMETS uses the results 
of several threading approaches based on remote 
homology (i.e. FUGUE, HHSEARCH, etc.) and selects the 
common fragment‐templates to assemble the target 
structure. Then it follows a similar approach to Rosega 



5. Mutual Information 



5. Mutual Information 

Marks DS et al.. PLoS One. 2011;6(12):e28766. Epub 2011 
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6. Examples 

Rosetta 



6. Examples Direct information 


