The Rossmann fold

Relationship between sequence, structure and function.

Anna Casas, Júlia Gasull and Nerea Vega
1. **Introduction**: Adenine nucleotides
 1. The most commonly used organic cofactors

2. **The Rossman fold**: Nucleotide-binding proteins
 1. The fold: a/b
 2. Topological switch diagram
 3. The Rossmann Hypothesis
 4. Aligning to find a consensus sequence

3. **The NAD-binding pocket**
 1. UDP-galactose 4-epimerase
 2. Amino acid residues interactions
 3. The role of glycine
 4. The role of water
 5. Stereospecific transference of the H

4. **What about ATP?** The Walker motif
INTRODUCTION

Adenine-nucleotides

All organisms possess small molecular weight co-factors with a crucial role in several metabolic and regulatory pathways.

Co-factor: non-protein chemical compound that is bound to a protein and is required for the protein’s biological activity.

- Organic
 - Coenzymes
 - Prosthetic group

- Inorganic (Mg)

NAD and FAD serve as cofactors in many essential biologic processes, such as glycolysis (NAD) and the citric acid cycle (FAD and NAD)

Schulz, G.E., Schirmer, R.H. Principles of protein structure
Index

1. **Introduction**: Adenine-dinucleotides
 1. The most commonly used organic cofactors

2. **The Rossman fold**: Nucleotide-binding proteins
 1. The fold: a/b
 2. Topological switch diagram
 3. The Rossmann Hypothesis
 4. Aligning to find a consensus sequence

3. **The NAD-binding pocket**
 1. UDP-galactose 4-epimerase
 2. Amino acid residues interactions
 3. The role of glycine
 4. The role of water
 5. Stereospecific transference of the H

4. **FAD vs. NAD –binding proteins**

5. **What about ATP/GTP?** The Walker motif
The Rossmann Fold

Introduction to Rossmann fold

Rossmann et. al. (1974) described two β-α-β-α-β units forming a *six-stranded parallel β-sheet* flanked by *four α-helices* in the structure of some dinucleotide-binding proteins.

ONE ROSSMANN FOLD UNIT = β-α-β-α-β.

Schulz, G.E., Schirmer, R.H. Principles of protein structure
The Rossmann Fold

β-α-β motif

Two adjacent β-strands in the aminoacid sequence are joined by an α-helix at opposite edges to form a parallel β-strand in the structure.

The loop connecting C-end of the β-strand with N-end of the α-helix often have conserved amino acid sequence in homologous proteins and is involved in forming the active site.

Right-handed.

Schulz, G.E., Schirmer, R.H. Principles of protein structure
The Rossmann Fold

Dinucleotide-binding fold

Rossmann fold is a super-secondary structural open sheet domain composed of alternating α-helices and β-strands along the backbone. The β-strands are therefore mostly parallel.

Carl Branden, John Tooze. Introduction to protein structure
The Rossmann Fold

NAD-binding Rossmann fold

Fig. 4 Rossmann fold (1EK5)

Carl Branden, John Tooze. Introduction to protein structure
The Rossmann Fold

SCOP classification

Fold: NAD(P)-binding Rossmann-fold domains

- **core:** 3 layers, a/b/a; parallel beta-sheet of 6 strands, order 321456
- The nucleotide-binding modes of this and the next two folds/superfamilies are similar

Lineage:

1. **Root:** scop
2. **Class:** Alpha and beta proteins (a/b) [51349]
 - Mainly parallel beta sheets (beta-alpha-beta units)
3. **Fold:** NAD(P)-binding Rossmann-fold domains [51734]
 - core: 3 layers, a/b/a; parallel beta-sheet of 6 strands, order 321456
 - The nucleotide-binding modes of this and the next two folds/superfamilies are similar

Superfamilies:

1. NAD(P)-binding Rossmann-fold domains [51735] (12)
 - Superfamily
 1. Alcohol dehydrogenase-like, C-terminal domain [51736] (28)
 - N-terminal all-beta domain defines family
2. Tyrosine-dependent oxidoreductases [51751] (108)
 - also known as short-chain dehydrogenases and SDR family
 - parallel beta sheet is extended by 7's strand, order 3214567, left-handedmony connection between strands 6 and 7
The Rossmann Fold

Rossmann fold

Although dinucleotide-binding domains show very low overall sequence homology, large portions of their proteins backbones superimpose very well due to Rossmann fold.
The Rossmann Fold

Structure is more conserved than sequence

The degree of conservation of the three-dimensional structure is much higher than the degree of conservation of the amino acid sequence.
The Rossmann Fold

Structure is more conserved than sequence

The degree of conservation of the three-dimensional structure is much higher than the degree of conservation of the amino acid sequence.
The Rossmann Fold

The Rossmann hypothesis

A large number of proteins had incorporate the Rossmann fold as a consequence of a **gene fusion** process. These proteins have acquired a new function.
UDP-galactose-4-epimerase (GALE)

A nucleotide-binding protein

Nterminal (Met1-Thr189) \rightarrow NAD binding

- 7-stranded parallel β-sheet
- 5-α-helix

Cterminal (Gly190-Ala348) \rightarrow UDP sugar binding

Conserved features among these proteins:

- GXGXXG motif
- Side chains interactions with the dinucleotide

Fig. 5 Single Nterminal and Cterminal GALE domains

NAD-binding proteins

Nicotinamide adenine dinucleotide (NAD)

The main role of NAD+ cofactor is the redox reactions.

Reactions of this type are catalyzed by a large group of enzymes called oxidoreductases.

Binding domain for NAD consists of two paired Rossmann fold.

Fig. 2 Nicotinamide adenine dinucleotide

Fig. 6 Single Rossman fold: A β-α-β-α-β unit.
NAD-binding proteins

Aminoacid residue interactions

<table>
<thead>
<tr>
<th>SIDE CHAIN</th>
<th>RESIDUES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polar</td>
<td>Tyr13, Tyr37, Asn157</td>
</tr>
<tr>
<td>Apolar</td>
<td>Ile14</td>
</tr>
<tr>
<td>+ charge (basic)</td>
<td>Lys161</td>
</tr>
<tr>
<td>- charge (acidic)</td>
<td>Asp33, Asp66</td>
</tr>
</tbody>
</table>

These amino acid residues are not conserved, but so do their properties.

Fig.2 Main amino acid interactions in the NAD+ binding pocket.

NAD-binding proteins

The role of water in the binding pocket

Water molecules mediate about 30% of hydrogen bonds.

Concentrated around the pyrophosphate group.

Important parameter for the dinucleotide recognition.

Fig.2 Water molecules interacting with NAD+.
NAD-binding proteins

How does NAD cofactor stabilize itself into the protein?

- GLYCINES → no side chains
- A-helix → overall positive dipole moment

Fig.2 Gly conserved sequence in Rossmann fold.

Fig.2 α-helix peptide dipole are parallel to the helix axis.

Bottoms CA,, et al. 2002.
but... is it enough?

NO
NAD-binding proteins

The role of water is crucial

- Structurally conserved water molecule
- Conserved hydrogen-bonding pattern

Invariant hydrogen bonds
- Last conserved Gly (αA)
- Dinucleotide pyrophosphate

Variant hydrogen bonds
- 2nd/3rd conserved Gly
- C-terminal residue of 4β

Fig. 7 A single water conserved molecule.
1EK5: STRUCTURE OF HUMAN UDP-GALACTOSE 4-EPIMERASE

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Formula</th>
<th>Name</th>
<th>Interactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAD</td>
<td>(C_{21}H_{27}N_{7}O_{14}P_{2})</td>
<td>NICOTINAMIDE-ADENINE-DINUCLEO ...</td>
<td>Ligand Explorer</td>
</tr>
</tbody>
</table>

1EK6: STRUCTURE OF HUMAN UDP-GALACTOSE 4-EPIMERASE

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Formula</th>
<th>Name</th>
<th>Interactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>MG</td>
<td>Mg</td>
<td>MAGNESIUM ION</td>
<td>Ligand Explorer</td>
</tr>
<tr>
<td>NAI</td>
<td>(C_{21}H_{29}N_{7}O_{14}P_{2})</td>
<td>1,4-DIHYDRONICOTINAMIDE ...</td>
<td>Ligand Explorer</td>
</tr>
<tr>
<td>TMA</td>
<td>(C_{4}H_{12}N)</td>
<td>TETRAMETHYLAMMONIUM ION</td>
<td>Ligand Explorer</td>
</tr>
<tr>
<td>UPG</td>
<td>(C_{15}H_{24}N_{2}O_{17}P_{2})</td>
<td>URIDINE-5'-DIPHOSPHATE-GLUCOSE</td>
<td>Ligand Explorer</td>
</tr>
</tbody>
</table>
NAD-binding proteins

Stereospecific transference of the H

UDP-galactose-4-epimerase

NAD-binding proteins

Stereospecific transference of the H

\[\text{NAD}^+ \text{ OXIDIZING AGENT} \]

accepts electrons from other molecules and becomes reduced

\[\text{NADH REDUCING AGENT} \]
donates electrons to other molecules and becomes oxidized

P-loop

Phosphate-binding motif

The phosphate binding loop (P-loop) is the common motif in mononucleotide binding proteins.

The three-dimensional structure of the P-loop, *preceded by a β-sheet and followed by an α-helix*, is similar in different protein families.

Fig.9 Phosphate-binding loop (P-loop)

Fig.10 Superimposition of different protein families with the P-loop.

C. Ramakrishnan, et al. 2001
P-loop

Walker A motif

The basic structural requirement of a P-loop in most ATP-binding enzymes is its consensus sequence GXXXXGK T/S.

This pattern is mostly present as a structurally and energetically favorable loop that appears to provide more room to surround and manipulate the nucleotide phosphate.

Apha and beta proteins:

Fold: P-loop containing nucleoside triphosphate hydrolases

Superfamily: P-loop containing nucleoside triphosphate hydrolases

6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase, kinase

Tymidylate kinase

Deoxyctydine kinase

Adenylate kinase

UMP/CMP kinase

Uridine-cytidine kinase 2

Adenosine-5-phosphosulfate kinase

CFTR

C. Ramakrishnan, et al. 2001
P-loop

Walker A motif

What is important in the Walker A motif?

Variable quartet (XXXX), however G (12.3 %), A (11.9 %), S (9.8 %), V (8.4 %) and T (5.9 %) occur more commonly than other amino-acids.

A glycine-rich loop.

Lysine (K) and Threonine (T) residue.

Fig. 12 T-coffee alignment among different P-loop containing nucleoside triphosphate hydrolases.

C. Ramakrishnan, et al. 2001
P-loop

Walker A motif

The glycine-rich residues in the loop clearly play an important conformational role in maintaining the structure of the loop.

Fig.13 Gycine rich-loop

Fig.14 Glycine-rich loop.

Priva et al, 2011.
P-loop

Walker A motif

The *lysine residue* in the consensus sequence GXXXXGKT/S is crucial for the direct interaction with the phosphates of ATP.

The eight residue is usually a hydroxyl-containing residue: a *threonine* or *serine*.

Fig.2 Walker A motif.
P-loop

P-loop and ATP

Fig. 12 Interaction between ADP and an a.

Fig. 13 Interaction between ATP and an adenylate kinase.

C. Ramakrishnan, et al. 2001
The Walker B motif is another integral part of the ATP-binding site.

The aspartate residue is required for ATP hydrolysis and is preceded by four hydrophobic residues: hhhhD
P-loop

Walker B motif

Fig. 16 Walker B motif (1RKB)

C. Ramakrishnan, et al. 2001
Thank you for your attention!
References

Wierenga RK, De Mayer CH, Hol WG