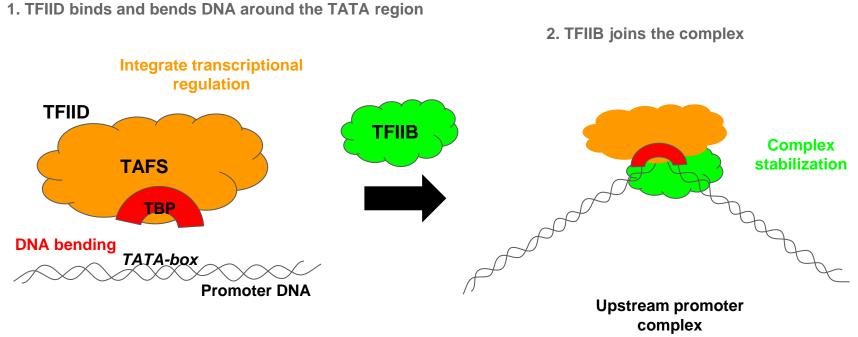

Structural basis of transcription initiation by RNA polymerase II

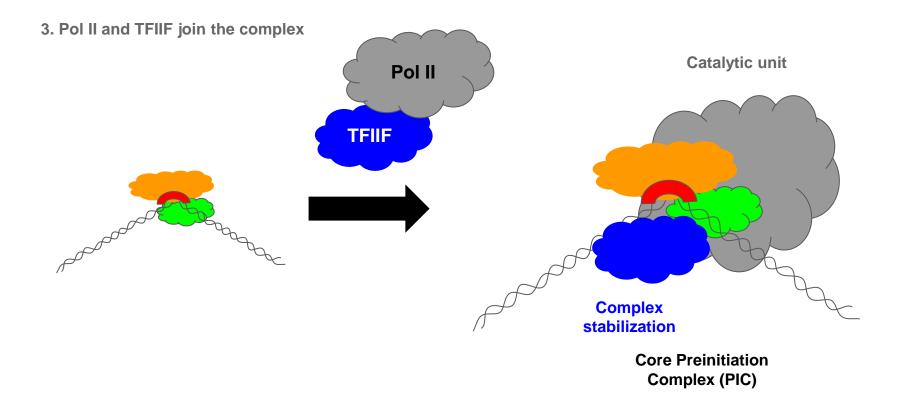
Josep Argerich Bergedà Adrián González Sánchez Miquel Àngel Schikora Tamarit

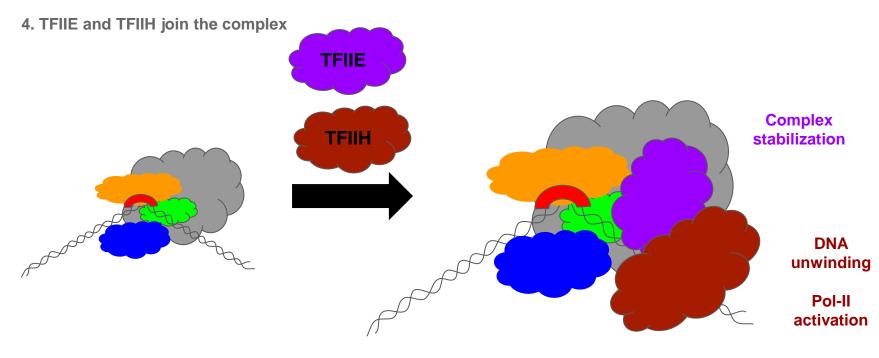
INTRODUCTION

Transcription initiation is the start of gene expression in eukaryotes

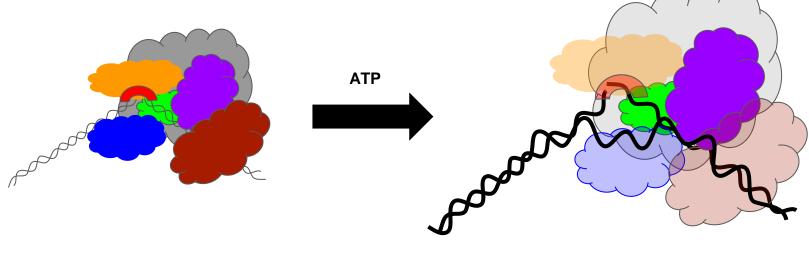
> Pol-II controls cell **identity**, **differentiation** and **stress response** processes

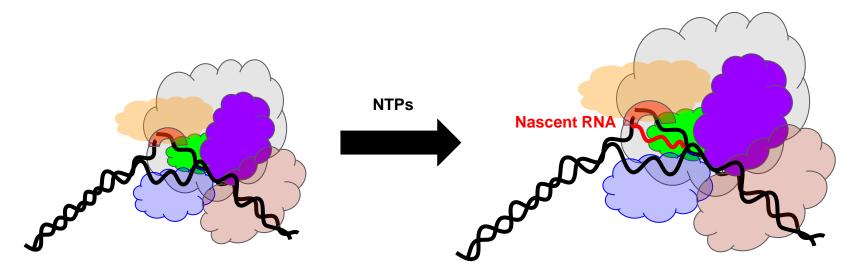

> 3 steps are required to produce RNA




> Initiation is the starting point, and integrates most of the transcriptional regulation

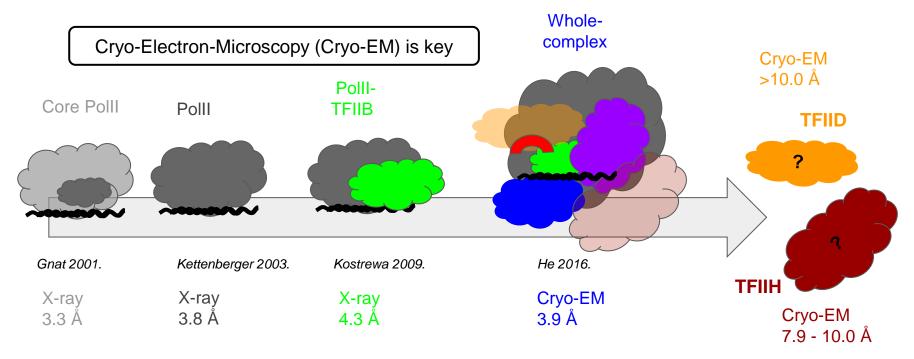
> The mechanism is supposed to be **highly conserved** across eukaryotes


OVERVIEW OF THE PROCESS


Closed PIC

5. DNA melts around the transcription start site (TSS)

Open PIC


6. Transcription starts

Initially transcribing complex

The architecture of the complex is not fully understood at atomic resolution

Historical highlights on the advances in the anatomical comprehension of transcription initiation

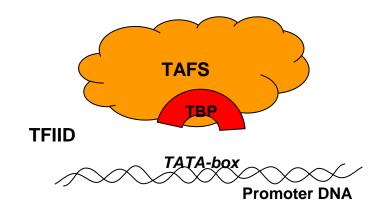
Most subunits are characterized in yeast (S. cerevisiae) and humans (H. sapiens)

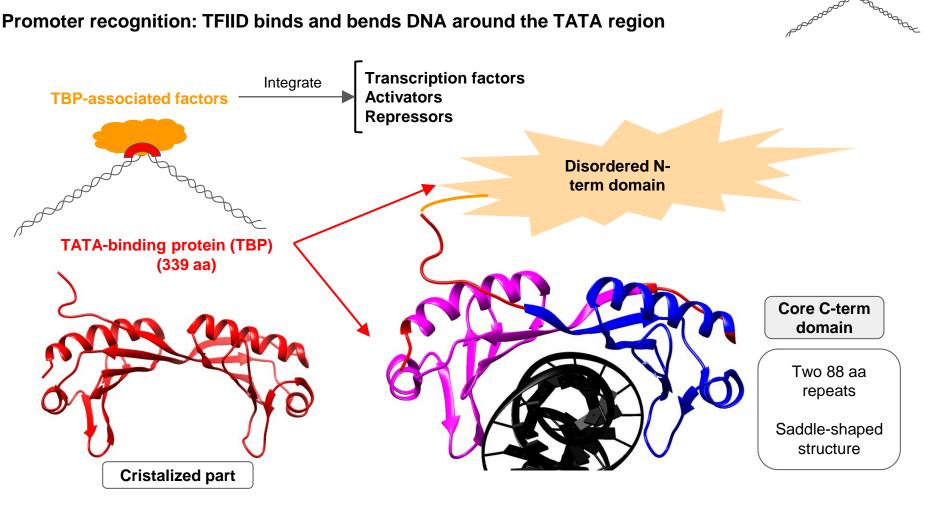
AIM OF THE PROJECT

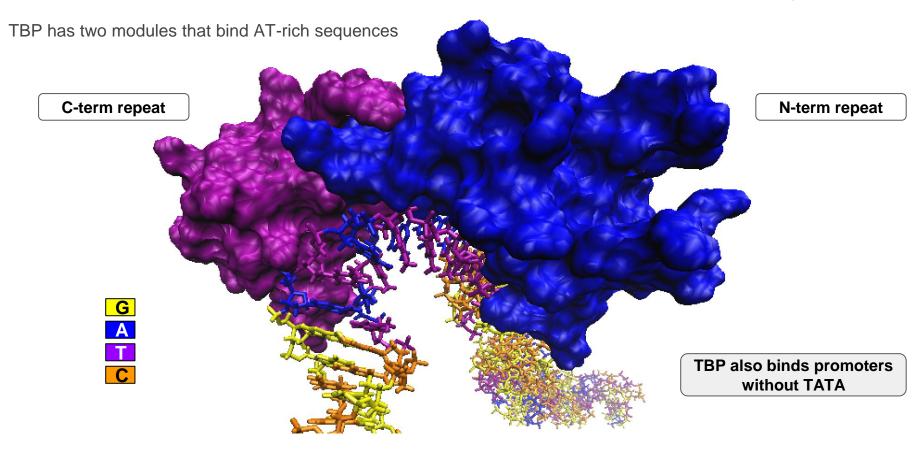
Our project aims to review the...

> Architecture of the initiation complex

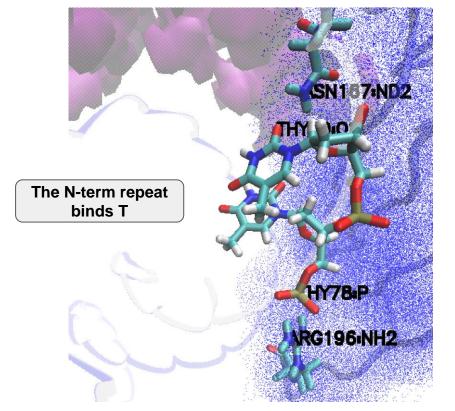
> **Relevant interactions** to understand the sequential assembly of factors

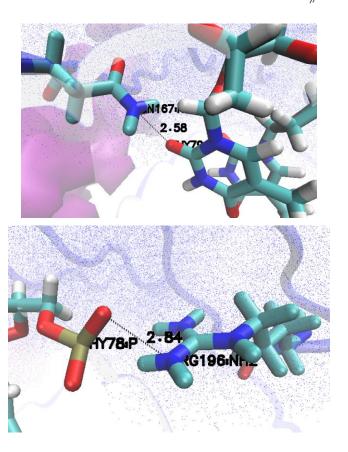

> Molecular mechanisms beyond the structure

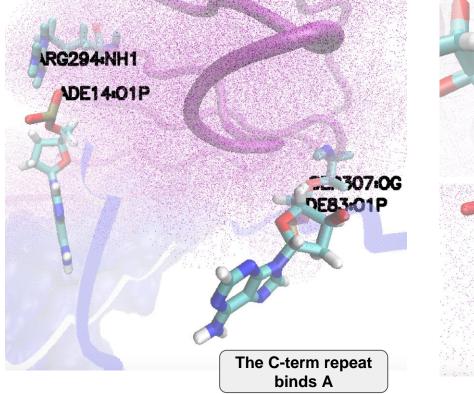

Evolutionary conservation across eukaryotes

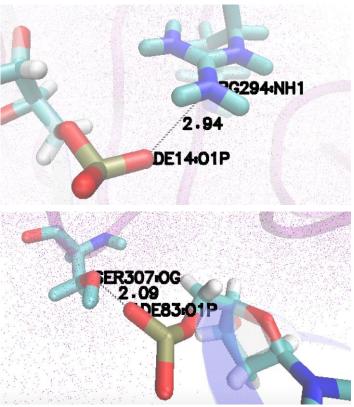

> The current structural knowledge about transcription initiation

Promoter recognition:


TFIID binds and bends DNA around the TATA region

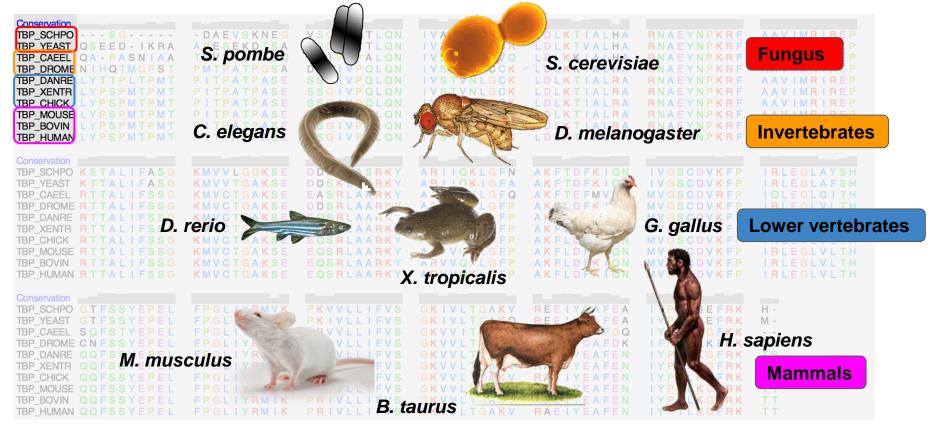






Dogodor

H bonds and electrostatic interactions are required



The C-terminal domain of TBP is conserved across eukaryotes

Conservation TBP_SCHPO S G TBP_YEAST Q S E E D - I K R A TBP_CAEEL Q A - P A S N I A A TBP_DROME N I H Q T M G P S T TBP_DANRE L Y T P L T P M T TBP_XENTR L Y P S P M T P M T TBP_CHICK L Y P S P M T P M T	- DAEVSKNEG APESEKDTSA TMVPATPASQ PMTPATPASE PITPATPASE PITPATPASE PITPATPASE PITPATPASE	V S G I V P T L Q N T S G I V P T L Q N L D I P M P A L Q N S S G I V P Q L Q N S S G I V P Q L Q N S S G I V P Q L Q N S S G I V P Q L Q N	IVATVNLDCR IVATVTLGCR IVSTVNLGVQ IVSTVNLCCK IVSTVNLGCK IVSTVNLGCK IVSTVNLGCK	LDLKTIALHA LDLKTVALHA LDLKKIALHA LDLKKIALHA LDLKTIALRA LDLKTIALRA LDLKTIALRA	RNAEYNPKRF RNAEYNPKRF RNAEYNPKRF RNAEYNPKRF RNAEYNPKRF RNAEYNPKRF RNAEYNPKRF	A A V I M R I R E P A A V I M R I R E P A A V I M R I R E P A A V I M R I R E P A A V I M R I R E P A A V I M R I R E P A A V I M R I R E P
TBP_BOVIN LYPSPMTPMT TBP_HUMAN LYPSPMTPMT	P I TPA TPASE P I TPA TPASE	SSGIVPQLQN SSGIVPQLQN	IVSTVNLGCK IVSTVNLGCK	LDLKTIALRA LDLKTIALRA	RNAEYNPKRF RNAEYNPKRF	AAVIMRIREP AAVIMRIREP
Conservation TBP_SCHPO K S T A L I F A S G TBP_YEAST K T T A L I F A S G TBP_CAEEL R T T A L I F S S G TBP_DROME R T T A L I F S S G TBP_DANRE R T T A L I F S S G TBP_CHICK R T T A L I F S S G TBP_CHICK R T T A L I F S S G TBP_MOUSE R T T A L I F S S G TBP_BOVIN R T T A L I F S S G	KMVVLGGKSE KMVVTGAKSE KMVCTGAKSE KMVCTGAKSE KMVCTGAKSE KMVCTGAKSE KMVCTGAKSE KMVCTGAKSE KMVCTGAKSE	D D S K L A S R K Y D D S K L A S R K Y E A S R L A A R K Y D D S R L A A R K Y E Q S R L A A R K Y E Q S R L A A R K Y E Q S R L A A R K Y E Q S R L A A R K Y E Q S R L A A R K Y	A R I I QK L G F N A R I I QK L G F A A R I V QK L G F Q A R I I QK L G F P A R V V QK L G F P	A K F T D F K I QN A K F T D F K I QN A K F T E F M V QN A K F L D F K I QN	IVGSCDVKFP IVGSCDVKFP MVGSCDVKFP MVGSCDVKFP MVGSCDVKFP MVGSCDVKFP MVGSCDVKFP MVGSCDVKFP MVGSCDVKFP MVGSCDVKFP	I R L E G L A Y S H I R L E G L A F S H I Q L E G L C I T H I R L E G L V L T H I R L E G L V L T H I R L E G L V L T H I R L E G L V L T H I R L E G L V L T H I R L E G L V L T H
ConservationTBP_SCHPOG T F S S Y E P E LTBP_YEASTG T F S S Y E P E LTBP_CAEELS Q F S T Y E P E LTBP_DROMEC N F S S Y E P E LTBP_DANREQ Q F S S Y E P E LTBP_XENTRQ Q F S S Y E P E LTBP_CHICKQ Q F S S Y E P E LTBP_BOVINQ Q F S S Y E P E LTBP_HUMANQ Q F S S Y E P E L	FPGLIYRMVK FPGLIYRMVK FPGLIYRMVK FPGLIYRMVK FPGLIYRMIK FPGLIYRMIK FPGLIYRMIK FPGLIYRMIK FPGLIYRMIK	P K V V L L I F V S P K I V L L I F V S P R V V L L I F V S P R I V L L I F V S P R I V L L I F V S P R I V L L I F V S P R I V L L I F V S P R I V L L I F V S P R I V L L I F V S	GKIVLTGAKV GKIVLTGAKQ GKVVLTGAKT GKVVLTGAKV GKVVLTGAKV GKVVLTGAKV GKVVLTGAKV GKVVLTGAKV GKVVLTGAKV	REEIYQAFEA KRDIDEAFGQ RQEIYDAFDK RGEIYEAFEN RAEIYEAFEN RAEIYEAFEN RAEIYEAFEN RAEIYEAFEN RAEIYEAFEN RAEIYEAFEN	I Y P V L SE F R K I Y P V L SE F R K I Y P I L K G F K K I Y P I L K G F R K I Y P I L K G F R K I Y P I L K G F R K I Y P I L K G F R K I Y P I L K G F R K I Y P I L K G F R K	H - M - QS TS TT TT TT TT

The C-terminal domain of TBP is conserved across eukaryotes

Lago all

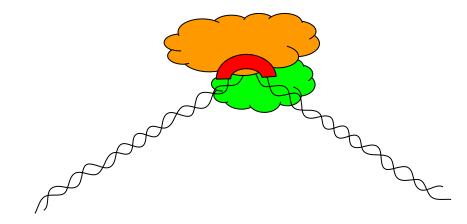
The C-terminal domain of TBP is conserved across eukaryotes

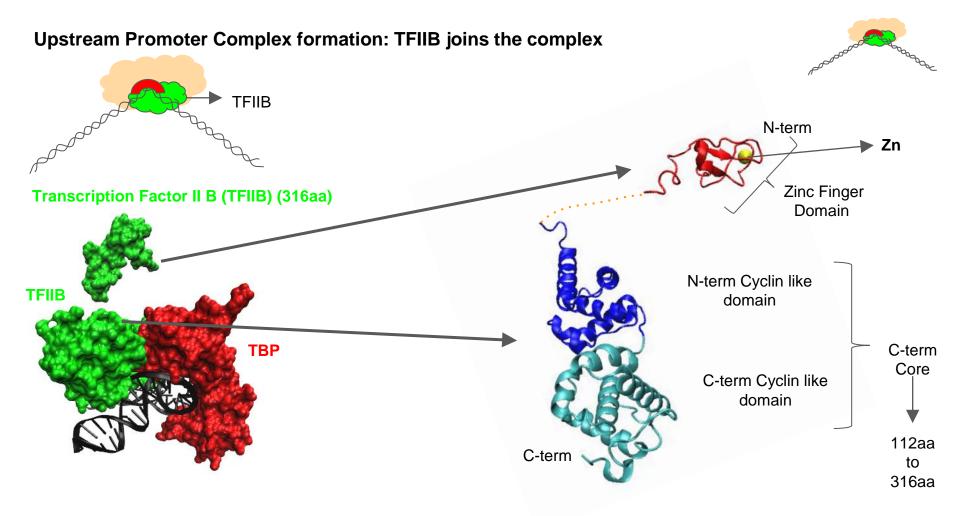
N-term repeat

400000

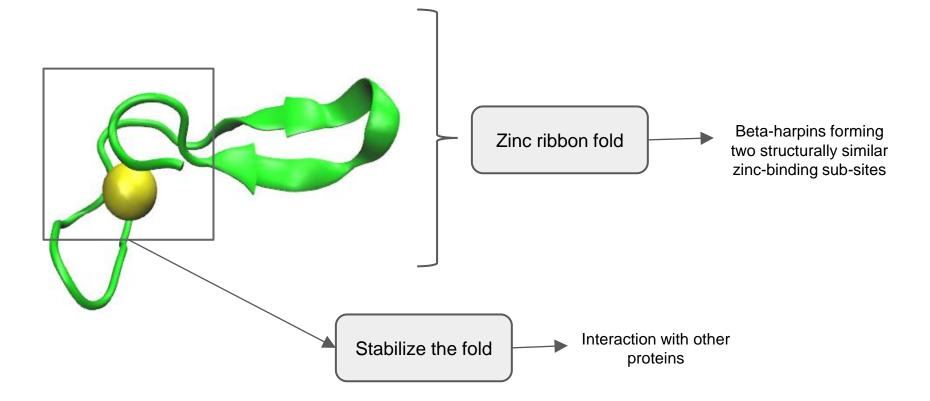
Conservation TBP_SCHPO TBP_YEAST QSEED-IKRA TBP_CAEEL QA - PASNIAA TBP_DROME NIHQTMGPST TBP_DANRE LYTPLTPMT TBP_XENTR TBP_CHICK LYPSPMTPMT TBP_MOUSE LYPSPMTPMT TBP_BOVIN LYPSPMTPMT TBP_HUMAN LYPSPMTPMT	- DAEVSKNEG APESEKDTSA TMVPATPASQ PMTPATPASQ PITPATPASE PITPATPASE PITPATPASE PITPATPASE PITPATPASE PITPATPASE	VSGIVFTLQN TSGIVFTLQN LDIPMFALQN SSGIVFQLQN SSGIVFQLQN SSGIVFQLQN SSGIVFQLQN SSGIVFQLQN SSGIVFQLQN SSGIVFQLQN SSGIVFQLQN	I VATVNLDCR I VATVTLGCR I VSTVNLGVQ I VSTVNLGCK I VSTVNLGCK I VSTVNLGCK I VSTVNLGCK I VSTVNLGCK I VSTVNLGCK I VSTVNLGCK	LDLKTIALHA LDLKTVALHA LDLKKIALHA LDLKKIALHA LDLKTIALRA LDLKTIALRA LDLKTIALRA LDLKTIALRA LDLKTIALRA	RNAEYNPKRF RNAEYNPKRF RNAEYNPKRF RNAEYNPKRF RNAEYNPKRF RNAEYNPKRF RNAEYNPKRF RNAEYNPKRF RNAEYNPKRF RNAEYNPKRF RNAEYNPKRF	A A V I M R I R E P A A V I M R I R E P A A V I M R I R E P A A V I M R I R E P A A V I M R I R E P A A V I M R I R E P A A V I M R I R E P A A V I M R I R E P A A V I M R I R E P A A V I M R I R E P
ConservationTBP_SCHPOK S T A L I F A S GTBP_YEASTK T T A L I F A S GTBP_CAEELR T T A L I F S S GTBP_DROMER T T A L I F S S GTBP_DANRER T T A L I F S S GTBP_XENTRR T T A L I F S S GTBP_CHICKR T T A L I F S S GTBP_MOUSER T T A L I F S S GTBP_MOUSER T T A L I F S S GTBP_BOVINR T T A L I F S S GTBP_HUMANR T T A L I F S S G	KMVVLGGKSE KMVVTGAKSE KMVCTGAKSE KMVCTGAKSE KMVCTGAKSE KMVCTGAKSE KMVCTGAKSE KMVCTGAKSE KMVCTGAKSE	D D S K L A S R K Y D D S K L A S R K Y E A S R L A A R K Y D D S R L A A R K Y E Q S R L A A R K Y E Q S R L A A R K Y E Q S R L A A R K Y E Q S R L A A R K Y E Q S R L A A R K Y	ARIIQK GFN ARIIQK GFA ARIVQK GFQ ARIIQK GFP ARVVQK GFP ARVVQK GFP ARVVQK GFP ARVVQK GFP ARVVQK GFP	AKFTDFKIQN AKFTDFKIQN AKFTDFKIQN AKFTDFKIQN AKFTDFKIQN AKFTDFKIQN AKFTDFKIQN AKFTDFKIQN AKFTDFKIQN	IVGSCDVKFP IVGSCDVKFP MVGSCDVKFP MVGSCDVKFP MVGSCDVKFP MVGSCDVKFP MVGSCDVKFP MVGSCDVKFP MVGSCDVKFP MVGSCDVKFP	I R L E G L A Y S H I R L E G L A F S H I Q L E G L C I T H I R L E G L V L T H I R L E G L V L T H I R L E G L V L T H I R L E G L V L T H I R L E G L V L T H I R L E G L V L T H
Conservation TBP_SCHPO GTFSSYEPEL TBP_YEAST GTFSSYEPEL TBP_CAEEL SQFSTYEPEL TBP_DROME CNFSSYEPEL TBP_DANRE QQFSSYEPEL TBP_XENTR QQFSSYEPEL TBP_CHICK QQFSSYEPEL TBP_MOUSE QQFSSYEPEL TBP_BOVIN QQFSSYEPEL TBP_HUMAN QQFSSYEPEL	FPGLIYRMVK FPGLIYRMVK FPGLIYRMVK FPGLIYRMVR FPGLIYRMIK FPGLIYRMIK FPGLIYRMIK FPGLIYRMIK FPGLIYRMIK	PKVVLLIFVS PKIVLLIFVS PRVVLLIFVS PRIVLLIFVS PRIVLLIFVS PRIVLLIFVS PRIVLLIFVS PRIVLLIFVS PRIVLLIFVS PRIVLLIFVS	GKIVLTGAKV GKIVLTGAKQ GKVVLTGAKT GKVVLTGAKV GKVVLTGAKV GKVVLTGAKV GKVVLTGAKV GKVVLTGAKV GKVVLTGAKV	REEIYQAFEA KRDIDEAFGQ RQEIYDAFDK RGEIYEAFEN RAEIYEAFEN RAEIYEAFEN RAEIYEAFEN RAEIYEAFEN RAEIYEAFEN RAEIYEAFEN	I Y P V L SE F RK I Y P V L SE F RK I Y P I L K G F K K I F P I L K G F R K I Y P I L K G F R K I Y P I L K G F R K I Y P I L K G F R K I Y P I L K G F R K I Y P I L K G F R K	H - C-term M - repeat QS TS TT TT TT TT TT

The C-terminal domain of TBP is conserved across eukaryotes

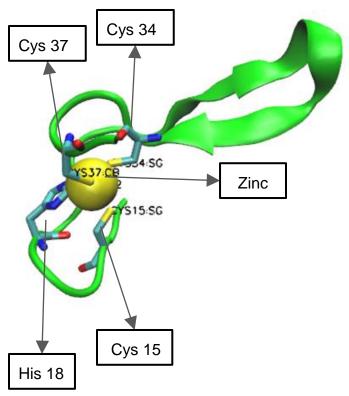

N-term repeat

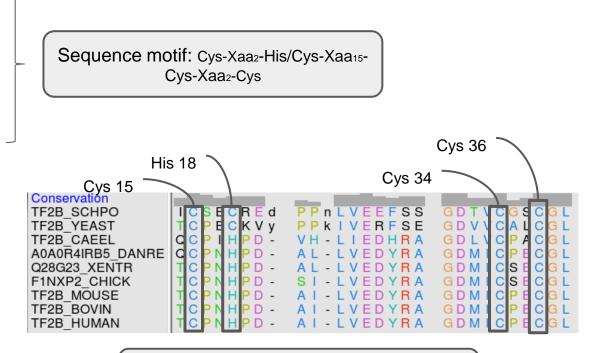

499999

Conservation TBP_SCHPO TBP_YEAST QSEED-IKRA TBP_CAEEL QA - PASNIAA TBP_DROME NIHQTMGPST TBP_DANRE LYTPLTPMT TBP_XENTR TBP_CHICK LYPSPMTPMT TBP_MOUSE LYPSPMTPMT TBP_BOVIN LYPSPMTPMT TBP_HUMAN LYPSPMTPMT	- DAEVSKNEG APESEKDTSA TMVPATPASQ PMTPATPASA PITPATPASE PITPATPASE PITPATPASE PITPATPASE PITPATPASE PITPATPASE PITPATPASE	VSGIVFTLON TSGIVFTLON LDIPMFALON DPGIVFQLON SSGIVFQLON SSGIVFQLON SSGIVFQLON SSGIVFQLON SSGIVFQLON SSGIVFQLON SSGIVFQLON	IVATVNLDCR IVATVTLGCR IVSTVNLGVQ IVSTVNLCCK IVSTVNLGCK IVSTVNLGCK IVSTVNLGCK IVSTVNLGCK IVSTVNLGCK IVSTVNLGCK	LDLKTIALHA LDLKTVALHA LDLKKIALHA LDLKKIALHA LDLKTIALRA LDLKTIALRA LDLKTIALRA LDLKTIALRA LDLKTIALRA LDLKTIALRA	RNAEYNP (R RNAEYNP (R	A A V IIIR REP A A V IIIR REP A A V IIR REP
Conservation Image: Conservation	KIVVLGGKSE KIVVTGAKSE KIVCTGAKSE KIVCTGAKSE KIVCTGAKSE KIVCTGAKSE KIVCTGAKSE KIVCTGAKSE KIVCTGAKSE KIVCTGAKSE	D D S K L A S R K Y D D S K L A S R K Y E A S R L A A R K Y D D S R L A A R K Y E Q S R L A A R K Y E Q S R L A A R K Y E Q S R L A A R K Y E Q S R L A A R K Y E Q S R L A A R K Y	A R I I QK I G F N A R I I QK G F A A R I V QK G F Q A R I I QK G F P A R V V QK G F P	A K F T D F K I QN A K F T D F K I QN A K F T E F M V QN A K F L D F K I QN	IVGSCDVKFP IVGSCDVKFP MVGSCDVKFP MVGSCDVKFP MVGSCDVKFP MVGSCDVKFP MVGSCDVKFP MVGSCDVKFP MVGSCDVKFP MVGSCDVKFP	I RLEGLAYSH I RLEGLAFSH I QLEGLCITH I RLEGLVLTH I RLEGLVLTH I RLEGLVLTH I RLEGLVLTH I RLEGLVLTH I RLEGLVLTH I RLEGLVLTH
Conservation TBP_SCHPO G T F S S Y E P E L TBP_YEAST G T F S S Y E P E L TBP_CAEEL S Q F S T Y E P E L TBP_DROME C N F S S Y E P E L TBP_DANRE Q Q F S S Y E P E L TBP_CHICK Q Q F S S Y E P E L TBP_CHICK Q Q F S S Y E P E L TBP_BOVIN Q Q F S S Y E P E L TBP_HUMAN Q Q F S S Y E P E L	FPGLIN RN VK FPGLIN RN VK FPGLIN RN VK FPGLIN RN VR FPGLIN RN IK FPGLIN RN IK FPGLIN RN IK FPGLIN RN IK FPGLIN RN IK	PKVVLLIF'S PKVVLLIF'S PRVVLLIF'S PRIVLLIF'S PRIVLLIF'S	GKIV TCAKV GKVV TCAKQ GKVV TCAKT GKVV TCAKV GKVV TCAKV	REEIYQAFEA REEIYQAFEA KRDIDEAFGQ RQEIYDAFDK RGEIYEAFEN RAEIYEAFEN RAEIYEAFEN RAEIYEAFEN RAEIYEAFEN RAEIYEAFEN RAEIYEAFEN	I Y P V L SE F RK I Y P V L SE F RK I Y P I L K G F K K I F P I L K G F R K I Y P I L K G F R K I Y P I L K G F R K I Y P I L K G F R K I Y P I L K G F R K I Y P I L K G F R K	H - C-term M - repeat QS TS TT TT TT TT TT TT


Upstream Promoter Complex formation:

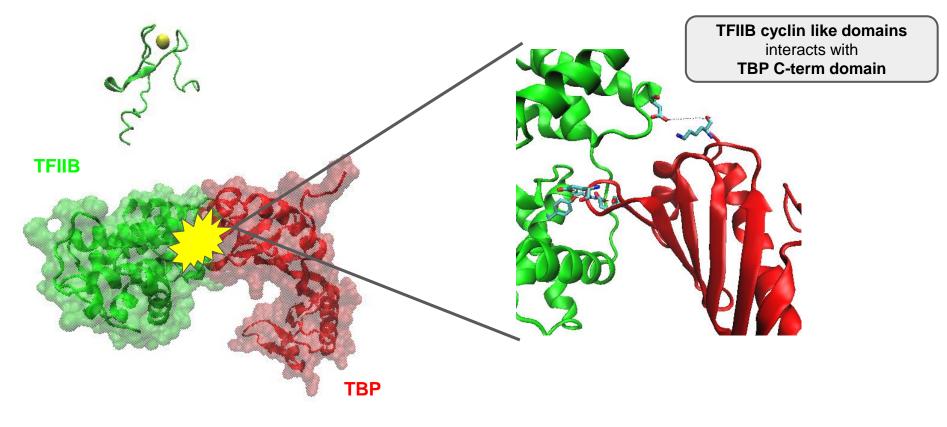
TFIIB joins the complex


The Zn-Finger domain is ubiquitous in transcription initiation (10 domains in the whole PIC)

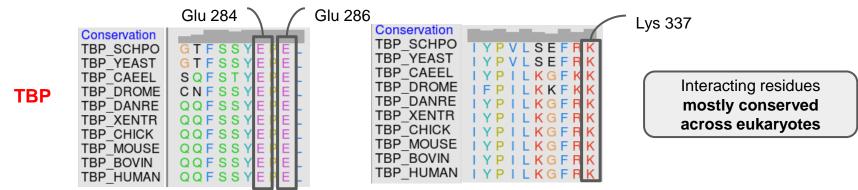


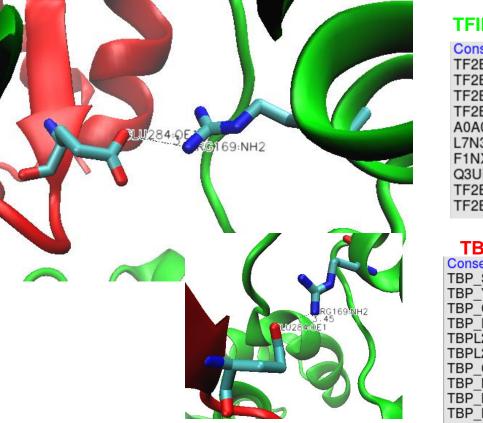
por opport

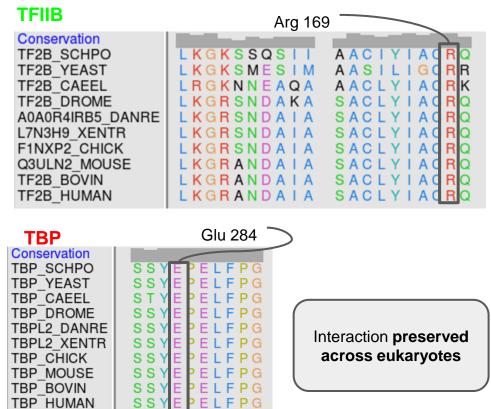
The Zn-Finger domain in TFIIB



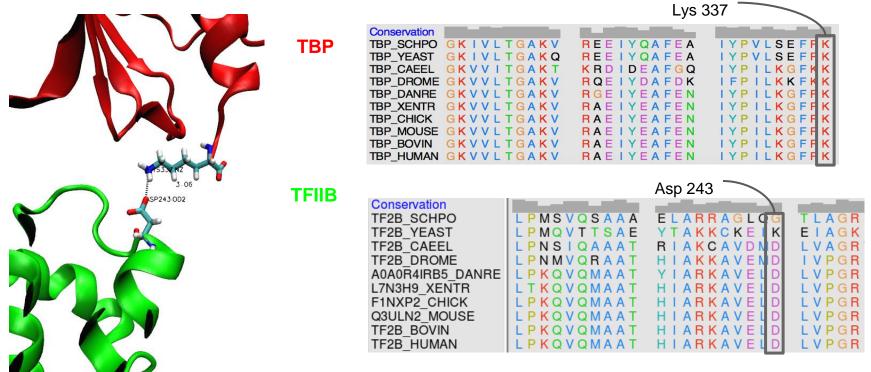
The motif is conserved across eukaryotes


TBP recruits TFIIB to the complex

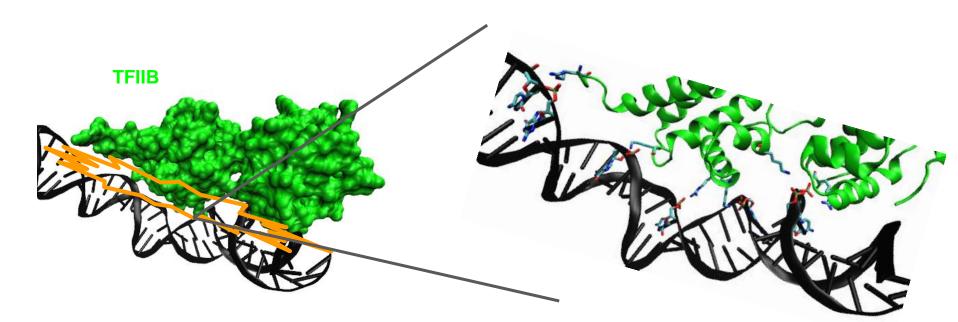

por correction and the


TFIIB C-term core interacts with TBP C-term domain

TFIIB C-term core interacts with TBP C-term domain:Electrostatic Interaction

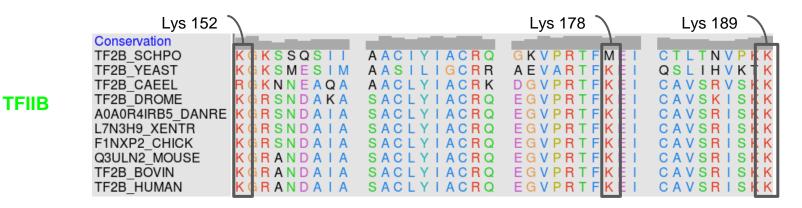


and a


por o concertant

TFIIB C-term core interacts with TBP C-term domain: Salt bridge

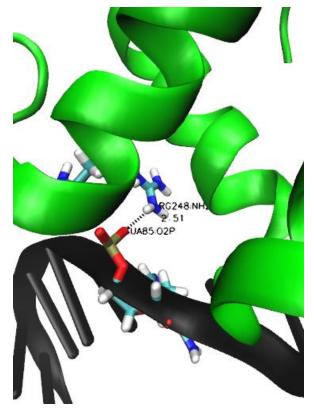
Interaction preserved across metazoans


TFIIB C-term core interacts with double-strand DNA

Most of the interacting residues are Lys or Arg

Paga

TFIIB C-term core interacts with double-strand DNA

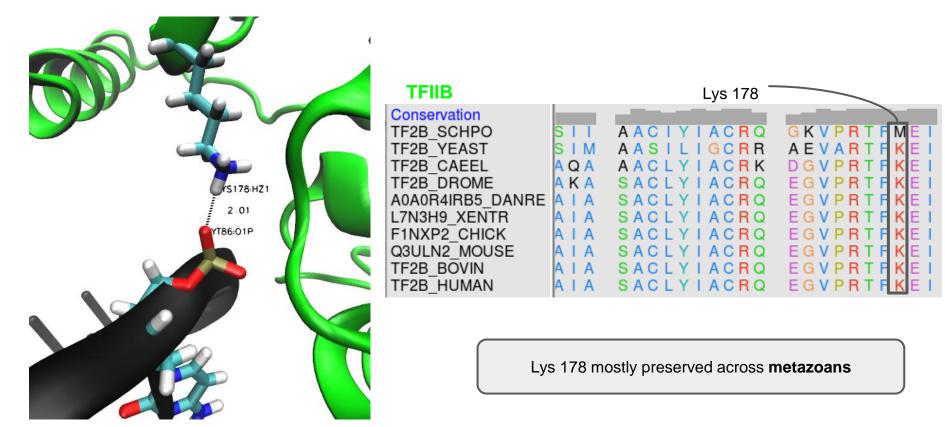


Babba

Arg 248			Lys 272 🔪	
Conservation		Statement of the local division of the local		
TF2B_SCHPO	RSPISI	AASGIYMISA	LMGYPKTFKE	
TF2B YEAST	KSPITI	AVVSIYLNIL	LFQIPITAAK	
TF2B CAEEL	RTPISI	AAAAIYMASQ	ASAEKRSAKE	
TF2B DROME	RSPISV	AAAAIYMASQ	ASEHKRSOKE	
A0A0R4IRB5_DANRE	RSPISV	AAAAIYMASQ	ASAEKKTOKE	Residues mostly
L7N3H9_XENTR	RSPISV	AAAAIYMASQ	ASAEKRTOKE	conserved across
F1NXP2 CHICK	RSPISV	AAAAIYMASQ	ASAEKRTOKE	
Q3ULN2 MOUSE	RSPISV	AAAAIYMASQ	ASAEKRTOKE	eukaryotes
TF2B BOVIN	RSPISV	AEAAIYMASQ	ASAEKRTOKE	
TF2B_HUMAN	RSPISV	AAAAIYMASQ	ASAEKRTOKE	

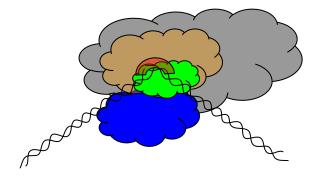
TFIIB

TFIIB C-term core interacts with double stranded DNA: Salt Bridge

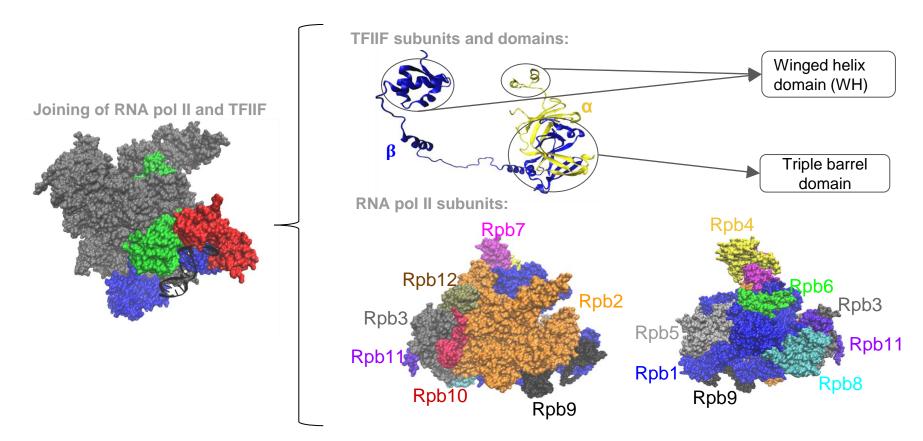


TFIIB

THIB	Arg 248 🔪			
Conservation TF2B_SCHPO TF2B_YEAST TF2B_CAEEL TF2B_DROME A0A0R4IRB5_DANRE L7N3H9_XENTR F1NXP2_CHICK Q3ULN2_MOUSE	ELARRAGLQG YTAKKCKEIK RIAKCAVDMD HIAKKAVEMD YIARKAVELD HIARKAVELD HIARKAVELD HIARKAVELD	T L A G R S P I S I E I A G K S P I T I L V A G R T P I S I I V P G R S P I S V L V P G R S P I S V L V P G R S P I S V L V P G R S P I S V L V P G R S P I S V		
TF2B_BOVIN TF2B_HUMAN	H I ARKAVELD H I ARKAVELD H I ARKAVELD	L V P G R S P I S V L V P G R S P I S V L V P G R S P I S V		


Arg 248 mostly preserved across eukaryotes

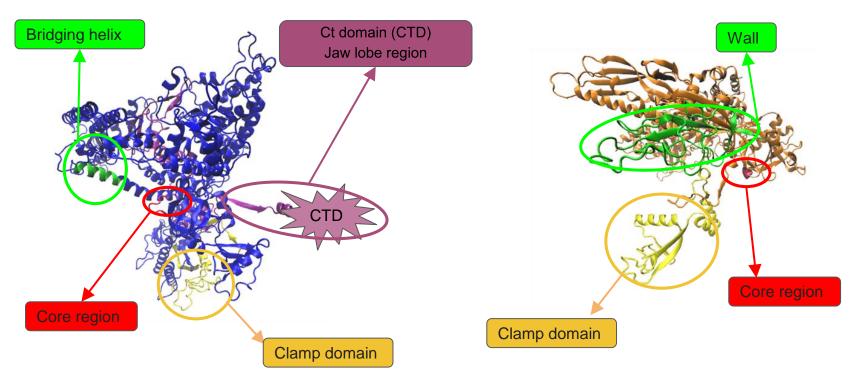
TFIIB C-term core interacts with DNA: Salt bridge


Core PIC formation:

TFIIF-Pol II join the complex

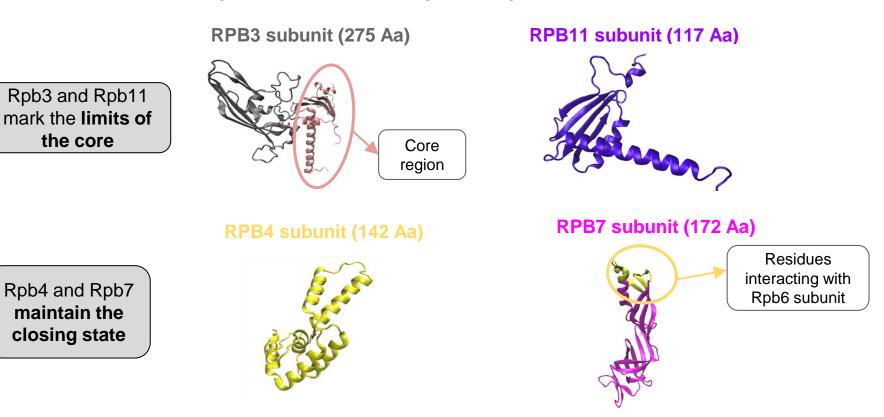
Core PIC formation: TFIIF-Pol II join the complex

Pol II contains 12 subunits and TFIIF has an α and a β subunit with several domains



Core PIC formation: TFIIF-Pol II join the complex

Rpb1 and Rpb2 subunits are the ones forming and stabilizing the core or the active center


RPB1 subunit (1970 Aa)

RPB2 subunit (1174 Aa)

There are other subunits limiting the core and others acting as a wedge-lock or a blocker

profession and the second seco

There are subunits forming the Pol II structural elements and other have a role in its architecture

Forms part of the **Clamp**

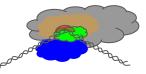
RPB6 subunit (127 Aa)

Form part of the **Jaw lobe**, changing its conformation

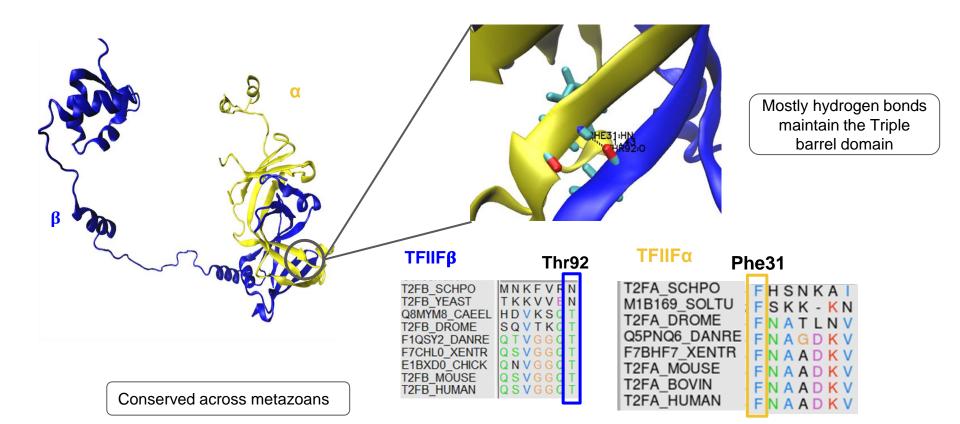
RPB5 subunit (210 Aa) RPB9 subunit (125 Aa)

Have a role stabilizing the Pol II complex

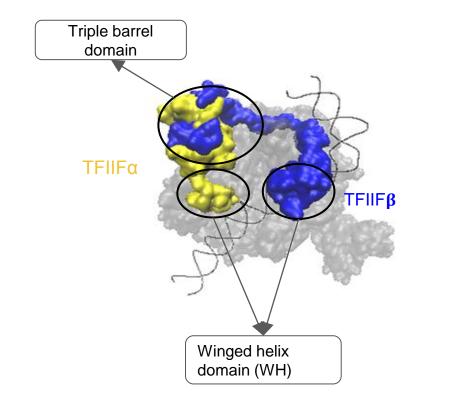
RPB8 subunit (150 Aa)

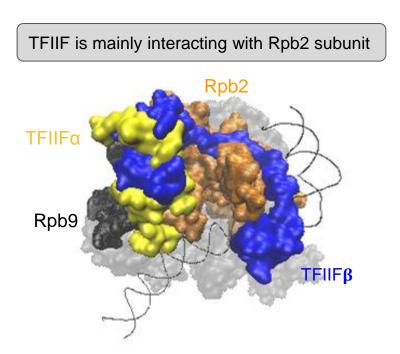

RPB10 subunit (67 Aa)

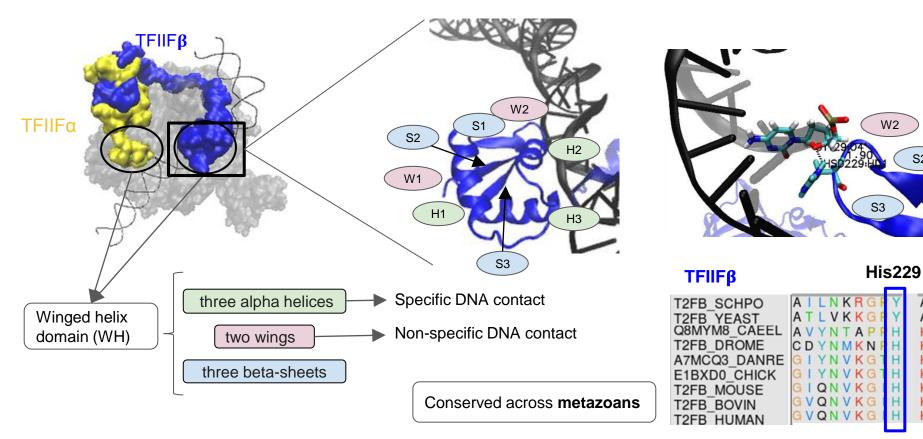
RPB12 subunit (58 Aa)

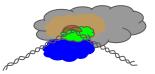





TFIIF subunits interact through the triple barrel domain




TFIIF interact with different subunits of Pol II and with the DNA



TFIIF has two winged helix domains which are important for the interaction with the DNA

W2

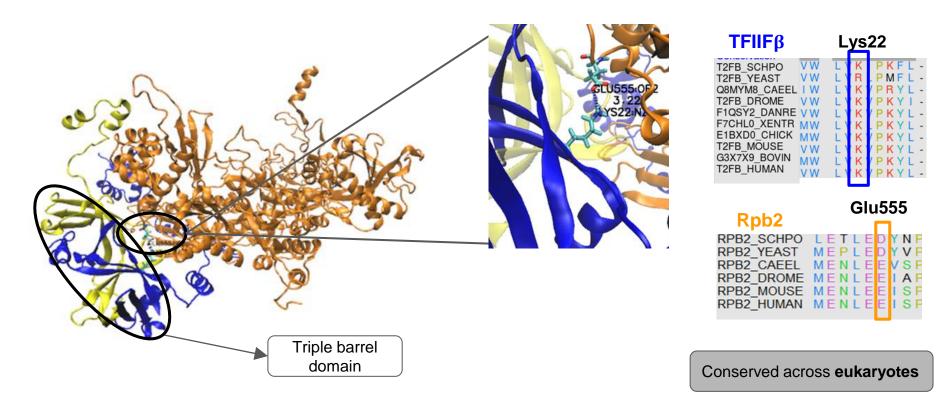
S2

ΑL

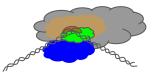
AF

KS

KN


KN

KN KN

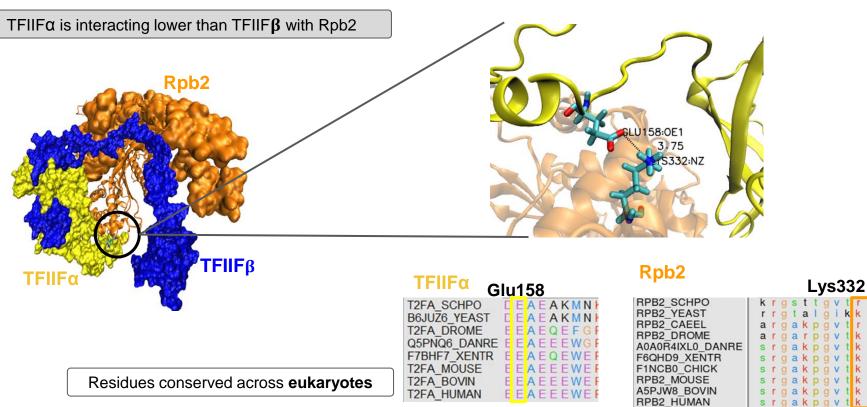

KN

KN

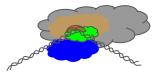
There's an important electrostatic interaction between Rpb2 and TFIIF β in the triple barrel domain P

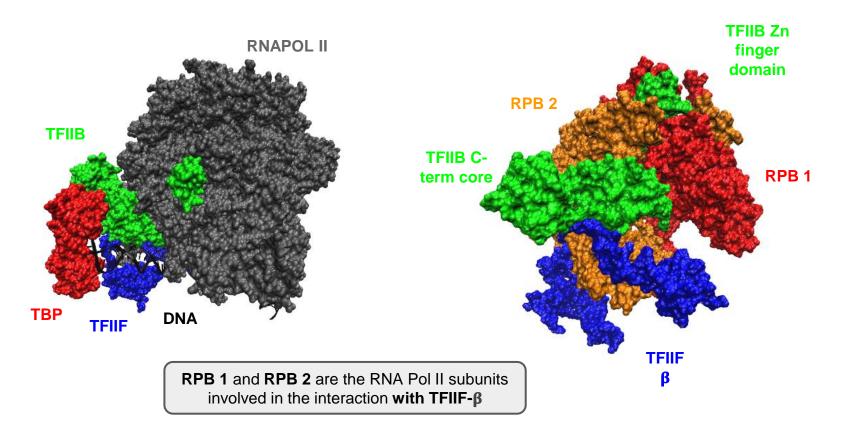
There is also a salt bridge interaction between Rpb2 and TFIIF β

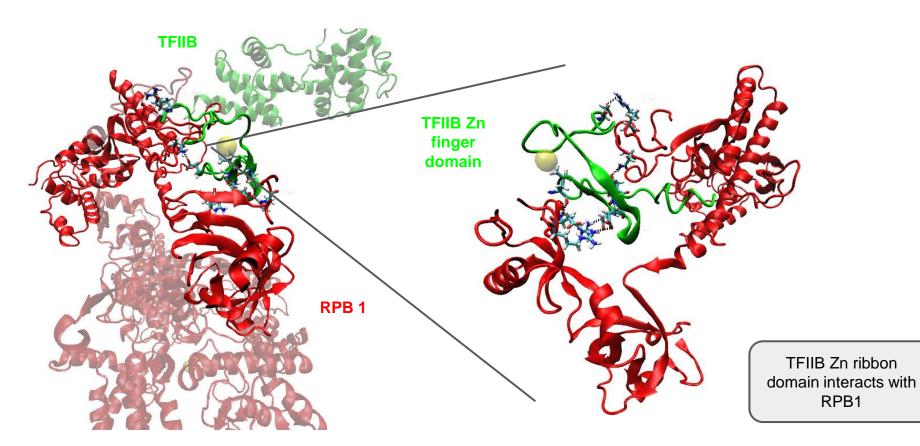



Ara 110

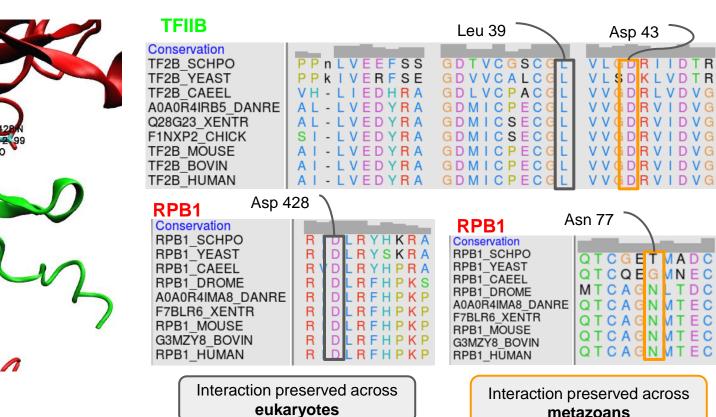
	ΤΕΙΙΕβ Α	rg 140
READ REPORT	b2 T2FB_YEAST Q8MYM8_CAEEL Q T2FB_DROME A7MCQ3_DANRE K E1BXD0_CHICK K T2FB_MOUSE K T2FB_BOVIN K	PCRRVQPID PLRFSQQLD
		lu89
	Rpb2	
	RPB2_SCHPO	NFGQIYLSRP
	RPB2_YEAST RPB2_CAEEL	S F G K I Y V T K P K F N Q I Y L S K P
	RPB2_DROME	KFEQIYLSKP
	A0A0R4IXL0_DANRE	
	F6QHD9_XENTR	KFEQIYLSKP
TFIIFβ	F1NCB0_CHICK	KFEQIYLSKP
	RPB2_MOUSE A5PJW8_BOVIN	KFEQIYLSKP KFEQIYLSKP
	RPB2 HUMAN	IKFEOIYLSKP
na		
	Desideres estatementes	


Residues conserved across chordata

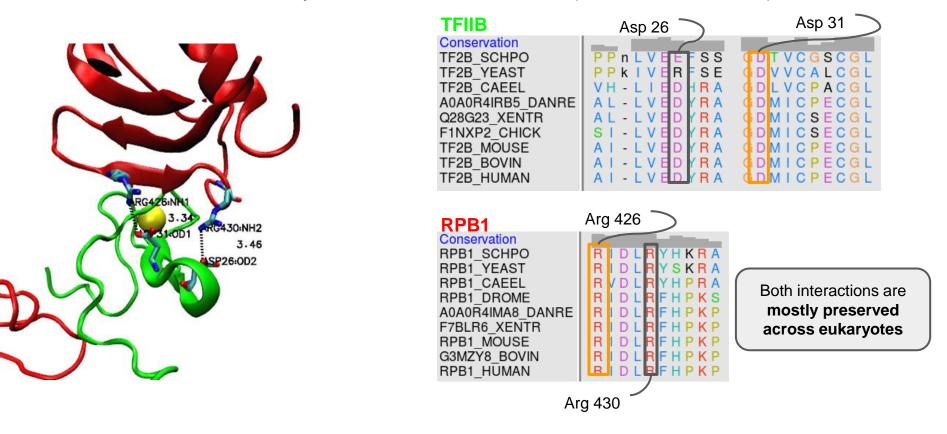

An electrostatic interaction between Rpb2 and TFIIF α is required


TFIIB recruits the TFIIF-PolII assembly to the PIC

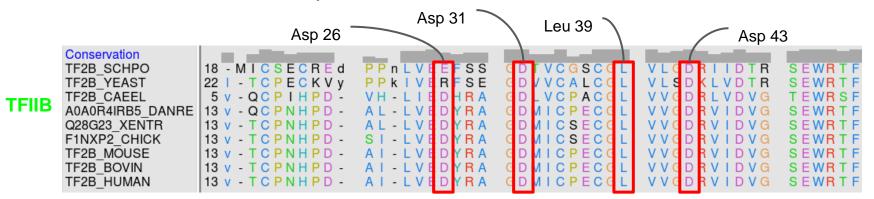
TFIIB recruits the TFIIF-PoIII assembly to the PIC: TFIIB interacts with Rpb1

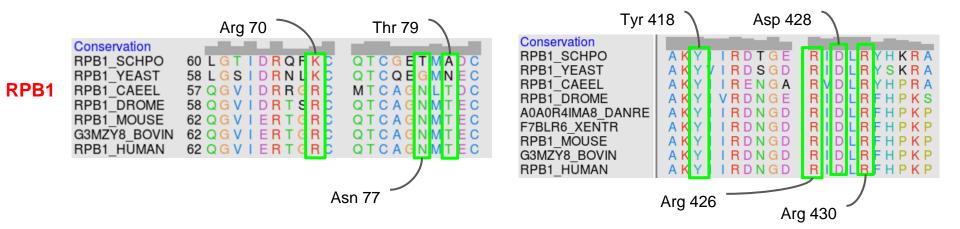


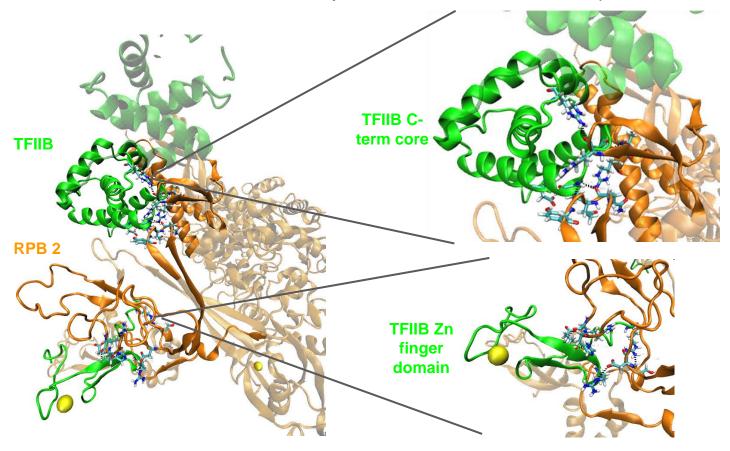
2.78


77:ND2

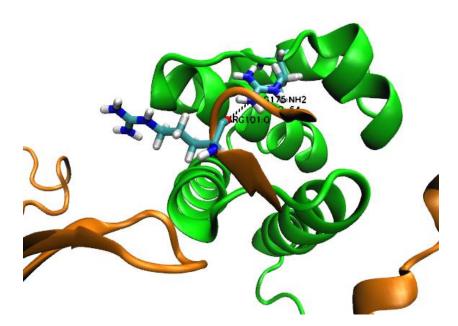
TFIIB recruits the TFIIF-PoIII assembly to the PIC: Zn Ribbon and RPB1 (H bonds)


VG


TFIIB recruits the TFIIF-PoIII assembly to the PIC: Zn Ribbon and RPB1 (Electrostatic Interactions)

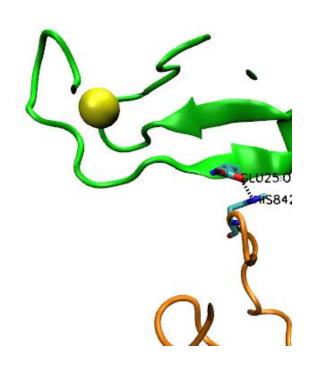


TFIIB recruits the TFIIF-PoIII assembly to the PIC: TFIIB interacts with RPB1


TFIIB recruits the TFIIF-PoIII assembly to the PIC: TFIIB interacts with Rpb2

TFIIB Zn ribbon and N-term cyclin like domains interacts with RPB2

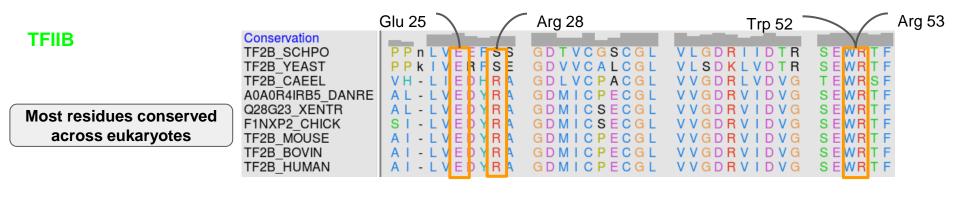
TFIIB recruits the TFIIF-PoIII assembly to the PIC: TFIIB N-term cyclin like domain interacts with Rpb2 (Hydrogen bond)



TFIIB	Arg 175
Conservation TF2B_SCHPO TF2B_YEAST TF2B_CAEEL TF2B_DROME A0A0R4IRB5_DANRE L7N3H9_XENTR F1NXP2_CHICK Q3ULN2_MOUSE TF2B_BOVIN TF2B_HUMAN	SII AACIYIACRQ GKVPHTFMEI SIM AASILIGCRR AEVARTFKEI AQA AACLYIACRK DGVPRTFKEI AKA SACLYIACRQ EGVPRTFKEI AIA SACLYIACRQ EGVPRTFKEI
RPB2 Conservation RPB2_SCHPO RPB2_YEAST RPB2_CAEEL RPB2_DROME A0A0R4IXL0_DANRE F6QHD9_XENTR F1NCB0_CHICK RPB2_MOUSE A5PJW8_BOVIN RPB2_HUMAN	Arg 101 TMTEADGSTT MVNESDGVTH THWEKDGAPM THWEKDGAPS THWERDGAPS THWERDGAPS THWERDGAPS THWERDGAPS THWERDGAPS THWERDGAPS
	toraction concorred across

Interaction conserved across metazoans

TFIIB recruits the TFIIF-PoIII assembly to the PIC: TFIIB Zn-ribbon domain interacts with Rpb2 (Electrostatic Interaction)



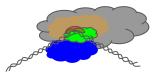
TFIIB	Glu 25 🔿
Conservation TF2B_SCHPO TF2B_YEAST TF2B_CAEEL A0A0R4IRB5_DANRE Q28G23_XENTR F1NXP2_CHICK TF2B_MOUSE TF2B_BOVIN TF2B_HUMAN	PPnLVEFSS PPkIVERFSE VH-LIEDHRA AL-LVEDYRA AL-LVEDYRA SI-LVEDYRA AI-LVEDYRA AI-LVEDYRA AI-LVEDYRA
RPB2 Conservation RPB2_SCHPO RPB2_YEAST RPB2_CAEEL	His 842 RSTtl-rmKH QRTntlrmKH
A0A0R4IXL0_DANRE F6QHD9_XENTR F1NCB0_CHICK RPB2_MOUSE A5PJW8_BOVIN RPB2_HUMAN	TREKCSGMAH TRETCQGMAH TRETCQGMAH TRETCQGMAH TRETCQGMAH TRETCQGMAH TRETCQGMAH

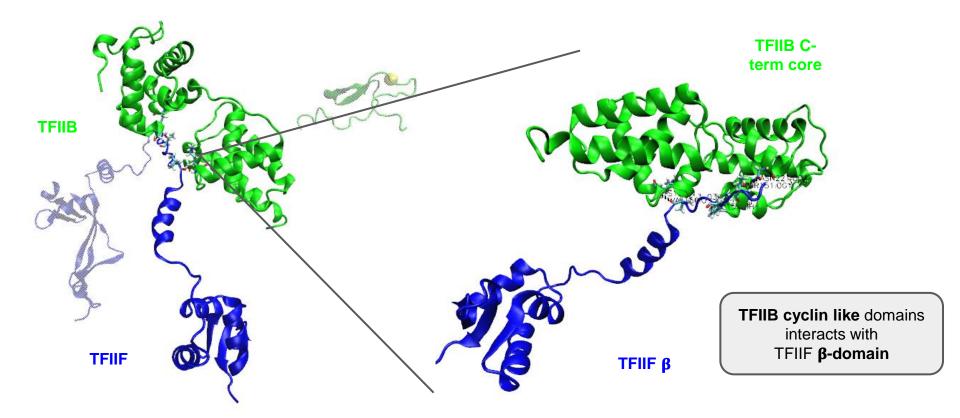
Interaction conserved across **eukaryotes**

TFIIB recruits the TFIIF-PoIII assembly to the PIC: TFIIB interacts with Rpb2

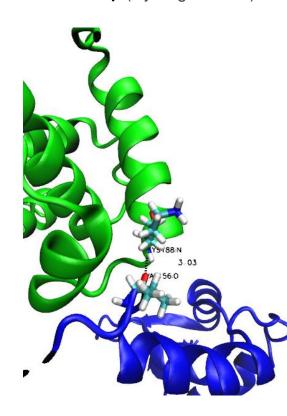
As	sp 126 🦳		Arg 1	32 \		As	p 136		Arg 175		
Conservation							and the second s	Station - Station	and the second second second		
TF2B_SCHPO	125 G A N	IC D	AISL	P K	/ /	DTAKQ	LYKRVDDHKA	LKGKSSQSII	AACIYIACRQ	GKVPRFFME	Γ.
TF2B_YEAST	133 I T M L	CD	AAEL	P K	VI		A Y K L C H D E K T	LKGKSMESIM	AASILIGCRR	AEVARTFKE	1
TF2B_CAEEL	111 R E N	IS E	RIHL	P R I	11(D S A S R	IFKDVLESKA	LRGKNNEAQA	AACLYIACRK	DGVPRFFKE	1
TF2B_DROME	120 S S N	I A. D	RINL	P K	11	/ D <mark>R A N N</mark>	LFKQVHDGKN	LKGRSNDAKA	SACLYIACRQ	EGVPRFFKE	1
A0A0R4IRB5_DANRE	121 I T T N	I A. D	RINL	P R I	11	DRTNN	LFKQVYEQKS	LKGRSNDAIA	SACLYIACRQ	EGVPRFFKE	1
L7N3H9_XENTR	121 I T N N	I A. D	RINL	P R I	111	/ D R T N N	LFKQVYEQKS	LKGRSNDAIA	SACLYIACRQ	EGVPRFFKE	1
F1NXP2_CHICK	121 I T N N	I A. D	RINL	P R I	111	/ D R T N N	LFKQVYEQKS	LKGRSNDAIA	SACLYIACRQ	EGVPRFFKE	1
Q3ULN2_MOUSE	121 I T T N	I A. D	RINL	P R I	111	/ D R T N N	LFKQVYEQKS	LKGRANDAIA	SACLYIACRQ	EGVPRFFKE	1
TF2B_BOVIN	121 I T T N	I A D	RINL	P R I	11.1	/ D R T N N	LFKQVYEQKS	LKGRANDAIA	SACLYIACRQ	EGVPRTFKE	1
TF2B_HUMAN	121 I T T N	I A. D	RINL	P R I	11.	/ D R T N N	LFKQVYEQKS	LKGRANDAIA	SACLYIACRQ	EGVPRFKE	L

TFIIB residues relevant for Rpb2 interaction


procession in the

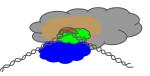

TFIIB recruits the TFIIF-PolII assembly to the PIC: TFIIB interacts with Rpb2

RPB 2 Most residues conserved across eukaryotes	RPB2_MOUSE THWE A5PJW8_BOVIN THWE	E KDGAPM KDGSPS RDGAPS RDGAPS RDGAPS RDGAPS RDGAPS RDGAPS
Arg 841His 842ConservationFPB2_SCHPORPB2_YEASTKHRPB2_CAEELRHRPB2_DROMERHA0A0R4IXL0_DANRERHF6QHD9_XENTRRHF1NCB0_CHICKRHRPB2_MOUSERHA1 Y D K L DD DGA5PJW8_BOVINRHA1 Y D K L DD DGRPB2_HUMANRHA1 Y D K L DD DGRHA1 Y D K L DD DGRDDRHA1 Y D K L DD DGRHA1 Y D K L DD DG	Asp 863	Asp 891 Gln 913 - Tyr 916 FD/STPL RSTESGIVDQ VMVTTNQEGL FD/STPL RSTENGIVDQ VLVTTNQDGL FD/STFL RSSETGIVDQ VMLSLNSDGN FD/STFL RNSETGIVDQ VMLTLNSEGY FD/STFL RTSETGIVDQ VMVTLNQEGY FD/STFL RTSETGIVDQ VMVTLNQEGY FD/STFL RTSETGIVDQ VMVTLNQEGY FD/STFL RTSETGIVDQ VMVTLNQEGY FD/STFL RTSETGIVDQ VMVTLNQEGY FD/STFL RTSETGIVDQ VMVTLNQEGY

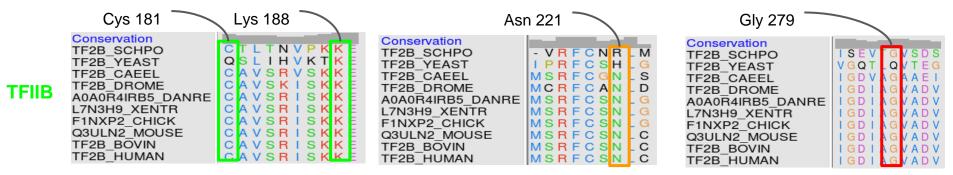

Rpb2 residues relevant for TFIIB interaction

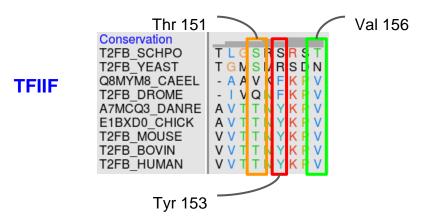
TFIIB recruits the TFIIF-PoIII assembly to the PIC: TFIIB interacts with TFIIF

TFIIB recruits the TFIIF-PoIII assembly to the PIC: TFIIB cyclin like domains interacts with TFIIF β (Hydrogen bond)

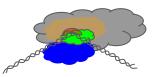


TFIIR

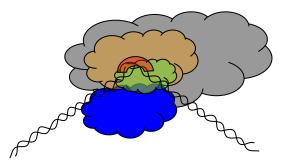

ConservationTF2B_SCHPOTF2B_YEASTTF2B_CAEELAQAAACLYIACRQGKVPRTFKEIQSLIHVKAQAAACLYIACRKDGVPRTFKEICAVSRVSKKEAKASACLYIACRQEGVPRTFKEICAVSRVSKKEAKASACLYIACRQEGVPRTFKEICAVSRISKEL7N3H9_XENTRF1NXP2_CHICKAIASACLYIACRQGVPRTFKEICAVSRISKEAIASACLYIACRQEGVPRTFKEICAVSRISKEAIASACLYIACRQEGVPRTFKEICAVSRISKEAIASACLYIACRQEGVPRTFKEICAVSRISKEAIASACLYIACRQEGVPRTFKEICAVSRISKEAIASACLYIACRQEGVPRTFKEICAVSRISKEAIASACLYIACRQEGVPRTFKEICAVSRISKETF2B_HUMANAIASACLYIACRQEGVPRTFKEICAVSRISKE	TFIIB				Lys 188
	TF2B_SCHPO TF2B_YEAST TF2B_CAEEL TF2B_DROME A0A0R4IRB5_DANRE L7N3H9_XENTR F1NXP2_CHICK Q3ULN2_MOUSE TF2B_BOVIN	S I M A Q A A K A A I A A I A A I A A I A A I A	A A S I L I GC R R A A C L Y I A C R K S A C L Y I A C R Q S A C L Y I A C R Q S A C L Y I A C R Q S A C L Y I A C R Q S A C L Y I A C R Q S A C L Y I A C R Q S A C L Y I A C R Q	AEVARTFKEI DGVPRTFKEI EGVPRTFKEI EGVPRTFKEI EGVPRTFKEI EGVPRTFKEI EGVPRTFKEI	QSLIHVKTKE CAVSRVSKKE CAVSRISKKE CAVSRISKKE CAVSRISKKE CAVSRISKKE CAVSRISKKE CAVSRISKKE CAVSRISKKE


ΤFIIFβ	Val 156 🔪
Conservation T2FB_SCHPO T2FB_YEAST Q8MYM8_CAEEL T2FB_DROME A7MCQ3_DANRE E1BXD0_CHICK T2FB_MOUSE T2FB_BOVIN T2FB_HUMAN	T L G S R S R S T T G M S M R S D N - A A V K F K F V - I V Q N F K F V A V T T N Y K F V V V T T N Y K F V V V T T N Y K F V V V T T N Y K F V

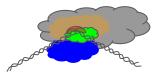
Interaction conserved across metazoans

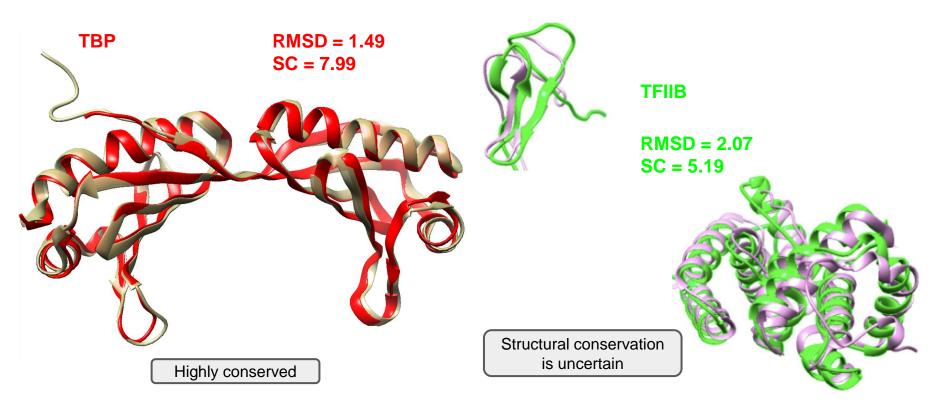


TFIIB recruits the TFIIF-PoIII assembly to the PIC: TFIIB N-term cyclin domains interacts with TFIIF β



Most conserved interaction are those between TFIIB residues and TFIIF Val 156




Core PIC:

Is structure conserved?

TBP and TFIIB are conserved across eukaryotes

All relevant residues of TBP are conserved

Interaction with TFIIB Interaction with DNA

All the important residues involved in TBP's interactions are conserved at structural level

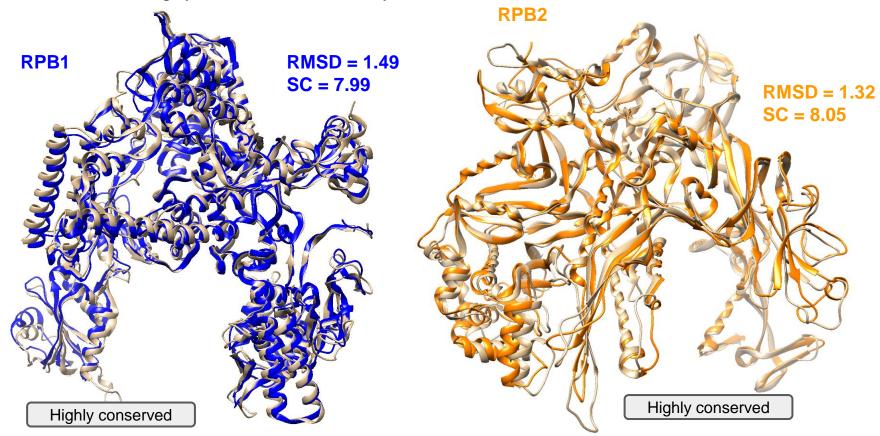
Structure and sequence alignments match

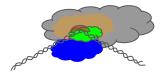
TFIIB-mediated Pol-II recruitment and DNA assembly might be conserved

TFIIB Zn- finger	YEAST_M PNLNIVLT - C HUMAN_M - L DALPRVTC	
domain	YEAST_M HUMAN_M WB T F S N D K A	A T
	YEAST_M HUMAN_M	EVQAAFAKI TMLCDAAELP KIVKDCAKEA YKLCHDEKTL Ammnafkei ttmadrinlp rnivdrtnnl fkqvyeqksl
TFIIB C- term	YEAST_M KGKSMESIMA HUMAN_MKGRANDAIAS	
core	YEAST_M LRGKSQ HUMAN_MLE-T-SVDLI	-NLTYIPRFC SHLGLPMQVT TSAEYTAKKC KEIKEIAGKS TTGDFMSRFC SNLCLPKQVQ MAATHIARKA VELDLVPGFS
	YEAST_M P I T I A V V S I Y HUMAN_M P I S V A A A A I Y	
	YEAST_M V D P HUMAN_M F P T D F K F D T P	

Interaction with TBP

(*) Residues for which sequence and structural alignment do not match


Interaction with DNA Interaction with RPB1 Interaction with RPB2 Interaction with TFIIFβ

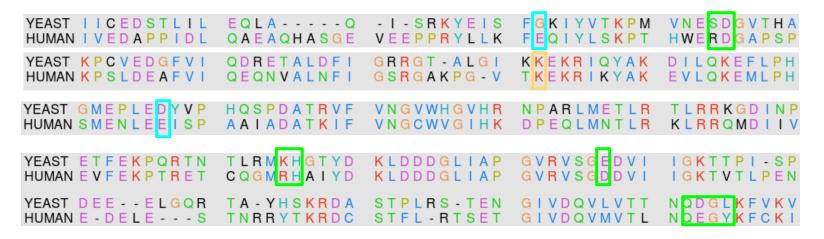

Residues relevant for **TFIIB** interactions with **Rpb1**, **Rpb2** and **DNA** are the most **conserved**.

There is one **disagreement** with the **sequence alignment**

RPB1 and RPB2 are highly conserved across eukaryotes

The relevant residues of RPB1 are conserved

YEAST_A GQQYSSAPLR	T V K E V Q F G L F	S P E E V R A I S V	A - K R F - P E T	MDETQTRAKI
HUMAN_A DSACPLR	T I K R V Q F G V L	S P D E L K R M S V	T E <mark>G G</mark> K Y P E T	TEG-GRPKL-
YEAST_A GGL-NDPRLG	SIDRNL <mark>K</mark> CQT	C Q E <mark>G M N</mark> E C P G	H F G H I D L A K P	V F H V G F I A K I
HUMAN_A GGLMDPR-QG	VIERTG <mark>R</mark> CQT	C A G N M T E C P G	H F G H I E L A K P	V F H V G F L V K T
YEAST_A KKVCECVCMH	C G K L L L D E H N	ELMRQALAI -	K - D S K K R F A A	IWTLCKTKMV
HUMAN_A MKVLRCVCFF	C S K L L V D S N N	PKIKDILAKS	K G Q P K K R L T H	VYDLCKGKNI
YEAST_A CETDVPSR-G	GCGNTQPTIR	K D G L K L V G S W	K K P E	L R V L S T E E I L
HUMAN_ACE-GGGHG	GCGRYQPRIR	R S G L E L Y A E W	K H V N E D S Q E K	K I L L S P E R V H
YEAST_A N F K H S V K D	F T S L G F N E V F	S R P E WM I L T C	L P V P P P P V R -	P S - I S F N E S Q
HUMAN_A E F K R S D E E	C F V L G M E P R Y	A R P E WM I V T V	L P V P P L S V R P	A V V M Q G S
YEAST_A R - GEDDLTFK	L A D I L K A N I S	L E T L E H N G A P	HHAIEEAESL	L Q F H V A T Y M D
HUMAN_A ARNQDDLTHK	L A D I V K I N N Q	L R R N E Q N G A A	AHVIAEDVKL	L Q F H V A T M V D
YEAST_A NDIAGQPQAL	Q K S G R P V K S I	R A R L K G K E G R	I R G N L M G K R V	D F S A R T V I S G
HUMAN_A NELPGLPRAM	Q K S G R P L K S L	K Q R L K G K E G R	V R G N L M G K R V	D F S A R T V I T P
YEAST_A DPNLELDQVG	V P K S I A K T L T	Y P E V V T P Y N I	D R L T Q L V R N G	P N E H P G A K Y V
HUMAN_A DPNLSIDQVG	V P R S I A A N M T	F A E I V T P F N I	D R L Q E L V R R G	N S Q Y P G A K Y I
YEAST_A IRDSGDRIDL	R	I Q L Q Y G W K V E	RHIMDNDPVL	F N R Q P S L H K M
HUMAN_A IRDNGDRIDL		L H L Q T G Y K V E	RHMCDGDIVI	F N R Q P T L H K M

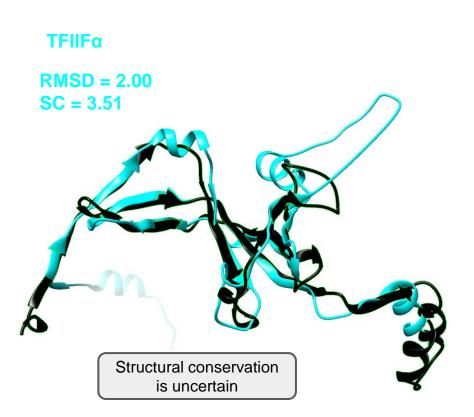

Interaction with TFIIB

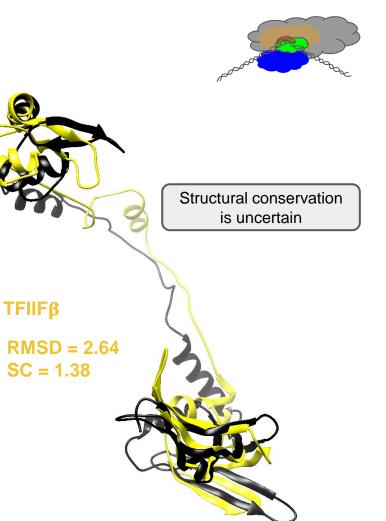
Most of the **important residues** involved in Rpb1 interactions are **conserved at structural level**

Structure and sequence alignments match

The relevant residues of RPB2 for TFIIB binding are conserved

Interaction with **TFIIB**

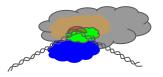

Interaction with TFIIFa


Interaction with TFIIFβ

Residues relevant for **Rpb2 interactions with TFIIB** are the most **conserved.**

Structure and sequence alignments match

TFIIF may not be fully conserved across eukaryotes


The relevant residues for TFIIF α assembly are conserved

YEAST_Q FIKRDRMRRN	F L R M R E	- Y N E F P L R A I	PKEDLENMRT	HLLKFQ-SKK
HUMAN_S	G P S S Q	N V T E Y V V R V P	- KNT TKKY	NIMAFNAADK
YEAST_Q KINPVTDFHL	P V R L H R K R K T	RQLKVLDENA	K K L R F E	E F Y PWV ME
HUMAN_SVNFA TWNQ	- A R L E R		D L S N	K P E D Q PWL L R
YEAST_Q - D F Y - N - T W V HUMAN_S V N G K S G R K F K				D K V Y K F T A R N H N W Y N F T P L A
YEAST_QKYAT-LTID- HUMAN_SR-HRTLTAEE	E A E K R M D K A E E E W E R R N K	VLNHFSIMQQ	- R	

Interaction with TFIIFβ Interaction with Rpb2

The important residues involved in TFIIFa interactions are conserved at structural level

Structure and sequence alignments match

The relevant residues for TFIIF β interaction are generally not conserved

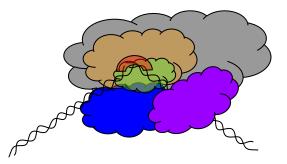
YEAST D L D L E R HUMAN A E R G E L D L T G	S NRQVWLV AKQNTGVWLV	R L P M F L A E K W K V P K Y L S Q Q W	R L - A K A S <mark>G R G</mark> E V	GKIRINK GKLRIAKTQG
YEAST - SKITLLLN - HUMANRTEVSFTLNE	E P H E Y D L E D L A N E - H P F V	L	EYVFTEQTIP LTVFTE	K K T A I V - S S S D K L S L E
YEAST GTVCHECQVM HUMANGIVVQRAECR	- PYHKIVEQR PA ASEN	R N I V - Y M R L K R L Q I E	K E <mark>R</mark> - I T E S S K P V R L S Q	T L D E T V G V T M Q L D K V -
YEAST SHT 3MSMRS - HUMAN V T T N - Y K P	D N S N F L K V V A N H - Q Y -	M	E D G K R A R A	I L D Y L F K L F D D K Q H V L D M L F
YEAST EY-DYW- HUMAN SAFEKHQYYN	SLKGLKE LKDLVDITK -	R T R Q P E A H L K Q P V V Y L K	E C L D K V A T L V E I L K E I G V Q N	K K G P Y A V K G I H K N
YEAST FKYTL-RKEE HUMANTWELKPE	ERKATLGEL			

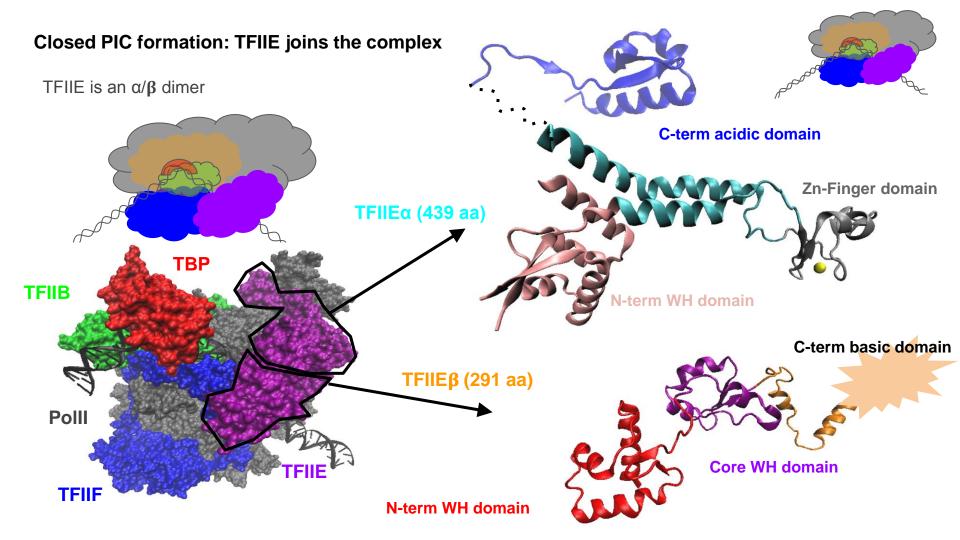
Interaction with TFIIFa

Interaction with DNA

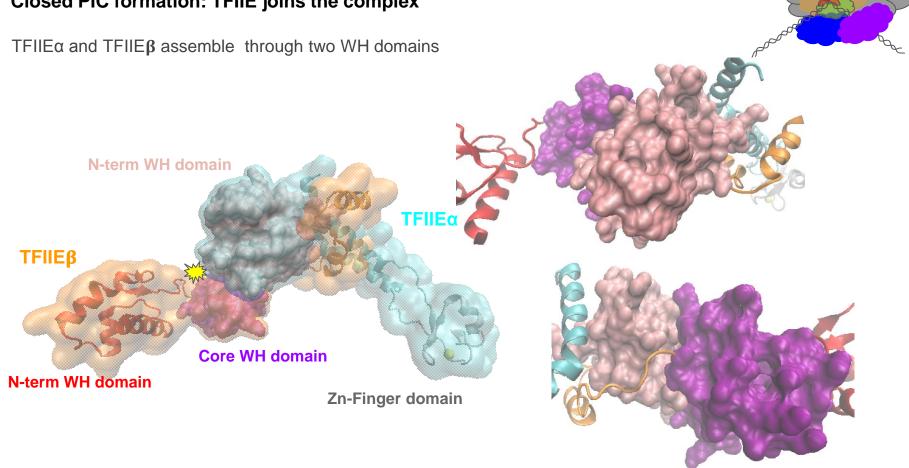
Interaction with Rpb2

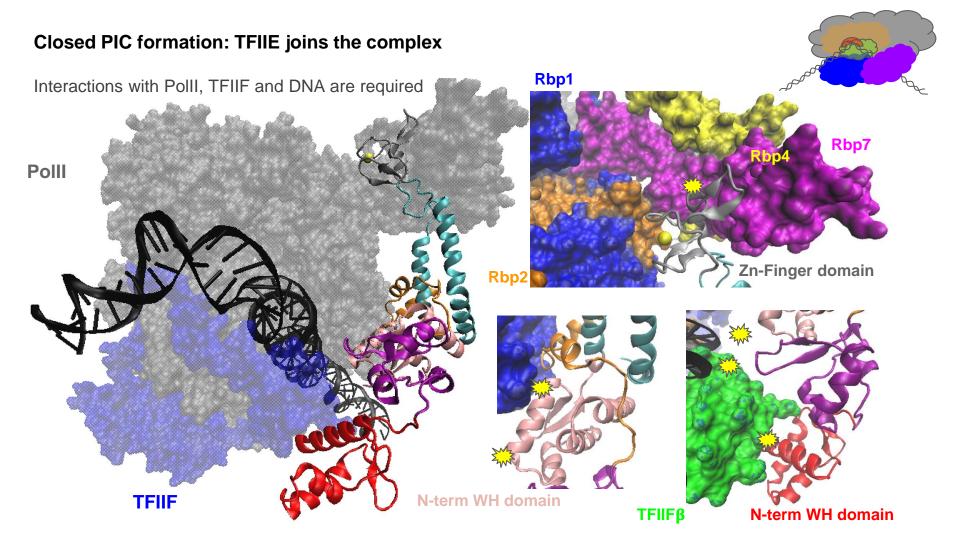
Interaction with **TFIIB**

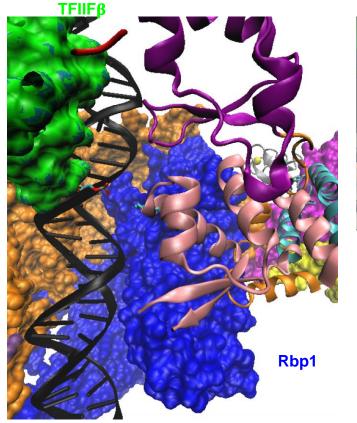

(*) Residues for which sequence and structural alignment do not match

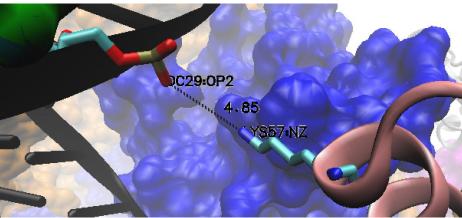

Residues relevant for TFIIFβ interactions with Rpb2 are the ones more conserved.

There is some disagreement with the sequence alignment


Closed PIC formation:

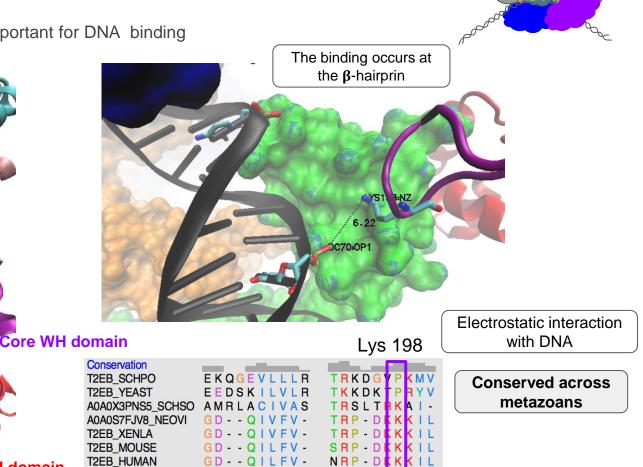

TFIIE joins the complex


Closed PIC formation: TFIIE joins the complex



Closed PIC formation: TFIIE joins the complex

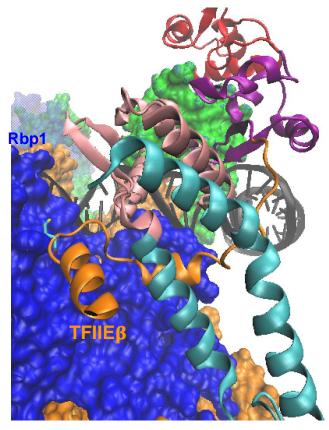
The N-term WH domain of TFIIE α is important for DNA binding

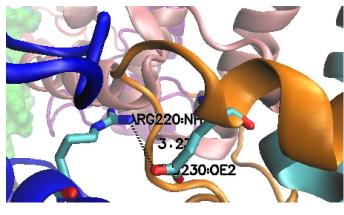


Conservation		Contraction of the local division of the loc
T2EA_SCHPO	I P	KECRFIA
G5EG49_CAEEL	FDO	KNLRQLL
O96880_DROME	FEK	KOLRARI
BOUYP3_DANRE	FDF	KQLRSVL
Q0P4H8_XENTR	FEM	KOLRTIL
T2EA_MOUSE	FDF	KQLRSVL
T2EA_BOVIN	FDF	KQLRSVL
T2EA_HUMAN	FDF	KQLRSVL
	0.0	Contract of the second s

Electrostatic interaction with DNA

Conserved across eukaryotes


The core WH domain of TFIIEβ is important for DNA binding
_____Rbp1____



N-term WH domain

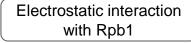
TFIIFβ

The TFIIE β anchores to the complex through RPB1 binding

TFIIEβ

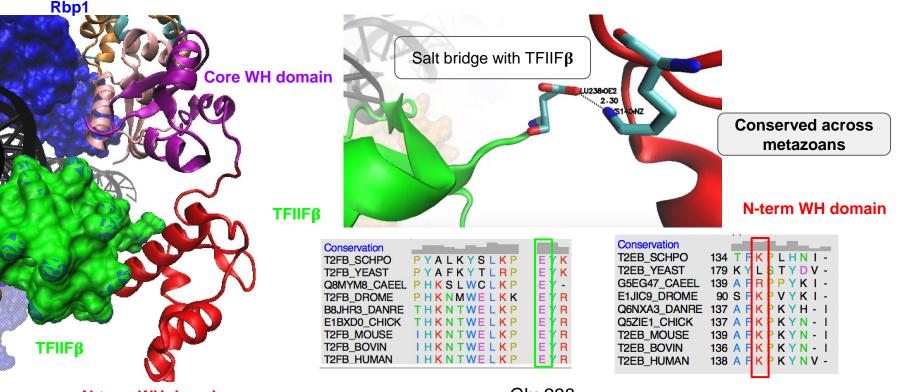
Conservation T2EB_SCHPO T2EB YEAST A0A0X3PNS5 SCHSO A0A0S7FJV8_NEOVI T2EB XENLA T2EB_MOUSE T2EB_HUMAN

					-				_	
Н	Е	Т	Ρ	Т	Ρ	Ρ	т	L	D	
Е	Ν	V	Q	L	Ρ	Q	F	A	E	
									D	
		_	_		_	_			E	
									D	
									E	
									Ē	
11	0					0	IVI	ч		



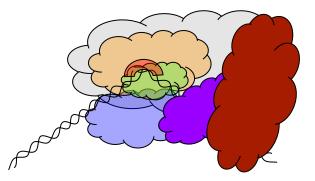
Conservation 209 S P RPB1_SCHPO Ε 203 S T E E **RPB1 YEAST** RPB1_CAEEL 211 T A E R 209 S A E R RPB1_DROME WE LK F7BLR6_XENTR 193 S P E R FK RPB1_MOUSE 217 S P E R FK G3MZY8 BOVIN 217 S P E R V FK HEI **RPB1 HUMAN** 217 SPERVHEIFK

Rpb1

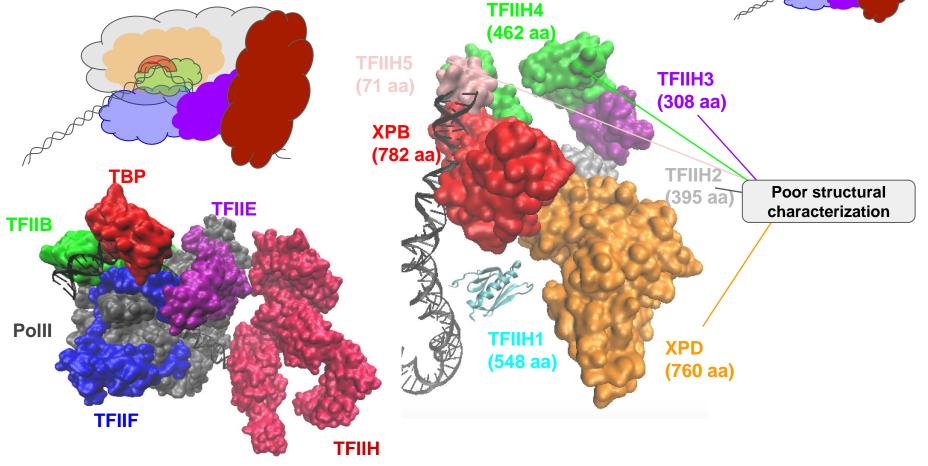


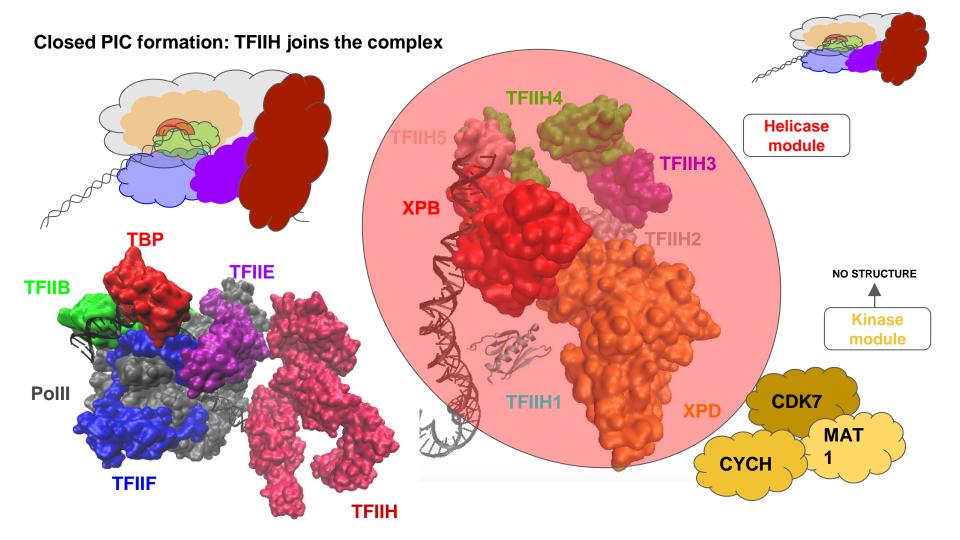
Conserved across metazoans

The N-term WH domain of $\mathsf{TFIIE}\beta$ stabilizes the complex through $\mathsf{TFIIE}\beta$ binding

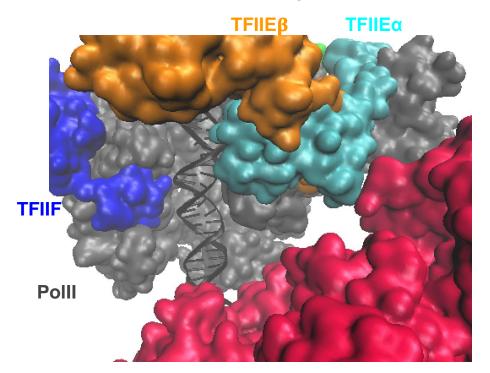

N-term WH domain

Glu 238

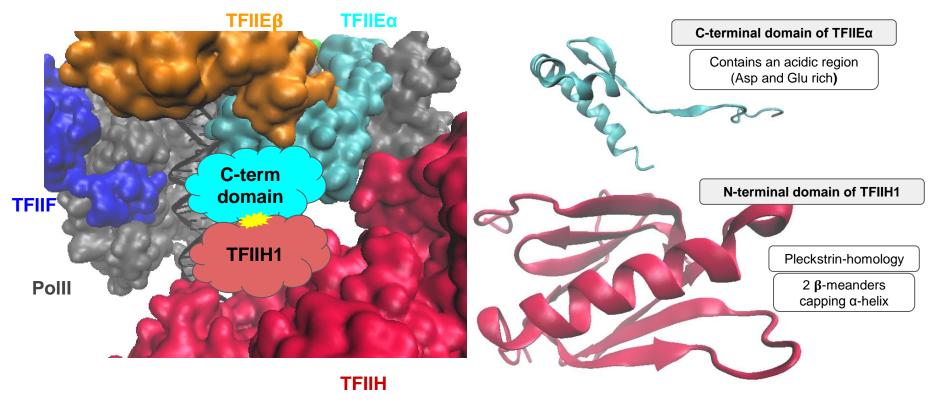

Lys 140


Closed PIC formation:

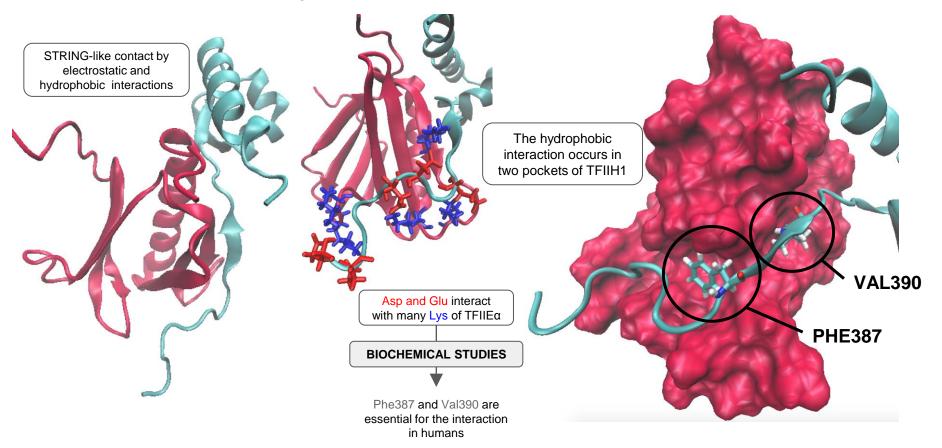
TFIIH joins the complex

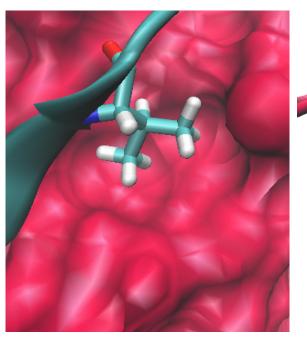


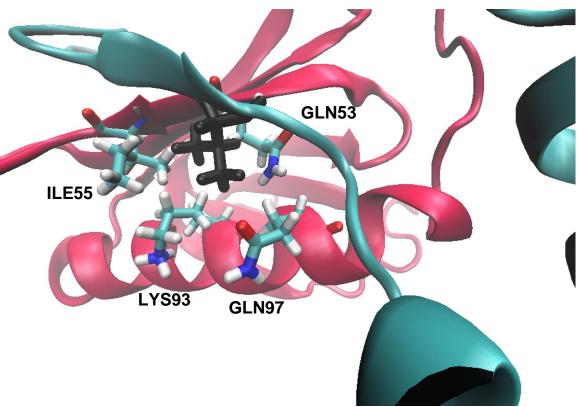
TFIIH assembles to the PIC through the C-term domain of TFIIE α



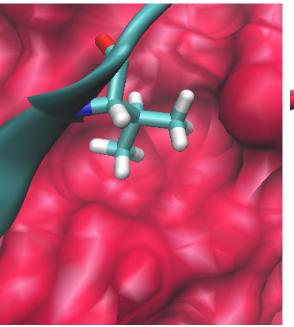
TFIIH

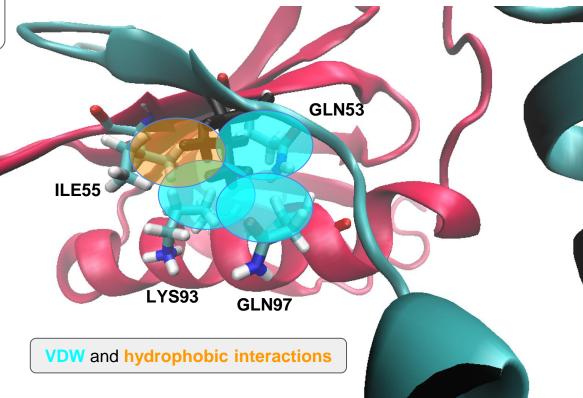

TFIIH assembles to the PIC through the C-term domain of TFIIEa


We don't know the architecture of these domains


TFIIH assembles to the PIC through the C-term domain of TFIIE α

TFIIH assembles to the PIC through the C-term domain of TFIIE α


The interaction between Val390 of TFIIEα with TFIIH1 as an example



TFIIH assembles to the PIC through the C-term domain of TFIIE α

The interaction between Val390 of TFIIEα with TFIIH1 as an example

VAL390 **PHE387**

TFIIH assembles to the PIC through the C-term domain of TFIIEa

TFB1_YEAST 8 O44499_CAEEL 15 TF2H1_DROME 16 Q66I03_DANRE 16 Q6DIF6_XENTR 16 E1BX10_CHICK 16 TF2H1_MOUSE 16	1 F k y r k a g d g 	11 RKKQ-GVLSI EKVS-GIIAI -KSPiGRLAL KKGD-GTLYV RKQD-GTLYL KKQD-GALYL KKQD-GALYL KKQD-GALYL KKQD-GALYL	21 D S R L K N E d v s p A E L T F T D F I E M N E R V A M A E R V A M A E R I A M A E R I A M A E R I A	31 WTG - EG - KTT WRS t D GD WRD - NAS P WMA - EHR - DT WGP - EGK - DR WAP - EGK - DR WAP - EGK - DR WAP - EGK - DR WAP - EGK - DR	
Conservation TFB1_SCHPO 34 TFB1_YEAST 36 O44499_CAEEL 45 TF2H1_DROME 41 Q66I03_DANRE 41 Q66I05_XENTR 41 E1BX10_CHICK 41 TF2H1_MOUSE 41	41 PSVDIAFDAI KVHTVVLSTI EVFTCKFIRI VTVSHRYADI FTVSHLYADI FTISHMYADI FTISHMYADI FTISHMYADI FTISHMYADI	51 S N L Q T T P A S N D K L Q A T P A S S N G C R V S P I H K K T C K I S P I G K K C C K I S P I G K K C C K I S P I G K K C C K I S P I G K K C C K I S P I G K	61 PKVMIR/FIV EKNMLR_IGK SKVQLQ_ILK PKVQLQ/VLH AKQLQ_VLH AKQLQ_VLH AKQLQ_VLH AKQLQ_VLH	71 VK	
Conservation TFB1_SCHPO 66 TFB1_YEAST 76 O44499_CAEEL 75 TF2H1_DROME 71 Q66I03_DANRE 71 Q6DIF6_XENTR 71 E1BX10_CHICK 71 TF2H1_MOUSE 71	81 E G e D P e g n e v V P - K P N E D G T G V G A G A G	91 TSLVFHFTG- QRHMFSFNN- DQATFVFLNP NTSTFHFVNr ENTTFHFAN- ETTNFHFSN- DTTNFHFSN- DTTNFHFSN-	101 - TPN - AREN - S A S K E d L V K E - q G Q A a M L A D - E S T - A L K D - D A T - A I K E - E S T - A V K E	111 CDMITNEL-r MDNIKMTLQ- RDAVKEALQ- RDKVKELLQ- RDAVKELLQ- RDAVKELLQ- RDAVKDLLQ- RDAVKDLLQ- RDAVKDLLQ-	The hyd is con

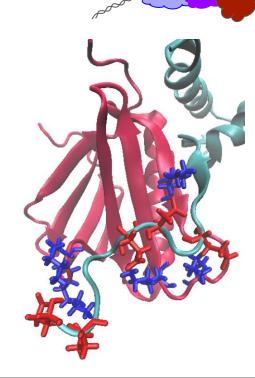
The hydrophobic pocket for PHE387 is conserved across metazoans

11

31 VAL390 **PHE387**

TFIIH assembles to the PIC through the C-term domain of TFIIE α

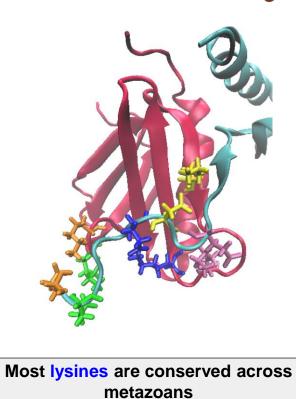
21


Conservation TFB1_SCHPO 10 - - - - i F TFB1_YEAST 8 - - - - - i F O44499_CAEEL 15 k y r k a g d g - TF2H1_DROME 16 - - - - - R Y Q66103_DANRE 16 - - - - r - R Y Q66103_DANRE 16 - - - - r - Q Q6DIF6_XENTR 16 - - - r - Q TF2H1_MOUSE 16 - - - - r - Q TF2H1_HUMAN 16 - - - - r - - - r - Q	RKKQ - GVLSI EKVS - GIIAI - KSPIGRLAL KKGD - GTLYV RKQD - GTLYL KKQD - GALYL KKQD - GALYL KKQD - GALYL KKQD - GALYL	D S R L K N E d v s p A E L T F T D F I E M N E R V A M A E R I A	WTG - EG - KTT WRS t D GD WRD - NAS P WMA - EHR - D T WGP - EGK - DR WAP - EGK - DR WAP - EGK - DR WAP - EGK - DR WAP - EGK - DR	
41 Conservation TFB1_SCHPO TFB1_YEAST 044499_CAEEL 45 E V F T C K F I R I TF2H1_DROME 41 V T V S H R Y A D I Q66103_DANRE 41 F T V S H L Y A D I Q66105_CENTR 41 F T V S H M Y A D I E1BX10_CHICK 41 F T V S H M Y A D I TF2H1_MOUSE 41 F T I S H M Y A D I TF2H1_HUMAN 41 F T I S H M Y A D I	51 S N L (T T P A S N D K L (A T P A S S N G Q V S P P H K K T Q I I S P E G K K C Q I S P D G K K C Q I S P E G K K C Q I S P E G K K C Q I S P E G K	61 P K V M I R V F I V E K M M L R L I G K S K V Q L Q L I L K P K V Q L Q V V L H A K I Q L Q L V L H A K I Q L Q L V L H A K I Q L Q L V L H A K I Q L Q L V L H	71 VK	
81 Conservation TFB1_SCHPO 66 - - - E G P P TFB1_YEAST 76 e g n e v V P - K O44499_CAEEL 75 - - - - - - N E TF2H1_DROME 71 - - - - - D G Q66103_DANRE 71 - - - - - - T G Q60IF6_XENTR 71 - - - - - A G TF2H1_MOUSE 71 - - - - - A G TF2H1_HUMAN 71 - - - - - A G	91 TSLVFHFTG- QRHMFSFNN- DQATFVFLNP NTSTFHFVNr ENTTFHFAN- ETTNFHFSN- DTTNFHFSN- DTTNFHFSN- DTTNFHFSN-	101 - TPN - AREN RTV s a SKEd L VKE - q G QA a M L A D - E ST - A L K D - D A T - A I KE - E ST - A V KE - E ST - A V KE - E ST - A V KE	111 CDMITNE - r MDNIKATQ RDAVKEAQ RDAVKELQ RDAVKELQ RDAVKELQ RDAVKELQ RDAVKELQ RDAVKELQ RDAVKELQ RDAVKELQ	

The hydrophobic pocket for VAL390 is conserved across metazoans

A COLOR

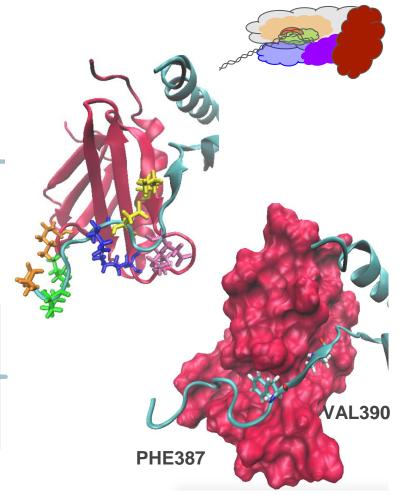
TFIIH assembles to the PIC through the C-term domain of TFIIE α


1 Conservation TFB1_SCHPO 10 - - - i F TFB1_YEAST 8 - - - i F O44499_CAEEL 15 k y r k g d g - TF2H1_DROME 16 - - - - - R Y Q66I03_DANRE 16 - - - r - R Q6DIF6_XENTR 16 - - - r - R TF2H1_MOUSE 16 - - - r - Q TF2H1_MOUSE 16 - - - r Q TF2H1_HUMAN 16 - - - r Q	11 RK (Q - GVLS I EK /S - GIIAI - K SP i GRLAL KK QD - GTLYV RK QD - GTLYL KK QD - GALYL KK QD - GALYL KK QD - GALYL KK QD - GALYL	21 D S R L K N E d v s p A E L T F T D F I E M N E R V A M A E R V A M A E R I A M A E R I A M A E R I A	31 WTG-EG-KTT WRStDGD WRD-NASP WMA-EHR-DT WGP-EGK-DR WAP-EGK-DR WAP-EGK-DR WAP-EGK-DR WAP-EGK-DR
41 Conservation TFB1_SCHPO 34 P S V D I A F D A I TFB1_YEAST 36 K V H T V V L S T I O44499_CAEEL 45 E V F T C K F I R I TF2H1_DROME 41 V T V S H R Y A D I Q66Ib76_XENTR 41 F T V S H M Y A D I E1BX10_CHICK 41 F T V S H M Y A D I TF2H1_MOUSE 41 F T I S H M Y A D I TF2H1_HUMAN 41 F T I S H M Y A D I	51 SNIQITPASN DKIQITPASS NGOR/SPPIK KTOK SPECK RCOK SPDCK KCOK SPECK KCOK SPECK KCOK SPECK	61 K / M R V F V K / M L R L G K K / Q L Q L L K K / Q L Q V V L H K Q L Q L V L H	71 VK
81 TFB1_SCHPO 66 - - E G P TFB1_YEAST 76 e g n e v V P - K P O44499_CAEEL 75 - - - - - N E TF2H1_DROME 71 - - - - D G Q66103_DANRE 71 - - - - T G Q6DIF6_XENTR 71 - - - - - A G TF2H1_MOUSE 71 - - - - - A G TF2H1_HUMAN 71 - - - - A G	91 TSLVFHFTG - QRHMFSFNN - DQATFVFLNP NTSTFHFVNT ENTTFHFAN - ETTNFHFSN - DTTNFHFSN - DTTNFHFSN - DTTNFHFSN -	101 - TPN - AREN RTV s a SKEd LVKE - q GQA a M L A D - E ST - A L K D - D A T - A I K E - E ST - A V K E - E ST - A V K E - E ST - A V K E	111 CDMITNEL-r MDNIKMTLQ- RDAVKEALQ- RDKVKELLQ- RDAVKELLQ- RDAVKELLQ- RDAVKDLLQ- RDAVKDLLQ- RDAVKDLLQ-

Most lysines are conserved across metazoans

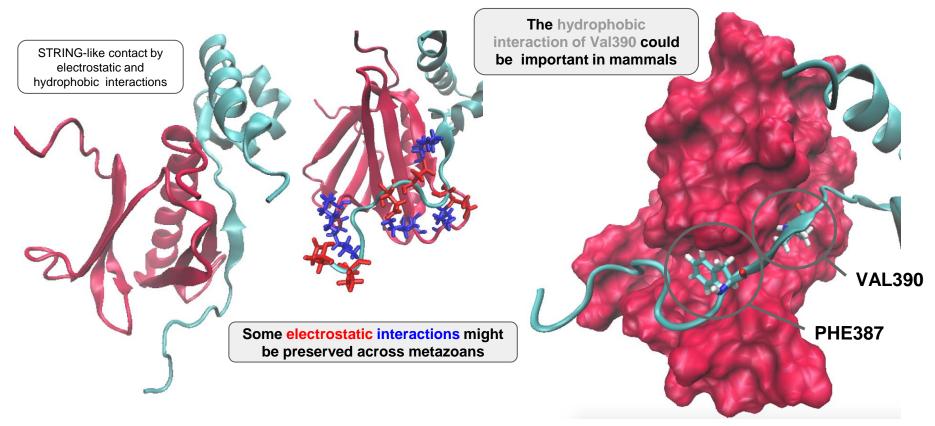
TFIIH assembles to the PIC through the C-term domain of TFIIE α

1 Conservation TFB1_SCHPO 10 - - - i F TFB1_YEAST 8 - - - i F O44499_CAEEL 15 k y r a g g - TF2H1_DROME 16 - - - - - R Y Q66103_DANRE 16 - - - - R Y Q66106_CXENTR 16 - - - r - R Q60IF6_XENTR 16 - - - r - R TF2H1_MOUSE 16 - - - r - Q TF2H1_HUMAN 16 - - - r - Q	11 R K I (Q - G V L S I E K Y S - G I I A I - K S P I G R L A L K K G D - G T L Y V R K Q D - G T L Y L K K Q D - G A L Y L K K Q D - G A L Y L K K Q D - G A L Y L	21 D S R L K N E d v s p A E L T F T D F I E M N E R V A M A E R V A M A E R I A M A E R I A M A E R I A	31 WTG-EG-KTT WRStDGD WRD-NASP WMA-EHR-DT WGP-EGK-DR WAP-EGK-DR WAP-EGK-DR WAP-EGK-DR WAP-EGK-DR
41 Conservation TFB1_SCHPO 34 P S V D I A F D A I TFB1_YEAST 36 K V H T V V L S T I O44499_CAEL 45 E V F T C K F I R I TF2H1_DROME 41 V T V S H R Y A D I Q660I3_DANRE 41 F T V S H L Y A D I Q60IF6_XENTR 41 F T V S H M Y A D I E1BX10_CHICK 41 F T V S H M Y A D I TF2H1_MOUSE 41 F T I S HM Y A D I TF2H1_HUMAN 41 F T I S HM Y A D I	51 SNIQTTPASN DKIQTPASS NGQR/SPPIK KTQKSPEGK KCQKSPEGK KCQKSPEGK KCQKSPEGK KCQKSPEGK	61 K / M I R V F I V K / M L R L I G K K / Q L Q L I L K K / Q L Q V L H K Q L Q L V L H	71 V K
81 Conservation TFB1_SCHPO 66 - - - E G P TFB1_YEAST 76 g n e v V P K O44499_CAEEL 75 - - - - N E G6603_DANRE 71 - - - - - D G Q66063_DANRE 71 - - - - - T G Q6601F6_XENTR 71 - - - - A G TF2H1_MOUSE 71 - - - - A G TF2H1_HUMAN 71 - - - - A G	91 TSLVFHFTG- QRHMFSFNN- DQATFVFLNP NTSTFHFVNT ENTTFHFAN- ETTNFHFSN- DTTNFHFSN- DTTNFHFSN- DTTNFHFSN-	101 - TPN - AREN RTV s a SKEd LVKE - q GQA a M L A D - E ST - A L K D - D A T - A I K E - E ST - A V K E - E ST - A V K E - E ST - A V K E	111 CDMITNEL-r MDNIKMTLQ- RDAVKEALQ- RDAVKELLQ- RDAVKELLQ- RDAVKELLQ- RDAVKDLLQ- RDAVKDLLQ- RDAVKDLLQ-

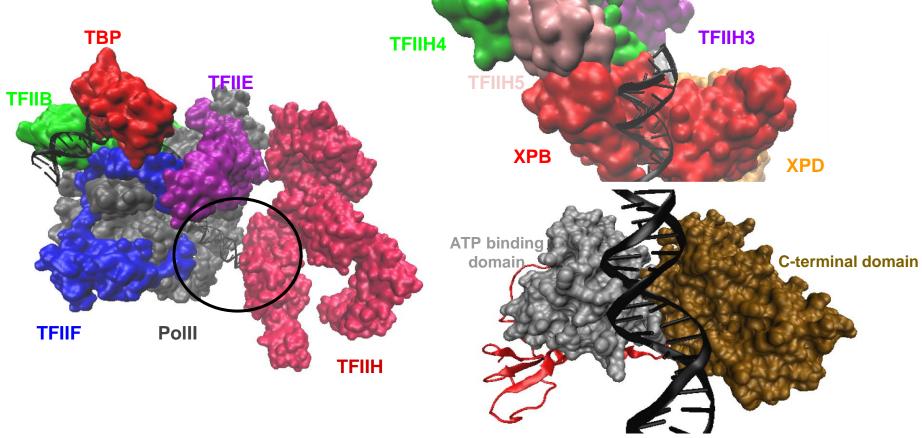

TFIIH assembles to the PIC through the C-term domain of TFIIE α

Conservation				
J0WXG4_AURST 438 P F	TTQDE	SMD	D	D
M7XFC8_RHOT1 452 E A	DADEE	DED	Efdefepaeg	vntDPN
G5EG49_CAEEL 370 I K	MEVDN	L E S	E	E E
O96880_DROME 374 I N	S D S A E	E D D	D	V
Q5SQE1_DANRE 384 Q D	EEDEC		E f e	- e v G D D
Q0P4H8_XENTR 363 - S	NAEQE	EES	E	T V D
T2EA_MOUSE 380 D E	DEEDE	EFE	E	v A D D
T2EA_BOVIN 378 - E	EDEED	DEF	Ee	v A D D
T2EA_HUMAN 378	EEDEE	E D D	E f e	- e v A D D

Glu386 is the only acidic residue "conserved"


M7XFC8_RHOT1 G5EG49_CAEEL O96880_DROME Q5SQE1_DANRE	438 P P T T Q D E S M D 452 E A D A D E E D E D 370 I K M E V D N D E S 374 I N S D S A E E D D 384 Q D E E D E D D D D 363 - S N A E Q E E E S	D	v n t D P N E E V - e v G D D T V D
		9	EE
096880_DROME	374 I N S D S A E E D D	D	V
Q5SQE1_DANRE	384 Q D E E D E D D D D	E f e	- e v G D D
Q0P4H8_XENTR	363 - SNAEQEEES	E	T V D
T2EA_MOUSE	380 DEDEEDEEFE	E	v A D D
T2EA_BOVIN	378 - EEDEEDDEF	E e	v A D D
T2EA_HUMAN	378 E E D E E E D D	Efe	- e v A D D

The hydrophpbic Val390 is just shared across mammals


A COLOR

TFIIH assembles to the PIC through the C-term domain of TFIIE α

XPB is a helicase that binds upstream of the transcription start site (TSS)

ATP binding domain

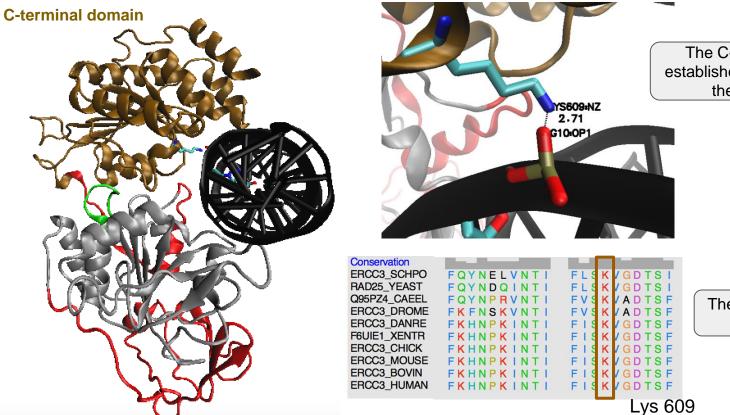
RecA-like topology

8 central β-strands 6 surrounding α-helix

 α/β fold

XPB is a helicase that binds upstream of the transcription start site (TSS)

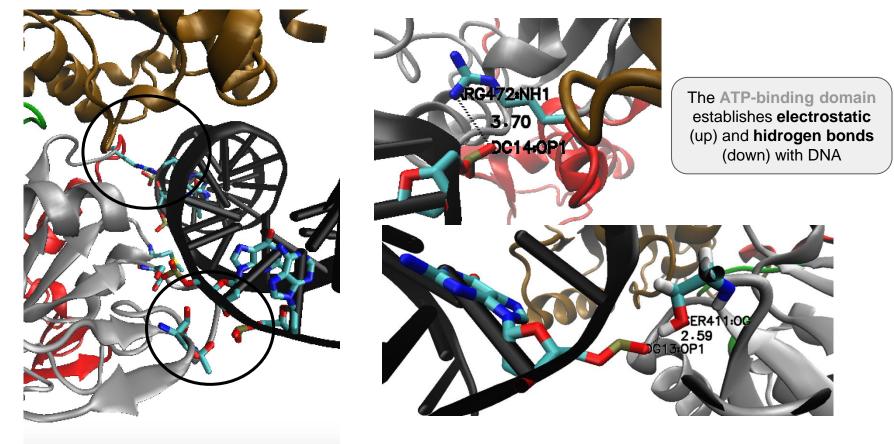
ATP binding site


Flexiblle linker

C-terminal domain

Rec-A like topolopgy α/β fold 7 central β -strands 8 surrounding α -helix

XPB is a helicase that binds upstream of the transcription start site (TSS)



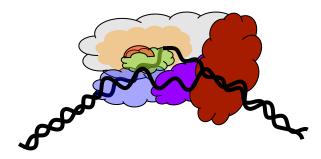
The C-terminal domain establishes a salt bridge with the DNA strand

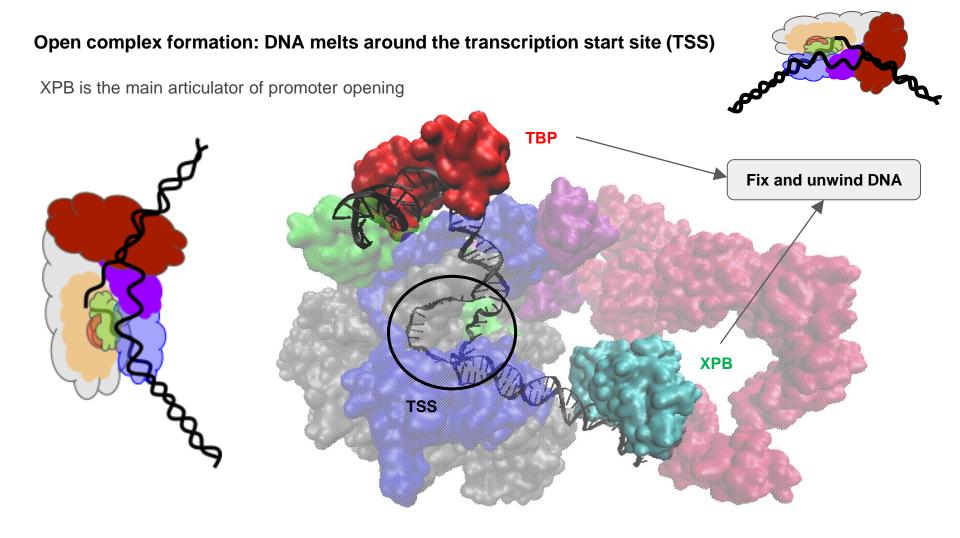
The interaction is preserved across eukaryotes

XPB is a helicase that binds upstream of the transcription start site (TSS)

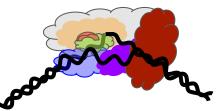
XPB is a helicase that binds upstream of the transcription start site (TSS)

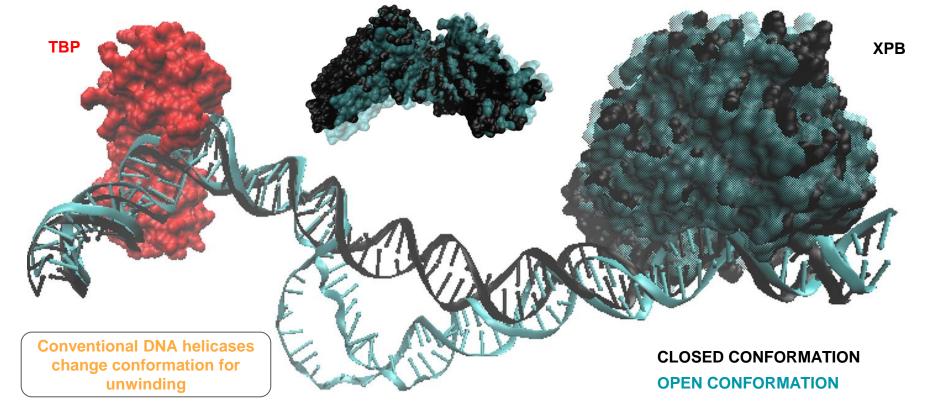
Most residues important for DNA interaction of the ATP-binding domain are conserved across eukaryotes								
Conservation ERCC3_SCHPO 321 - s t Q I R P Y Q E RAD25_YEAST 359 - s t Q I R P Y Q E ERCC3_DROME 329 a a v - L R P Y Q E ERCC3_DANRE 312 - t a V L R P Y Q E F6UIE1_XENTR 315 - t a V L R P Y Q E ERCC3_CHICK 310 - t a V L R P Y Q E ERCC3_BOVIN 313 - t a V L R P Y Q E ERCC3_HUMAN 313 - t a V L R P Y Q E	KSLSKMFGNG KSLSKMFGNG KSLRKMFGNG KSLRKMFGNG KSLRKMFGNG KSLRKMFGNG KSLRKMFGNG KSLRKMFGNG KSLRKMFGNG	RARSGIIVLP RARSGVIVLP RARSGVIVLP RARSGVIVLP RARSGVIVLP RARSGVIVLP RARSGVIVLP RARSGVIVLP RARSGVIVLP	C G A G K T L V G I C G A G K T L V G I C G A G K S L V G V C G A G K S L V G V C G A G K S L V G V C G A G K S L V G V C G A G K S L V G V C G A G K S L V G V	TAACTIKKSV TACCTVRKRA TACCTVRKRC TAACTVRKRC TAACTVRKRC TAACTVRKRC TAACTVRKRC TAACTVRKRC TAACTVRKRC TAACTVRKRC	I V L C T S S V S V I V L C T S S V S V L V L C N S G V S V L V L G N S V S V L V L G N S A V S V L V L G N S A V S V L V L G N S A V S V L V L G N S A V S V L V L G N S A V S V	M QWR Q Q F L QW 389 M QWR Q Q F L QW 427 E QWK Q Q F K MW 397 E QWK A Q F K MW 380 E QWK A Q F K MW 383 E QWK A Q F K MW 383 E QWK A Q F K MW 381 E QWK A Q F K MW 381		
Conservation ERCC3_SCHPO 390 S I K P D H I A RAD25_YEAST 428 C T Q P - N C A ERCC3_DROME 398 S T D S I C R ERCC3_DANRE 381 S T D S I C R F6UIE1_XENTR 384 S T D S I C R ERCC3_CHICK 379 S T D S I C R ERCC3_MOUSE 383 S T D S I C R ERCC3_BOVIN 382 S T D S I C R	V T. DHKERF V T. DHKERF F S AKDKP - F S AKDKP -	HSEAGVVVST QTESGLVVST - MGCGILVTT - IGCSVAIST - IGCSIAIST - IDCSIAIST - IGCSVAIST - IGCSVAIST - IGCSVAIST	IS IVANTRNR S IVANTRNR S II THTQKR S ILGHTTKR S ILGHTTKR S ILGHTTKR S ILGHTTKR S ILGHTTKR S ILGHTTKR S ILGHTTKR	S y d s QKMMD F S h - d S QK VMD S w e a E Q TM RW S w e a E R VM EW S w e a E R VM EW	L T G R E WG F L t g r L Q E Q E WG M K S Q E WG L K S Q E WG L K S R E WG L K T Q E WG L K T Q E WG L K T Q E WG	FILLDEV 452 ewgFIILDEV 490 IMVLDEV 459 LIILDEV 442 LMILDEV 445 LMILDEV 444 LMILDEV 444 LMILDEV 444 LMILDEV 443		
Conservation ERCC3_SCHPO 453 H V V P / A M F R R RAD25_YEAST 491 H V V P / A M F R R ERCC3_DROME 460 H T I P / K M F R R ERCC3_DANRE 443 H T I P / K M F R R F6UIE1_XENTR 446 H T I P / K M F R R ERCC3_CHICK 441 H T I P / K M F R R ERCC3_BOVIN 444 H T I P / K M F R R ERCC3_HUMAN 444 H T I P / K M F R R	VVTTIAAHTK VVSTIAAHAK VLTIVQSHCK VLTIVQAHCK VLTIVQAHCK VLTIVQAHCK VLTIVQAHCK VLTIVQAHCK VLTIVQAHCK	LGLTATLY 7 LGLTATLY 7 LGLTATLY 7 LGLTATLY 7 LGLTATLY 7 LGLTATLY 7 474 LGLTATLY 7 LGLTATLY 7 472 LGLTATLY 7 472 LGLTATLY 7 472	9 3 1 4 9 3 2	ATP bir	nding domain			

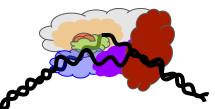


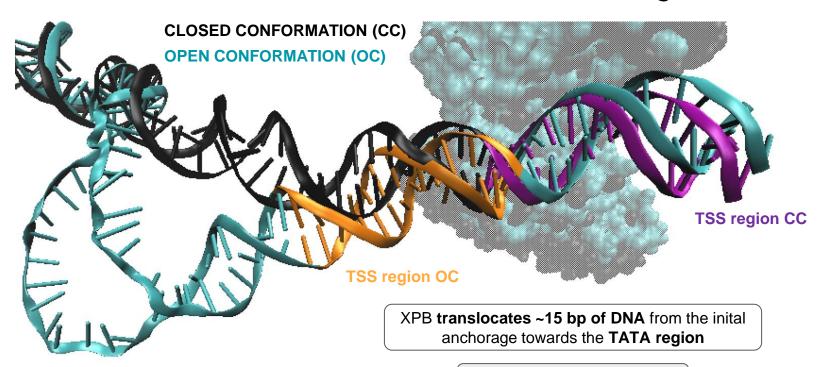

XPB requires ATP for unwinding DNA, from yeast to humans

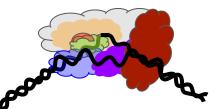
Conservation ERCC3_SCHPO 321 - s t Q I R P Y Q E RAD25_YEAST 359 - s t Q I R P Y Q E ERCC3_DROME 329 a a v - I ERCC3_DANRE 312 - t a V I F6UIE1_XENTR 315 - t a V I ERCC3_CHICK 310 - t a V I ERCC3_BOVIN 313 - t a V I R P Y Q E ERCC3_BOVIN 313 - t a V I R P Y Q E ERCC3_HUMAN 313 - t a V I R P Y Q E	KSLSKMFGNG KSLSKMFGNG TP binding mo KSLRKMFGNG KSLRKMFGNG KSLRKMFGNG	RARSGIIN RARSGIIN LP LIF IN RARSGVIN RARSGVIN RARSGVIN LP	C G A G K T L V G I C G A G K T L V G I C G A G K S L V G V C G A G K S L V G V C G A G K S L V G V C G A G K S L V G V C G A G K S L V G V C G A G K S L V G V C G A G K S L V G V	TAACTIKKSV TAACTIKKSV TACCTVRKRA TAACTVRKRC TAACTVRKRC TAACTVRKRC TAACTVRKRC TAACTVRKRC TAACTVRKRC TAACTVRKRC	I V L C T S S V S V I V L C T S S V S V L V L C N S G V S V L V L G N S S V S V L V L G N S A V S V L V L G N S A V S V L V L G N S A V S V L V L G N S A V S V L V L G N S A V S V	M Q W R Q Q F L Q W 389 M Q W R Q Q F L Q W 427 E Q W K Q Q F K M W 397 E Q W K A Q F K M W 380 E Q W K A Q F K M W 383 E Q W K A Q F K M W 382 E Q W K A Q F K M W 381 E Q W K A Q F K M W 381
ConservationERCC3_SCHPO390SNKFDHIARAD25_YEAST428CLQPENCAERCC3_DROME398STADSMICRERCC3_DANRE381STIDSQICRF6UIE1_XENTR384STIDSQICRERCC3_CHICK379STDDSQICRERCC3_MOUSE383STIDSQICRERCC3_BOVIN382STIDSQICRERCC3_HUMAN382STIDSQICR	V F T A D H K E R F V F T S D N K E M F F T S E A K D K P - F T S D A K D K P - F T S D A K D K P - F T S D A K D K P - F T S D A K D K P - F T S D A K D K P - F T S D A K D K P -	HSEAGVVVST QT - M ATPE - I - I DCSIAIST - I DCSIAIST - I GCSVAIST - I GCSVAIST - I GCSVAIST	YSMVANTRNR pinding domain YSMLGHTTKR YSMLGHTTKR YSMLGHTTKR YSMLGHTTKR	SydsQKMMDF SQKVMD EQTMRW ERVMEW SweaERVMEW SweaERVMEW SweaERVMEW SweaERVMEW SweaERVMEW SweaERVMEW	L T G R E WG F L t g r L Q E Q E WG MK S Q E WG L K S Q E WG L K S R E WG L K T Q E WG L K T Q E WG L K T Q E WG	FILLDEV 452 ewgFIILDEV 490 IMVLDEV 459 LIILDEV 442 LMILDEV 445 LMILDEV 444 LMILDEV 444 LMILDEV 443 LMILDEV 443
ConservationERCC3_SCHPO453HVVPAAMFRRRAD25_YEAST491HVVPAAMFRRERCC3_DROME460HTIPAKMFRRERCC3_DANRE443HTIPAKMFRRF6UIE1_XENTR446HTIPAKMFRRERCC3_CHICK441HTIPAKMFRRERCC3_MOUSE445HTIPAKMFRRERCC3_BOVIN444HTIPAKMFRRERCC3_BOVIN444HTIPAKMFRRERCC3_HUMAN444HTIPAKMFRR	VVTTIAAHTK VVSTIAAHAK VLTIVQSHCK VLTIVQAHCK VLTIVQAHCK VLTIVQAHCK VLTIVQAHCK VLTIVQAHCK VLTIVQAHCK VLTIVQAHCK	LGLTATLV r 481 LGLTATLV r 519 LGLTATLV r 471 LGLTATLV r 471 LGLTATLV r 474 LELTATLV r 473 LGLTATLV r 473 LGLTATLV r 473 LGLTATLV r 473				e e

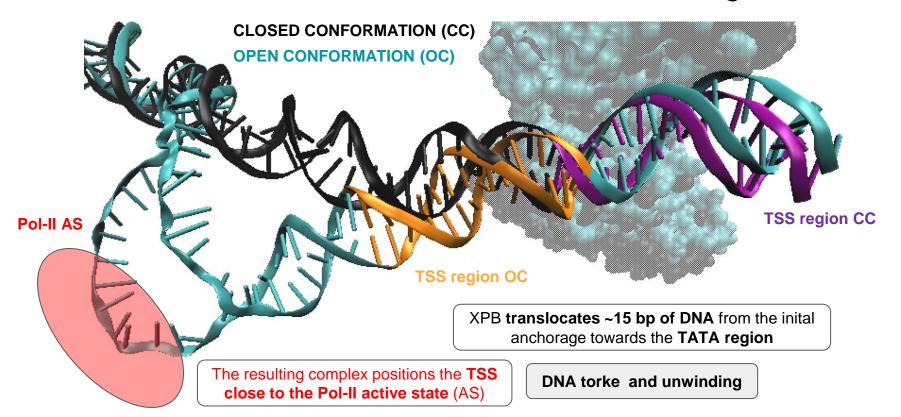

Open complex formation:

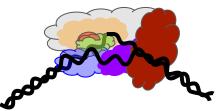

DNA melts around the transcription start site (TSS)



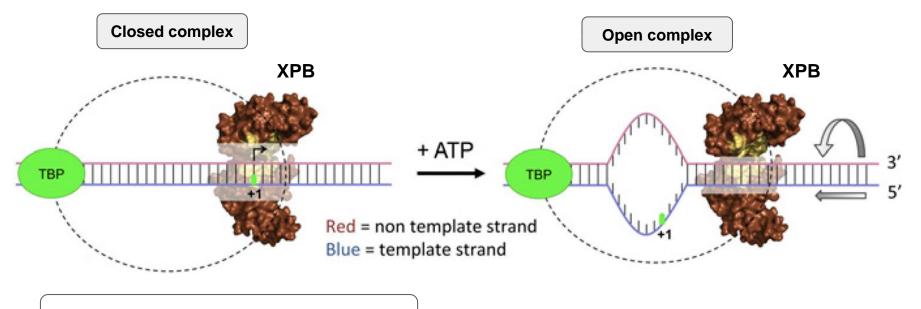

XPB does not change its conformation upon opening



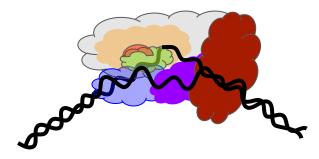

DNA is pushed towards the TATA-region complex by XPB

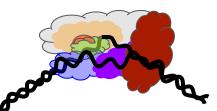


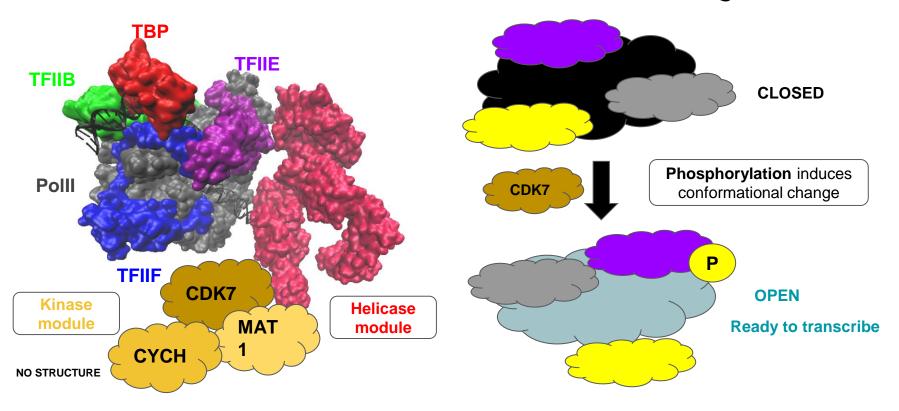
DNA torke and unwinding



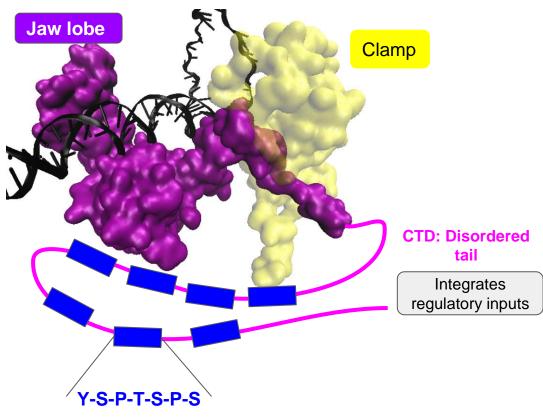
DNA is pushed towards the Pol-II complex by XPB

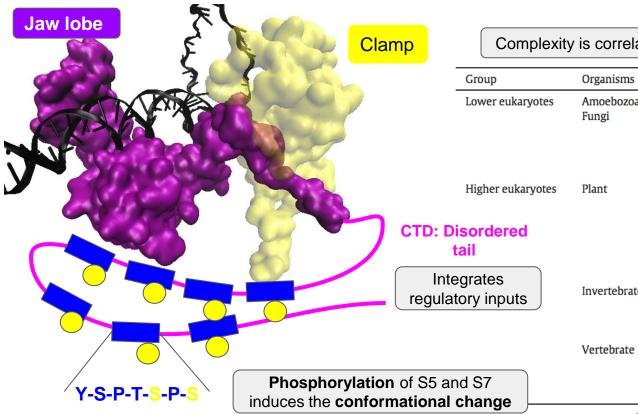

XPB probably acts as a SWI2/SNF2 translocase


A model for XPB-mediated promoter opening


Open complex formation:

Pol-II is rearranged to allow transcription initiation


In parallel, the kinase module of TFIIH induces the rearrangement of Pol-II


Open complex formation: Pol-II is rearranged to allow transcription initiation Jaw lobe, clamp, core and wall the functional modules of Pol-II Rpb2 Core/Mg2+ **Catalytic active** Central region of Rpb2 Jaw site lobe Rpb3 Rpb9 Maintains the "transcription bubble" Wall Shelf Rpb1 Clamp N-term Rpb1 Rpb5 N-term Rpb6 Rpb6 C-term Rpb1 C-term Rpb2 N-term Rpb9 Induces most of the Maintains the position of DNA rearrangements

The jaw lobe is linked to the CTD of Rpb1, relevant for the conformational change

The jaw lobe is linked to the CTD of Rpb1, relevant for the conformational change

16 24

34

29

28

34

43

35

44

35 52

52

52

52

Complexity is correlated with the number of CTD repeats Species CTD repeats Amoebozoa Dictyostelium discoideum 23 Saccharomyces cerevisiae 26 Schizosaccharomyces pombe 29 Schizosaccharomyces japonicus 29 Candida albicans 25 27 Ashbya gossypii 29 Physcomitrella patens

Ostreococcus lucimarinus

Micromonas sp. RCC299

Branchiostoma floridae

Caenorhabditis elegans

Anopheles gambiae

Drosophila melanogaster

Arabidopsis thaliana

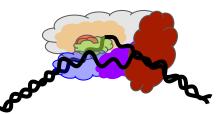
Oryza sativa

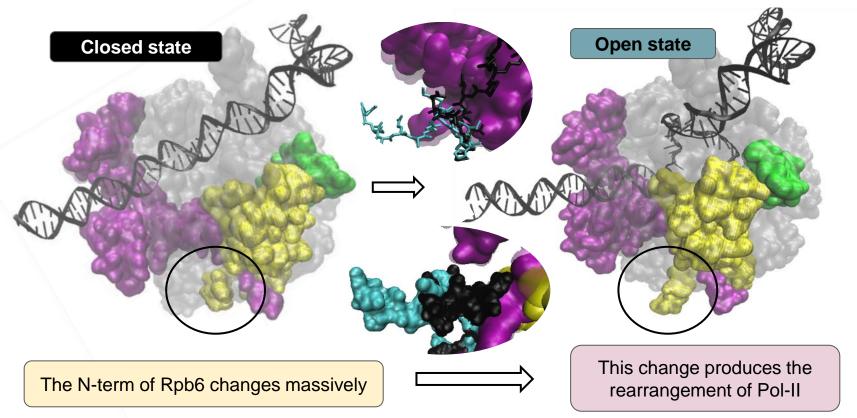
Vitis vinifera

Danio rerio

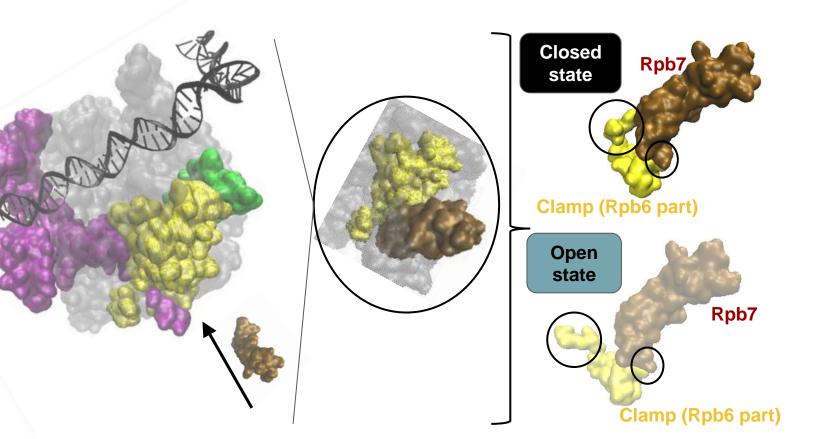
Homo sapiens

Mus musculus

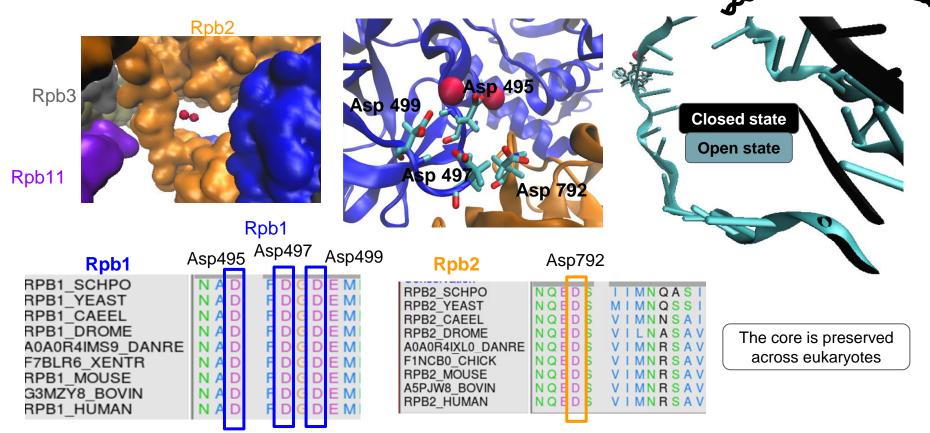

Rattus norvegicus

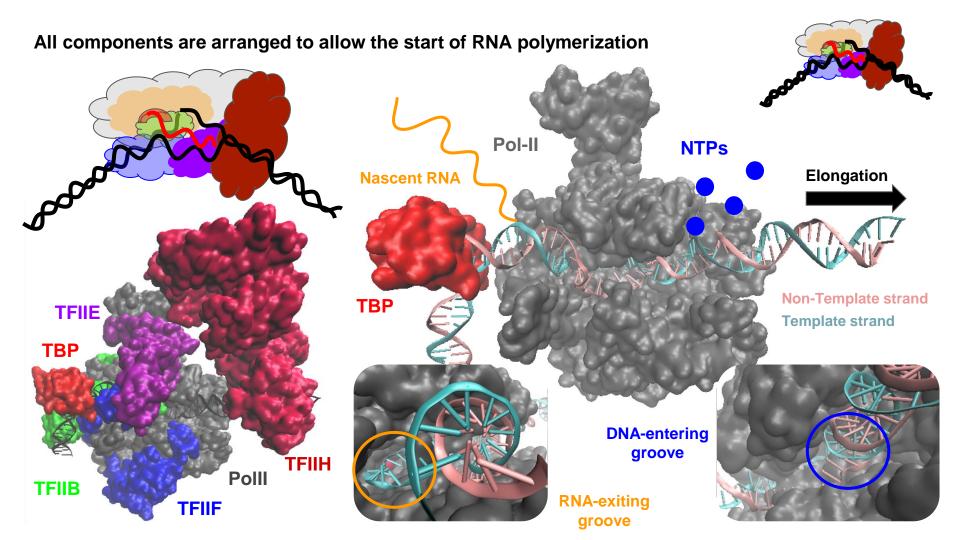

Sorghum bicolor

Invertebrate


Extracted from Srivastava et al 2015

A huge CLAMP movement triggers the Pol-II rearrangement


The mobility of the clamp is restricted by the presence of Rpb4/7 in the closed state



Open complex formation: Pol-II is rearranged to allow transcription initiation

The core of Pol-II becomes close to the TSS upon promoter opening

CONCLUSIONS

Conclusions and future directions

- > Although Pol-II is the catalytic part, the **GTFs are essential** for
 - **Pol-II recruitment** to the promoter
 - **Pol-II reordering** for transcription initiation
- > Transcription initiation is a process **conserved across metazoans**
- > TBP, Rpb1, Rpb2 and TFIIB are highly conserved across eukaryotes
- > The current data is limited for understanding transcription initiation
 - What happens with TATA-less promoters (90% of human promoters)?
 - There is not high resolution structures for TFIIH and TFIID
 - CTD is not characterized, so that we don't know how it induces Pol-II rearrangement
 - Large complexes as the PIC are still challenging to resolve

Noble, M. E., J. A. Endicott, N. R. Brown, and L. N. Johnson. 1997. "The Cyclin Box Fold: Protein Recognition in Cell-Cycle and Transcription Control." *Trends in Biochemical Sciences* 22 (12): 482–87.

Nikolov, D. B., H. Chen, E. D. Halay, A. A. Usheva, K. Hisatake, D. K. Lee, R. G. Roeder, and S. K. Burley. 1995. "Crystal Structure of a TFIIB-TBP-TATA-Element Ternary Complex." *Nature* 377 (6545): 119–28.

Ghosh, Mahua, Laura M. Elsby, Tapas K. Mal, Jane M. Gooding, Stefan G. E. Roberts, and Mitsuhiko Ikura. 2004. "Probing Zn2+-Binding Effects on the Zinc-Ribbon Domain of Human General Transcription Factor TFIIB." *Biochemical Journal* 378 (Pt 2): 317–24.

Cramer, P., D. A. Bushnell, and R. D. Kornberg. 2001. "Structural Basis of Transcription: RNA Polymerase II at 2.8 Angstrom Resolution." *Science* 292 (5523): 1863–76.

Srivastava, Rakesh, and Seong Hoon Ahn. 2015. "Modifications of RNA Polymerase II CTD: Connections to the Histone Code and Cellular Function." *Biotechnology Advances* 33 (6 Pt 1): 856–72.

Weipoltshammer, Klara, and Christian Schöfer. 2016. "Morphology of Nuclear Transcription." Histochemistry and Cell Biology 145 (4): 343–58.

Cramer, P., D. A. Bushnell, J. Fu, A. L. Gnatt, B. Maier-Davis, N. E. Thompson, R. R. Burgess, A. M. Edwards, P. R. David, and R. D. Kornberg. 2000. "Architecture of RNA Polymerase II and Implications for the Transcription Mechanism." *Science* 288 (5466): 640–49.

Kostrewa, D., M. E. Zeller, K-J Armache, M. Seizl, K. Leike, M. Thomm, and P. Cramer. 2009. "Crystal Structure of RNA Polymerase II in Complex with TFIIB." doi:10.2210/pdb3k1f/pdb.

Kettenberger, Hubert, Karim-Jean Armache, and Patrick Cramer. 2003. "Architecture of the RNA Polymerase II-TFIIS Complex and Implications for mRNA Cleavage." *Cell* 114 (3): 347–57.

Gnatt, A. L., P. Cramer, J. Fu, D. A. Bushnell, and R. D. Kornberg. 2001. "Structural Basis of Transcription: An RNA Polymerase II Elongation Complex at 3.3 A Resolution." *Science* 292 (5523): 1876–82.

Fishburn, James, Eric Tomko, Eric Galburt, and Steven Hahn. 2015. "Double-Stranded DNA Translocase Activity of Transcription Factor TFIIH and the Mechanism of RNA Polymerase II Open Complex Formation." *Proceedings of the National Academy of Sciences of the United States of America* 112 (13): 3961–66.

Fan, Li, Andrew S. Arvai, Priscilla K. Cooper, Shigenori Iwai, Fumio Hanaoka, and John A. Tainer. 2006. "Conserved XPB Core Structure and Motifs for DNA Unwinding: Implications for Pathway Selection of Transcription or Excision Repair." *Molecular Cell* 22 (1): 27–37.

Martinez-Rucobo, Fuensanta W., and Patrick Cramer. 2013. "Structural Basis of Transcription Elongation." *Biochimica et Biophysica Acta* 1829 (1): 9–19.

Cheung, Alan C. M., and Patrick Cramer. 2012. "A Movie of RNA Polymerase II Transcription." Celi 149 (7): 1431–37.

Fan, Li, and Kevin T. DuPrez. 2015. "XPB: An Unconventional SF2 DNA Helicase." *Progress in Biophysics and Molecular Biology* 117 (2-3): 174–81.

Malik, Sohail, Henrik Molina, and Zhu Xue. 2017. "PIC Activation through Functional Interplay between Mediator and TFIIH." *Journal of Molecular Biology* 429 (1): 48–63.

Dürr, Harald, Christian Körner, Marisa Müller, Volker Hickmann, and Karl-Peter Hopfner. 2005. "X-Ray Structures of the Sulfolobus Solfataricus SWI2/SNF2 ATPase Core and Its Complex with DNA." *Cell* 121 (3). Elsevier: 363–73.

Okuda, Masahiko, Junichi Higo, Tadashi Komatsu, Tsuyoshi Konuma, Kenji Sugase, and Yoshifumi Nishimura. 2016. "Dynamics of the Extended String-Like Interaction of TFIIE with the p62 Subunit of TFIIH." *Biophysical Journal* 111 (5): 950–62.

Hahn, Steven, and Stephen Buratowski. 2016. "Structural Biology: Snapshots of Transcription Initiation." Nature 533 (7603): 331–32.

He, Yuan, Jie Fang, Dylan J. Taatjes, and Eva Nogales. 2013. "Structural Visualization of Key Steps in Human Transcription Initiation." *Nature* 495 (7442): 481–86.

Grünberg, Sebastian, Linda Warfield, and Steven Hahn. 2012. "Architecture of the RNA Polymerase II Preinitiation Complex and Mechanism of ATP-Dependent Promoter Opening." *Nature Structural & Molecular Biology* 19 (8): 788–96.

Chen, Hung-Ta, Linda Warfield, and Steven Hahn. 2007. "The Positions of TFIIF and TFIIE in the RNA Polymerase II Transcription Preinitiation Complex." *Nature Structural & Molecular Biology* 14 (8): 696–703.

Okuda, Masahiko, Yoshinori Watanabe, Hideyasu Okamura, Fumio Hanaoka, Yoshiaki Ohkuma, and Yoshifumi Nishimura. 2000. "Structure of the Central Core Domain of TFIIEβ with a Novel Double-stranded DNA-binding Surface." *The EMBO Journal* 19 (6). EMBO Press: 1346–56.

Miwa, Kohei, Rieko Kojima, Takayuki Obita, Yoshiaki Ohkuma, Yasushi Tamura, and Mineyuki Mizuguchi. 2016. "Crystal Structure of Human General Transcription Factor TFIIE at Atomic Resolution." *Journal of Molecular Biology* 428 (21): 4258–66.

Okuda Masahiko, and Nishimura Yoshifumi. 2008. "[Structural biology of a general transcription factor, TFIIE and its interaction mode with TFIIH]." *Seikagaku. The Journal of Japanese Biochemical Society* 80 (6): 501–10.

Okuda, Masahiko, Aki Tanaka, Manami Satoh, Shoko Mizuta, Manabu Takazawa, Yoshiaki Ohkuma, and Yoshifumi Nishimura. 2008. "Structural Insight into the TFIIE–TFIIH Interaction: TFIIE and p53 Share the Binding Region on TFIIH." *The EMBO Journal* 27 (7). EMBO Press: 1161–71.

Ohkuma, Yoshiaki, Hideki Sumimoto, and Others. 1991. "Structural Motifs and Potential (Omicron) Homologies in the Large Subunit of Human General Transcription Factor TFIIE." *Nature* 354 (6352). Nature Publishing Group: 398.

Peterson, M. G., J. Inostroza, M. E. Maxon, O. Flores, A. Admon, D. Reinberg, and R. Tjian. 1991. "Structure and Functional Properties of Human General Transcription Factor IIE." *Nature* 354 (6352): 369–73.

Blombach, Fabian, Katherine L. Smollett, Dina Grohmann, and Finn Werner. 2016. "Molecular Mechanisms of Transcription Initiation-Structure, Function, and Evolution of TFE/TFIIE-Like Factors and Open Complex Formation." *Journal of Molecular Biology* 428 (12): 2592–2606.

Kostrewa, Dirk, Mirijam E. Zeller, Karim-Jean Armache, Martin Seizl, Kristin Leike, Michael Thomm, and Patrick Cramer. 2009. "RNA Polymerase II-TFIIB Structure and Mechanism of Transcription Initiation." *Nature* 462 (7271): 323–30.

Murakami, Kenji, Kuang-Lei Tsai, Nir Kalisman, David A. Bushnell, Francisco J. Asturias, and Roger D. Kornberg. 2015. "Structure of an RNA Polymerase II Preinitiation Complex." *Proceedings of the National Academy of Sciences of the United States of America* 112 (44): 13543–48.

Egly, Jean-Marc, and Frédéric Coin. 2011. "A History of TFIIH: Two Decades of Molecular Biology on a Pivotal Transcription/repair Factor." DNA Repair 10 (7): 714–21.

He, Yuan, Chunli Yan, Jie Fang, Carla Inouye, Robert Tjian, Ivaylo Ivanov, and Eva Nogales. 2016. "Near-Atomic Resolution Visualization of Human Transcription Promoter Opening." *Nature* 533 (7603): 359–65.

Plaschka, C., M. Hantsche, C. Dienemann, C. Burzinski, J. Plitzko, and P. Cramer. 2016. "Transcription Initiation Complex Structures Elucidate DNA Opening." *Nature* 533 (7603): 353–58.

Hantsche, Merle, and Patrick Cramer. 2016. "The Structural Basis of Transcription: 10 Years After the Nobel Prize in Chemistry." Angewandte Chemie 55 (52): 15972–81.

Sainsbury, Sarah, Carrie Bernecky, and Patrick Cramer. 2015. "Structural Basis of Transcription Initiation by RNA Polymerase II." *Nature Reviews. Molecular Cell Biology* 16 (3): 129–43.

Plaschka, Clemens, Kayo Nozawa, and Patrick Cramer. 2016. "Mediator Architecture and RNA Polymerase II Interaction." *Journal of Molecular Biology* 428 (12): 2569–74.

Cramer, Patrick. 2016. "Structure Determination of Transient Transcription Complexes." Biochemical Society Transactions 44 (4): 1177–82.

Yao, Jie. 2017. "Imaging Transcriptional Regulation of Eukaryotic mRNA Genes: Advances and Outlook." *Journal of Molecular Biology* 429 (1): 14–31.

Zhang, Yinfeng, Saman M. Najmi, and David A. Schneider. 2016. "Transcription Factors That Influence RNA Polymerases I and II: To What Extent Is Mechanism of Action Conserved?" *Biochimica et Biophysica Acta* 1860 (2): 246–55.

Jonge, Wim J. de, Eoghan O'Duibhir, Philip Lijnzaad, Dik van Leenen, Marian Ja Groot Koerkamp, Patrick Kemmeren, and Frank Cp Holstege. 2016. "Molecular Mechanisms That Distinguish TFIID Housekeeping from Regulatable SAGA Promoters." The EMBO Journal, December. doi:10.15252/embj.201695621.

Hahn, Steven. 2004. "Structure and Mechanism of the RNA Polymerase II Transcription Machinery." Nature Structural & Molecular Biology 11 (5): 394–403.

Choder, Mordechai. 2004. "Rpb4 and Rpb7: Subunits of RNA Polymerase II and beyond." Trends in Biochemical Sciences 29 (12): 674-81.

Cramer, P., D. A. Bushnell, J. Fu, A. L. Gnatt, B. Maier-Davis, N. E. Thompson, R. R. Burgess, A. M. Edwards, P. R. David, and R. D. Kornberg. 2000. "Architecture of RNA Polymerase II and Implications for the Transcription Mechanism." Science 288 (5466): 640–49.

Cramer, Patrick. 2004. "RNA Polymerase II Structure: From Core to Functional Complexes." Current Opinion in Genetics & Development 14 (2): 218–26.

Fishburn, James, and Steven Hahn. 2012. "Architecture of the Yeast RNA Polymerase II Open Complex and Regulation of Activity by TFIIF." Molecular and Cellular Biology 32 (1): 12–25.

Luse, Donal S. 2012. "Rethinking the Role of TFIIF in Transcript Initiation by RNA Polymerase II." Transcription 3 (4): 156–59.

Čabart, Pavel, Andrea Újvári, Mahadeb Pal, and Donal S. Luse. 2011. "Transcription Factor TFIIF Is Not Required for Initiation by RNA Polymerase II, but It Is Essential to Stabilize Transcription Factor TFIIB in Early Elongation Complexes." Proceedings of the National Academy of Sciences of the United States of America 108 (38): 15786–91.

Baumann, Martina, Jens Pontiller, and Wolfgang Ernst. 2010. "Structure and Basal Transcription Complex of RNA Polymerase II Core Promoters in the Mammalian Genome: An Overview." Molecular Biotechnology 45 (3): 241–47.

UNIPROT: <u>http://www.uniprot.org/</u>

- PDB: <u>http://www.rcsb.org/pdb/home/home.do</u>
- PFAM: http://pfam.xfam.org/
- INTERPROT: https://www.ebi.ac.uk/interpro/
- PISA: http://www.ebi.ac.uk/pdbe/pisa/

About TBP, choose which of the following statements is **FALSE**.

- a) TBP's C-term domain is formed by two repeated "shadle-shaped" structures.
- b) TBP is the first factor that binds to the promoter region.
- c) TBP is the last factor that binds the complex.
- d) TBP mainly binds DNA through electrostatic interactions and hydrogen bonds.
- e) TBP's N-term domain is not conserved.

TFIIB interacts with...

- a) TBP
- b) DNA
- c) RNA polymerase II
- d) TFIIF
- e) All are correct

Regarding to TFIIB. It is true that:

- a) It has a Zinc finger domain
- b) It has two cyclin like domains
- c) a) and b) are correct
- d) It has a winged helix domain
- e) Non of them are true

Regarding TFIIE. It is true that:

- a) There's a string-like interaction between its α subunit and TFIIH.
- b) It has no importance in recruiting TFIIH.
- c) It phosphorylates Pol-II to allow transcription initiation.
- d) Transcription can occur without TFIIE.
- e) It forms up the core of the RNA polymerase.

About TFIIH, choose which of the following statements is **FALSE**.

- a) It cointains two modules with helicase and kinase activity.
- b) It phosphorylates Pol-II to allow transcription inititation.
- c) The electrostatic interaction between it's LYS387 and ARG137 of TFIIE is key for the assembly to the pre-inititation complex.
- d) It has not been charachterized yet at high resolution.
- e) We do not have structural information about some of it's subunits.

Regarding the events following promoter opening:

- a) Jaw lobe, clamp, wall and core are the parts of Pol-II relevant for function.
- b) The phosphorylation of the CTD of Rpb1 is on several His and Asp residues.
- c) The CTD of Rpb1 is a very structured motif.
- d) The CTD of Rpb1 is not important for integrating regulatory inputs.
- e) Promoter opening is not important for transcription initiation.

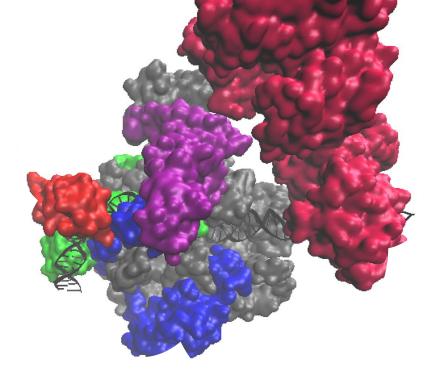
About the RNA polymerase II, choose which of the following statements is FALSE.

- a) It is a complex formed by 7 subunits.
- b) Rpb1 is the bigger subunit of the complex.
- c) Rpb2 is in contact with the magnesium ion of the core.
- d) Rpb1 is in contact with the magnesium ion of the core.
- e) Rpb6 forms part of the clamp element.

About TFIIF, choose the **CORRECT** answer:

- a) It is formed by 2 subunits (alpha and beta).
- b) Has a triple barrel domain.
- c) Has a winged helix domain.
- d) Its interacting mainly with Rpb2 subunit of the RNA polymerase II.
- e) All are correct.

Rpb7 has an important role in...


- a) interacting with the core.
- b) the elongation process.
- c) binding the DNA in the closed state.
- d) locking the clamp in the initiation process.
- e) the termination process.

Regarding the Core PreIniciationComplex (PIC), is formed by:

- a) TBP
- b) TFIIF
- c) TFIIB
- d) RNA polymerase II
- e) All are correct

Structural basis of transcription initiation by RNA polymerase II

Josep Argerich Bergedà Adrián González Sánchez Miquel Àngel Schikora Tamarit

