

Maria Alós, Laura Carrillo, Alba Crespo, David Fernández

ASP102:CA

TABLE OF CONTENTS

00

INTRODUCTION

Classification and characteristic features of serine-proteases

01

1. PROTEASES

Enzymes that catalyse the breakdown of the peptide bonds

They are found in all the kingdoms of life and in viruses

Figure 1. Peptide Bond

Independently evolved many times

Different catalytic mechanisms

Different structure

INHIBITOR INTERACTION

PROTEASES: classification

MEROPS The Peptidase Database

Based on the residu that perform de catalysis

		Clans of Serine Peptidases			
CLAN	FAMILY	TYPE PEPTIDASE	STRUCTURE		
<u>SB</u>	<u>S8</u>	subtilisin Carlsberg (Bacillus licheniformis)			
	<u>S53</u>	sedolisin (Pseudomonas sp. 101)			
<u>SC</u>	<u>S9</u>	prolyl oligopeptidase (Sus scrofa)			
	<u>S10</u>	carboxypeptidase Y (Saccharomyces cerevisiae)			
	<u>S15</u>	Xaa-Pro dipeptidyl-peptidase (Lactococcus lactis)			
	<u>S28</u>	lysosomal Pro-Xaa carboxypeptidase (Homo sapiens)			
	<u>S33</u>	prolyl aminopeptidase (Neisseria gonorrhoeae)			
	<u>S37</u>	PS-10 peptidase (Streptomyces lividans)			
	<u>S82</u>	autocrine proliferation repressor protein A (Dictyostelium discoideum)			
<u>SE</u>	<u>S11</u>	D-Ala-D-Ala carboxypeptidase A (Geobacillus stearothermophilus)			

PROTEASES

SERINE

PROTEASES

Their catalytic mechanism depends

upon the hydroxyl group of the serine

a donor of pair of electrons

to form a chemical bound.

SERINE-PROTEASES: classification

SERINE-PROTEASES: characteristic features

Substrate specificity pocket

Adapted from "Unique Substrate Specificity of SpIE Serine Protease from Staphylococcus aureus" Stach N. et al

INHIBITOR INTERACTION

CONCLUSIONS

The catalytic triad

INHIBITOR INTERACTION

CONCLUSIONS

The catalytic triad

MECHANISM OF ACTION: The catalytic triad

Covalent bond formation

First tetrahedral transition state

Own source

First tetrahedral transition state

Own source

Acyl-enzyme intermediate

INHIBITOR INTERACTION

CONCLUSIONS

Water activation

Second tetrahedral transition state

End of reaction: triad regeneration and product formation

CATALYTIC MECHANISM: summary

CONCLUSIONS

Oxyanion hole

Function: stabilisation of the tetrahedral intermediate.

INHIBITOR INTERACTION

CONCLUSIONS

How do enzymes work?

Stabilization of the transition state brings down the activation energy.

Activation of Serine Proteases

Trypsin-like proteases are synthesized as inactive precursors: ZYMOGEN.

Proteolytic processing activates the zymogen.

- 1. Release of the N-terminal lle16 (depending on the enzyme).
- 2. Formation of salt bridge with Asp194.
- **3.** Conformational change and creation of the active protease.

The mechanism of zymogen activation is conserved among mammalian trypsin-like serine proteases.

Activation of serine proteases

Elastase consists of a single polypeptide chain of 240 amino acid.

Synthesized as a **zymogen** (proelastase). Activation through limited trypsin proteolysis at its N-terminal.

Removal of an activation peptide from the N-terminal enables the enzyme to adopt its native conformation. **Subtilisins** are synthesized as **zymogens**, with an approximately 77-long residue propeptide.

2 distinct autoproteolytic cleavages remove the propeptide, each with a different pH optimum.

Maturation of the zymogen into enzymatically active subtilisin.

Integration of the activation of serine proteases

Trypsinogen activation t is essential as it activates its own reaction, as well as the reaction of both chymotrypsin and elastase.

Own source

Multiple Sequence Alignment Chymotrypsin + Chymotrypsinogen

Chymotrypsin A Chymotrypsin B Chymotrypsin C Chymotrypsinogen	IVNGEEAVPGSWPWQVSLQDKTGFHFCGGSLINENWVVTAAHCGV CGVPAIQPVLSGL CGVPAIQPVLSGLSF <mark>I</mark> VNGEEAVPGSWPWQVSLQDKTGFHFCGGSLINENWVVTAAHCGV	0 45 13 60	His 57 Ile 16	
Chymotrypsin A Chymotrypsin B Chymotrypsin C Chymotrypsinogen	TTSDVVVAGEFDQGSSSEKIQKLKIAKVFKNSKYNSLTINN <mark>D</mark> ITLLKLSTAASFSQTVSA TTSDVVVAGEFDQGSSSEKIQKLKIAKVFKNSKYNSLTINN <mark>D</mark> ITLLKLSTAASFSQTVSA	0 105 13 120	Asp102	
Chymotrypsin A Chymotrypsin B Chymotrypsin C Chymotrypsinogen	VCLPSASDDFAAGTTCVTTGWGLTRYTNANTPDRLQQASLPLLSNTNCKKYWGTKIKDAM	32 131 13 180		
Chymotrypsin A Chymotrypsin B Chymotrypsin C Chymotrypsinogen	ICAGASGVSSCM <mark>GDS</mark> GGPLVCKKNGAWTLVGIVSWGSSTCSTSTPGVYARVTALVNWVQQ 	92 131 13 240	Gly 193 Asp 194 Ser 195	
Chymotrypsin A Chymotrypsin B Chymotrypsin C Chymotrypsinogen	TLAAN 97 131 13 TLAAN 245			Oxyanion hole Catalytic triad Activating bond

Gly 193

Chymotrypsinogen

Chymotrypsin Chain B

Chymotrypsin + Chymotrypsinogen superimposition

Sc 8.06 RMS 0.81

-----VVGGTRAAQGEFPFMVRLSM-G---lsglsrIVNGEEAVPGSWPWQVSLQDKTG---F -----VVGGTEAQRNSWPSQISLQYRSGsswA -----IIGGREVIPHSRPYMASLQRMG---S -----IVGGTESSWGEWPWQVSLQVKLTa-OF ---rsv-VGGLVALRGAHPYIAALYWGH----

NTSITATGGVVDLQSGAAVKVRSTK/LDARGVI DV-VVAGEFDQGSSSEKIQKLKIAKOFKNSKA TFRVVVGEHNLNQNDGTEQYVGVQAIVOHFYW QLRLVLGLHTLDSPG---LTFHIKA-TOHPRYK VWRIYSGILELSDITKDTPFSQIKELIDFVK DLTVVLGQERRNHSCEPCQTLAVRSYRHEFFS

NQPTLKIATTTAYN---QG-TFTVAGWGANREC SQTVSAVCLPSASDDFAAGTTCVTTGWGLTRYT NSYVQLGVLPRAGTILANNSPCYITGWGLTRTN SRTIRPLALPSKRQVVAAGTRCSMAGWGLTHQC TEFQKPISLPSKGDTSTIYTNCWVTGWGFSKEK SPYVQPVSLPSGAARPSETTLCQVAGWGHQFEC

GNElVANEEICAGYPdtGGVDTCQGDSGGPMFF GTK-IKDAMICAGA---SGVSSCMGDSGGPLVC GST-VKNSMVCAGGD--GVRSGCQGDSGGPLHC NGS-LSPSMVCLAAD-SKDQAPCKGDSGGPLVC QDYkITQRMVCAGYK-eGGKDACKGDSGGPLVC GSS-ILPGMLCAGFL-eGGTDACQGDSGGPLVC

YPGVYTEVSTFASAIasaartl-----TPGVYARVTALVNWVqqtlaan-----KPTVFTRVSAYISWInnviasn-----KPPVATAVAPYVSWIrkvtgrsalehhhhhh--QPGVYTKVAEYMDWIlektqssdgk------KPGVYTDVAYYLAWIrehtvshhtqtrhhhhh

SEQUENCE ANALYSIS

02

MSA based on sequence of trypsin-like serine proteases and subtilisin-like serine proteases

QU

Catalytic triad Oxyanion hole

Substrate specificity pocket

Example of disulfide bond

Multiple Sequence Alignment TRYPSIN-LIKE proteins

STRUCTURE ANALYSIS

SEQUENCE ANALYSIS

Trypsin Chymotrypsinogen_A Elastase Granzyme_M Kallikrein Coagulation_factorXII	CGGALYAQDIVLTA/H cgvpaiqpvlsglsrIVNGEEAVPGSWPWQVSLQDKTGFHFCGGSLINENWVVTA/H VVGGTEAQRNSWPSQISLQYRSGsswAHTCGGTLIRQNWVMTA/H SHLCGGVLVHPKWVLTA/H IIGGREVIPHSRPYMASLQRNGSHLCGGVLVHPKWVLTA/H IVGGTESSWGEWPWQVSLQVKLTa-qRHLCGGSLIGHQWVLTA/H Fsv-VGGLVALRGAHPYIAALYWGHSFCAGSLIAPCWVLTA/H	His 57	
Trypsin Chymotrypsinogen_A Elastase Granzyme_M Kallikrein Coagulation_factorXII	CVSGSGNNTSITATGGVVDLQSGAAVKVRSTKVLQAPGYNGTGHDVALIKLAQ CGVTTSDV-VVAGEFDQGSSSEKIQKLKIAKVFKNSKYNSLT-INDITLLKLST CVDRELTFRVVVGEHNLNQNDGTEQYVGVQKIVVHPYWNTDD-VaaGVDIALLRLAQ CLAQMAQLRLVLGLHTLDSPGLTFHIKAAIQHPRYKPVPAL-EDALUQLDG CFDGlplQDVWRIYSGILELSDITKDTPFSQIKEIIIHQNYKVSE-GNDIALIKLQA CLQDrpaPEDLTVVLGQERRNHSCEPCQTLAVRSYRLHEAFSPVS-YQDLALLRLQE	Asp102	
Trypsin Chymotrypsinogen_A Elastase Granzyme_M Kallikrein Coagulation_factorXII	PINQPTLKIATTTAYNQG-TFTVAGWGANREGG-SQQRYLLKANVPFVSD AASFSQTVSAVCLPSASDDFAAGTTCVTTGWGLTRYTNanTPDRLQQASLPLLSN SVTLNSYVQLGVLPRAGTILANNSPCYITGWGLTRTNG-QLAQTLQQAYLPTVDY KVKPSRTIRPLALPSKRQVVAAGTRCSMAGWGLTHQGG-rLSRVLRELDLQVLDT PLEYTEFQKPISLPSKGDTSTIYTNCWVTGWGFSKEKG-EIQNILQKVNIPLVTN DadgsCALLSPYVQPVSLPSGAARPSETTLCQVAGWGHQFEGAeeYASFLQEAQVPFLSL		
Trypsin Chymotrypsinogen_A	A/CtSAYGNElVANEE:CtGYPdtGGV <mark>D</mark> CCGLSGCPMFRKDNadewIQVGIVSWG TNCKKYWGTK-IKDAMICtGASGVSSCMGLSGCPLVCKKNgawTLVGIVSWG	Residue 189	
Elastase Granzyme_M	A]C\$SSSyWGST-VKNSM*CAGGDGVRSGCQGLSGCPLHCLVNgQYAVEGVTSFV R/CNSrfWNGS-LSPSM*C_AAD-SKDQAFCKGLSGCPLVCGKGrVL/GVLSFS	Gly 193	
Kallikrein Coagulation_factorXII	EEC0KRYQDYkITQRMYCAGYK-eGGKDACKG[S;GPLVCKHNgmwRLYGITSWG EFC;APdvHGSS-ILPGMLCAGFL-eGGTDACQG[S;GPLVCEDQaaerrlTLCGIISWG	Ser 195	
Trypsin	YGCARPGYPGVYTEVSTFASAIasaartl		
Chymotrypsinogen_A	SSTCSTSTPGVYARVTALVNWVqqtlaan		
Cranzyme M			_
Kallikrein			
Coagulation factorXII	SGCGDRNKPGVYTDVAYYLAWIrehtvshhtatrhhhhhh		

Multiple Sequence Alignment SUBTILISIN-LIKE proteins

•	•	-
Subtilisin_Carlsberg Bacillus_lentus Subtilisin_BPN Subtilisin_NAT Subtilisin_Savinase	aqtvpygiplikadkvqaqgfkganvKVAVLD_GIQASHPDLNVVGGASFVA aqsvpwgisrvqapaahnrgltgsgvKVAVLD_GI-STHPDLNIRGGASFVP aqsvpygvsqikapalhsqgytgsnvKVAVLD_GIDSSHPDLKVAGGASMVP aqsvpygisqikapalhsqgytgsnvKVAVLD_GIDSSHPDLNVRGGASFVP aqsvpwgisrvqapaahnrgltgsgvKVAVLD_GI-STHPDLNIRGGASFVP	Asp32
Subtilisin_Carlsberg Bacillus_lentus Subtilisin_BPN Subtilisin_NAT Subtilisin_Savinase	GEAYNTDGNGHGTHYAGTVAALDNTTGVLGVAPSVSLYAVKVLNSSGSGSYSGIV GEPSTQDGNGHGTHYAGTIAALNNSIGVLGVAPSAELYAVKVLGASGSGSVSSIA SETPNFQDDNSHGTHYAGTVAALNNSIGVLGVAPSALYAVKVLGDAGSGQYSWII SETNPYQDGSSHGTHYAGTIAALNNSIGVLGVAPSASLYAVKVLDSTGSGQYSWII GEPSTQDGNGHGTHYAGTIAALNNSIGVLGVAPSAELYAVKVLGASGSGSVSSIA	His64
Subtilisin_Carlsberg Bacillus_lentus Subtilisin_BPN Subtilisin_NAT Subtilisin_Savinase	SGIEWAT-TNGMDVINMSLGGASGSTAMKQAVDNAYARGVVVVAAAGNSGNSGS QGLEWAG-NNGMHVANLSLGSPSPSATLEQAVNSATSRGVLVVAASGNSGAGS- NGIEWAI-ANNMDVINMSLGGPSGSAALKAAVDKAVASGVVVVAAAGNSGSSGS NGIEWAI-SNNMDVINMSLGGPTGSTALKTVVDKAVSSGIVVAAAGNSGSSGS QGLEWAG-NNGMHVANLSLGSPSPSATLEQAVNSATSRGVLVVAASGNSGAGS-	Asn155
Subtilisin_Carlsberg Bacillus_lentus Subtilisin_BPN Subtilisin_NAT Subtilisin_Savinase	TNT GYPAK YDSVIAVGAVDSNSNRASFSSVGAELEVMAPGAGVYSTYPTNT- SYPAF YANAMAVGATDQNNNRASFSQYGAGLDIVAPGVNVQSTYPGST- SSTVGYPGK YPSVIAVGAVDSSNQRASFSSVGPELDVMAPGVSIQSTLPGNK- TSTVGYPAK YPSTIAVGAVNSSNQRASFSSVGSELDVMAPGVSIQSTLPGGT- SYPAF YANAMAVGATDQNNNRASFSQYGAGLDIVAPGVNVQSTYPGST-	
Subtilisin_Carlsberg Bacillus_lentus Subtilisin_BPN Subtilisin_NAT Subtilisin_Savinase	YATLNG SIASPHVAGAAALILSKHPNLSASQVRNRLSSTATYLGSSFYYGK YASLNG SIATPHVAGAAALVKQKNPSWSNVQIRNHLKNTATSLGSTNLYGS YGAYNG SIASPHVAGAAALILSKHPNWTNTQVRSSLQNTTTKLGDSFYYGK YGAYNG SIATPHVAGAAALILSKHPTWTNAQVRDRLESTATYLGNSFYYGK YASLNG SIATPHVAGAAALVKQKNPSWSNVQIRNHLKNTATSLGSTNLYGS	Ser221
Subtilisin_Carlsberg Bacillus_lentus	GLINVEAAaq GLVNAEAAT-r-	
Subtilisin_BPN	GLINVQAAaq	
Subtilisin_NAT	GLINVQAAaq	
Subtilisin Savinase	GLVNAEAAT - r -	

Catalytic triad

Oxyanion hole

Substrate specificity pocket

03

Trypsin-like and subtilisin-like folding analysis

INHIBITOR INTERACTION

SCOP classification

Class 1000001 All beta proteins		Class 1000002 Alpha and Beta (a/b)	
Fold 2000083 Trypsin-type beta(6)-barrel		Fold 2000207 Subtilisin-like	
Superfamily 3000114 Trypsin-like serine proteases	Clan PA	Superfamily 3000226 Subtilisin-like	Clan SB
Family 4000286 Eukaryotic proteases	S1	Family 4000409 Subtilases	S8

Trypsin Chymotrypsin Elastase

INHIBITOR INTERACTION

CONCLUSIONS

TRYPSIN-LIKE

All beta structure

Alpha helix Extended Beta

3 10 helix

Turn Coil

INHIBITOR INTERACTION

CONCLUSIONS

TRYPSIN-LIKE

Two domains

Alpha helix Extended Beta 3 10 helix Turn

Coil

INHIBITOR INTERACTION

CONCLUSIONS

TRYPSIN-LIKE

Perpendicular to each other
TRYPSIN-LIKE

Beta-barrel 6 stranded Greek Key

Greek Key

TRYPSIN-LIKE

Beta-barrel 6 stranded Greek Key

Greek Key

INHIBITOR INTERACTION

TRYPSIN-LIKE

Hydrogen bonds between beta strands and alpha helix

INTRODUCTION SEQUENCE ANALYSIS STRUCTURE ANALYSIS INHIB

INHIBITOR INTERACTION

CONCLUSIONS

TRYPSIN-LIKE

Hydrogen bonds between beta strands

Oxigen Nitrogen

Carbon Hidrogen

INHIBITOR INTERACTION

CONCLUSIONS

TRYPSIN-LIKE

Salt bridges

Acid amino acids Basic amino acids

INHIBITOR INTERACTION

CONCLUSIONS

TRYPSIN-LIKE

Catalytic Triad

Conformation stabilized by Hydrogen Bonds

ASP102:CA

INHIBITOR INTERACTION

CONCLUSIONS

TRYPSIN-LIKE

Polar amino acids

Basic amino acids

Unassigned

INHIBITOR INTERACTION

CONCLUSIONS

TRYPSIN-LIKE

Substrate pocket

Substrate Specificity pocket

S1 pocket

L1 and L2 loops

INHIBITOR INTERACTION

TRYPSIN-LIKE

INHIBITOR INTERACTION

TRYPSIN-LIKE

Chymotrypsin

S1 pocket

L1 and L2 loops

Polar amino acids

Acid amino acids

Substrate pocket

INHIBITOR INTERACTION

CONCLUSIONS

TRYPSIN-LIKE

Substrate pocket

TRYPSIN-LIKE proteins superimposition

Sc 7.96 RMS 1.26

Multiple Sequence Alignment TRYPSIN-LIKE proteins by structure

Coagulation_factorXII Trypsin Kallikrein Granzyme_M Elästäse Chymotrypsinogen_A	VALRGAHPYIAALYWGHSF-CAGSLIAPCWVLTAAHGLQDRPAPEDL VVGGTRAAQGEFPFMVRLSM-G-CGGALYAQDIVLTAAHGV-S-GSGNN-TSI IVGGWECEQHSQPWQAALYHFST-FQCGGILVHRQWVLTAAHGI-SD-N-Y IIGGREVIPHSRPYMASLQRNGS-HLCGGVLVHPKWVLTAAHGLAQ-RM-AQL VVGGTEAQRNSWPSQISLQYRSGSSWA-HTCGGTLIRQNWVMTAAHGVDR-EL-T-F IVGGTESSWGEWPWQVSLQVKLT-AQR-HLCGGSLIGHQWVLTAAHGFDGLPLQDVW	His 57
Coagulation_factorXII Trypsin Kallikrein Granzyme_M Elästäse Chymotrypsinogen_A	TVVLGQERRNHSCEPCQTLAVRSYRLHEAFSP-VSYQHDALLRLQE TATGGVVDLQSGA-AVKVRSTKVLQAPGYNGTGCDVALIKLAQ QLWLGRHNLFDDENTAQFVHVSESFPHPGFNM-SLLENRQADEDYSHDMLLRLTE RLVLGLHTLDSPGLTFHIKAAIQHPRYKPVPALEHDALLQLDG RVVVGEHNLNQNDGTEQYVGVQKIVVHPYWNT-DDVAAG'DALLRLAQ RIYSGILELSDI-TKD-TPFSQIKEIIIHQNYKV-SEGNHDALIKLQA	Asp10
Coagulation_factorXII Trypsin Kallikrein Granzyme_M Elastase Chymotrypsinogen_A	DADGSCALL-SPYVQPVSLPSGAARPS-ETTLCQVAGWGHQFEGAEEYASFLQEA PINQPTLKIAT-TTAYN-Q-GTFTVAGWGANR-EGGSQQRYLLKA PADTITDAVKVVELPTEEPE-VGSTCLASGWGSIEPENFSFPDDLQCV KVKP-SRTIRPLALPSKRQVVA-AGTRCSMAGWGLTH-QGGRLSRVLREL SVTL-NSYVQLGVLPRAGTILA-NNSPCYITGWGLTR-TNGQLAQTLQQA PLEY-TEFQKPISLPSKGDTSTIY-TNCWVTGWGFSK-EKGEIQNILQKV	Residu
Coagulation_factorXII Trypsin	QVPFLSLERCSAPDVH-GSSIL-PGMLCAG-FL-EGGTD CC 3D SC GPLVCEDQAAERR	Gly 19
Kallikrein Granzyme_M Elastase Chymotrypsinogen_A	DLKILPNDECK-K-AH-VQKVT-DEMLCVG-HL-EGG(D) C-/G SCGPLMCD DLQVLDTRMCNNSRFW-NGSLS-PSMVCLAADSKD)A C- (G SCGPLVCGKG YLPTVDYAICSSSSYW-GSTVK-NSMVCAGG-DGV XS C- 2G SCGPLHCLVNGQ NIPLVTNEECQ-K-RYQDYKIT-QRMVCAG-YK-EGG(D) C- (G SCGPLVCKHNGM	Ser 19
Coagulation_factorXII Trypsin Kallikrein Granzyme_M Elästäse Chymotrypsinogen_A	LTLCGIISWGS CCODRNK-PGVYTDVAYYLAWIREHTVSHHT WIQVGIVSWGY CC-ARPGYPGVYTEVSTFASAIASAAR-TL- GVLCGVTSWGY - IC-GTPNKPSVAVRVLSYVKWIEDTIA-ENS RVLAGVLSFSSR-VC-TDIFKPPVATAVAPYVSWIRKVTGRS YAVHGVTSFVSRLCC-NVTRKPTVFTRVSAYISWINNVIA-SN- WRLVGITSWGE CC-ARREQPGVYTKVAEYMDWILEKTQSS	Cys 19 Cys220

2

TRYPSIN-LIKE proteins Clusters

INHIBITOR INTERACTION

CONCLUSIONS

SUBTILISIN-LIKE

Alpha / beta / alpha

Alpha helix Extended Beta 3 10 helix

Turn

Coil

INTRODUCTION

SEQUENCE ANALYSIS

STRUCTURE ANALYSIS

INHIBITOR INTERACTION

CONCLUSIONS

SUBTILISIN-LIKE

7 parallel beta-strand + 9 alpha-helix

Two additional strands of antiparallel β -sheet

Alpha helix Extended Beta 3 10 helix Turn Coil

INTRODUCTION

SEQUENCE ANALYSIS

STRUCTURE ANALYSIS

INHIBITOR INTERACTION

CONCLUSIONS

SUBTILISIN-LIKE

Left-handed connection between strand 2 - 3

INTRODUCTION SEQUENCE ANALYSIS STRUCTURE ANALYSIS INHIBITOR INTERACTION CONCLUSIONS \mathbf{n} SUBTILISIN-LIKE Left-handed connection between strand

3

2

6

5

7

SUBTILISIN-LIKE

Non-polar amino acids Polar amino acids

Acid amino acids

Basic amino acids

Unassigned

INTRODUCTION

STRUCTURE ANALYSIS

INHIBITOR INTERACTION

CONCLUSIONS

SUBTILISIN-LIKE

Substrate pocket

Substrate Specificity pocket

S1 pocket

INHIBITOR INTERACTION

SUBTILISIN-LIKE

Substrate pocket

SUBTILISIN-LIKE proteins superimposition

Sc 9.26 RMS 0.54

Multiple Sequence Alignment SUBTILISIN-LIKE proteins by structure

Subtilisin_BPN Bacillus_lentus Subtilisin_Savinase Subtilisin_Carlsberg Subtilisin_NAT	VPYGVSQIKAPALHSQGYTGSNVKVAVIDSGIDSSHPDLNVAGGASFVPSETNPFQD AQSVPWGISRVQAPAAHNRGLTGSGVKVAVIDGIST-HPDLNIRGGASFVPGEPST-QD AQSVPWGISRVQAPAAHNRGLTGSGVKVAVIDGIST-HPDLNIRGGASFVPGEPST-QD AQTVPYGIPLIKADKVQAQGFKGANVKVAVIDGIQASHPDLNVVGGASFVAGE-AYNTD AQSVPYGVSQIKAPALHSQGYTGSNVKVAVIDGIJSSHPDLKVAGGASMVPSETPNFQD	Asp 32	
Subtilisin_BPN Bacillus_lentus Subtilisin_Savinase Subtilisin_Carlsberg Subtilisin_NAT	NNSHGTHYAGTVLAVAPSASLYAVKVLGADGSGQYSWIINGIEWAIANNMD GNGHGTHYAGTIAALNNSIGVLGVAPSAELYAVKVLGASGSGSVSSIAQGLEWAGNNGMH GNGHGTHYAGTIAALNNSIGVLGVAPSAELYAVKVLGASGSGSVSSIAQGLEWAGNNGMH GNGHGTHYAGTVAALDNTTGVLGVAPSVSLYAVKVLNSSGSGSYSGIVSGIEWATTNGMD DNSHGTHYAGTVAALNNSIGVLGVAPSSALYAVKVLGDAGSGQYSWIINGIEWAIANNMD	His 64	
Subtilisin_BPN Bacillus_lentus Subtilisin_Savinase Subtilisin_Carlsberg Subtilisin_NAT	VINMSLGGPSGSAALKAAVDKAVASGVVV/AAAGNIGTSGSSSTVGYPGPYPSVIAVGAV VANLSLGSPSPSATLEQAVNSATSRGVLV/AASGNIGAGSISYPAPYANAMAVGAT VANLSLGSPSPSATLEQAVNSATSRGVLV/AASGNIGAGSISYPAPYANAMAVGAT VINMSLGGASGSTAMKQAVDNAYARGVVV/AAAGNIGNSGSTNTIGYPAKYDSVIAVGAV VINMSLGGPSGSAALKAAVDKAVASGVVV/AAAGNIGSTGSSSTVGYPGKYPSVIAVGAV	Asn 155	
Subtilisin_BPN Bacillus_lentus Subtilisin_Savinase Subtilisin_Carlsberg Subtilisin_NAT	DSSNQRASFSSVGPELDVMAPGVSIVSTLPGNKYGAKSG AIASPHVAGAAALILSKHPN DQNNNRASFSQYGAGLDIVAPGVNVQSTYPGSTYASLNG SIATPHVAGAAALVKQKNPS DQNNNRASFSQYGAGLDIVAPGVNVQSTYPGSTYASLNG SIATPHVAGAAALVKQKNPS DSNSNRASFSSVGAELEVMAPGAGVYSTYPTNTYATLNG SIASPHVAGAAALILSKHPN DSSNQRASFSSVGPELDVMAPGVSIQSTLPGNKYGAYNG SIASPHVAGAAALILSKHPN	Ser 221	
Subtilisin_BPN	WTNTQVRSSLENTTTKLGDSFYYGKGLINVEAAAQALAL	Catalytic	: triad
Bacillus_lentus Subtilisin_Savinase	WSNVQIRNHLKNIATSLGSTNLYGSGLVNAEAATR WSNVQIRNHLKNTATSLGSTNLYGSGLVNAEAATR	📃 Oxyanio	n hole
Subtilisin_Carlsberg Subtilisin_NAT	LSASQVRNRLSSTATYLGSSFYYGKGLINVEAAAQ WTNTQVRSSLQNTTTKLGDSFYYGKGLINVQAAAQ	Substrat	e specificity pocket

SUBTILISIN-LIKE proteins Clusters

INTERACTION WITH AN INHIBITOR

Interaction of a trypsin-like protease with an inhibitor

04

CONCLUSIONS

ЭH

ЭH

Boronic acids inhibitors \rightarrow transition state analogs

gamma-chymotrypsin L-para-chloro-1-acetamido boronic acid inhibitor complex

PDB: 1VGC

Own source

 $Ki = 1.20 \pm 0.05 \,\mu M$

CONCLUSIONS

CONCLUSIONS

Substrate specificity pocket

CONCLUSIONS

Catalytic mechanism

Molecule of water

As we saw before...

05 CONCLUSIONS

SEQUENCE - STRUCTURE - FUNCTION RELATIONSHIP

Both are serine proteases

Common ancestor

06 RESEARCH RESOURCES

- Barrett, Alan J., J. Fred Woessner, and Neil D. Rawlings, eds. Handbook of Proteolytic Enzymes, Volume 1. Vol. 1. Elsevier, 2012.
- Hedstrom, Lizbeth. "Serine protease mechanism and specificity." Chemical reviews 102.12 (2002): 4501-4524.
- Shinde, Ujwal, and Gary Thomas. "Insights from bacterial subtilases into the mechanisms of intramolecular chaperone-mediated activation of furin." Proprotein Convertases (2011): 59-106.
- Ma, Wenzhe, Chao Tang, and Luhua Lai. "Specificity of trypsin and chymotrypsin: loop-motion-controlled dynamic correlation as a determinant." Biophysical journal 89.2 (2005): 1183-1193.
- Prilusky, Jaime, Eran Hodis, and Joel L. Sussman. "Proteopedia: Exciting advances in the 3D encyclopedia of biomolecular structure." Macromolecular Crystallography. Springer, Dordrecht, 2012. 149-161.
- Perona, John J., and Charles S. Craik. "Structural basis of substrate specificity in the serine proteases." Protein Science 4.3 (1995): 337-360.
- Papaleo, Elena, Piercarlo Fantucci, and Luca De Gioia. "Effects of calcium binding on structure and autolysis regulation in trypsins. A molecular dynamics investigation." Journal of chemical theory and computation 1.6 (2005): 1286-1297.

- Polgár, László. "The catalytic triad of serine peptidases." Cellular and molecular life sciences CMLS 62.19 (2005): 2161-2172.
- Pulido, Marian, et al. "Ca2+-dependent maturation of subtilisin from a hyperthermophilic archaeon, Thermococcus kodakaraensis: the propeptide is a potent inhibitor of the mature domain but is not required for its folding." Applied and environmental microbiology 72.6 (2006): 4154-4162.
- Stoll, Vincent S., et al. "Differences in binding modes of enantiomers of 1-acetamido boronic acid based protease inhibitors: crystal structures of γ-chymotrypsin and subtilisin Carlsberg complexes." Biochemistry 37.2 (1998): 451-462.
- Yang, Wenqian, Xingming Gao, and Binghe Wang. "Boronic acid compounds as potential pharmaceutical agents." Medicinal research reviews 23.3 (2003): 346-368.
- SCOP
- MEROPS

PDBs

Approach	PDBs
Chymotrypsin activation: MSA and superimposition	1ab9 - Chymotrypsin (bovine) 1chg - Chymotrypsinogen (bovine)
Sequence and structure analysis: MSA by sequence trypsin-like proteins	1c1m - Elastase (porcine) 1sgt - Trypsin (S. griseus) 1spj - Kallikrein (human) 2any - Chymotrypsinogen A (human) 2zgc - Granzyme M (human) 4xde - Coagulation factor XII (human)
Sequence and structure analysis: MSA by sequence subtilisin-like proteins	1af4 - Subtilisin Carlsberg (B. licheniformis) 1ndq - Bacillus lentus subtilisin (L. lentus) 1sbt - Subtilisin NAT (B. amyloliquefaciens) 1sua - Subtilisin BPN (B. amyloliquefaciens) 6y5t - Subtilisin Savinase (L. lentus)

PDBs

Approach	PDBs
Structure analysis: trypsin-like folding	1sgt - Trypsin (S. griseus) 1ab9 - Chymotrypsin (bovine) 1c1m - Elastase (porcine)
Structure analysis: subtilisin-like folding	1sbt - Subtilisin NAT (B. amyloliquefaciens)
Interaction with inhibitor: superimposition	1vgc - Chymotrypsin with inhibitor (bovine) 2gch - Chymotrypsin (bovine)

THANKS

Does anyone have any question?

PEM QUESTIONS

1. Which of the following statements about serine proteases classification according to MEROPS are true:

- 1. The words "clan" and "superfamily" can be used as synonyms.
- 2. The serine proteases are characterized by using a serine alcohol for their catalytic function.
- 3. S8 is a name of a family from the SB clan, which corresponds to serine proteases.
- 4. The MEROPS database distinguishes different types of proteases based on the structure of the proteases.

a) 1, 2 and 3

- b) 1 and 3
- c) 2 and 4
- d) 4
- e) 1, 2, 3 and 4

2. Which of the following statements are false?

- a) Serine proteases break peptide bonds thanks to the presence of a serine residue in the active site
- b) Serine proteases work by stabilizing the transition state which in turn brings down the activation energy.
- c) a) and b) are false.
- d) Serine proteases are only present in prokaryotes.
- e) All the above are false.

3. Which of the followings statements about serine proteases is true:

- 1. The catalytic triads in trypsin-like and subtilisin-like proteases are conformed by the same three residues (histidine aspartic acid and serine), although they present differences in the amino acid sequence.
- 2. The oxyanion hole is a region implicated in the stabilisation of the tetrahedral intermediate.
- 3. The negatively charged oxygen atom from the scissile bond forms two hydrogen bonds with the amides of the two residues conforming the oxyanion hole.
- 4. Differences in the amino acid conservation of the catalytic triad between trypsin-like and subtilise-like are an example of homology.
- a) 1, 2 and 3
- b) 1 and, 3
- c) 2 and 4
- d) 4
- e) 1, 2, 3 and 4

4. Which of these statements about the activation of serine proteases is false:

- a) All trypsin-like proteases are synthesized as proteases.
- b) Chymotrypsin activates proelastase.
- c) The mechanism is preserved among the mammalian trypsin-like proteases.
- d) A formation of a salt bridge is required.
- e) All the above are false.

5. Which of the following statements about the activation of serine proteases is true:

- a) Glycine 193 is not part of the oxyanion hole of chymotrypsin.
- b) Elastase is not secreted as a zymogen.
- c) α-Chymotrypsin is inactive.
- d) The processing of trypsinogen into trypsin changes the conformation of the oxyanion hole.
- e) All the above are true.

6. Which of the following statements about the trypsin-like folding is true:

- 1. Trypsin-like serine proteases are all-alpha proteins.
- 2. Trypsin-like serine proteases do NOT have beta barrels.
- 3. Trypsin-like serine proteases only have one domain.
- 4. The catalytic triad in trypsin-like proteases is located between the two domains that these proteins have.
- a) 1, 2 and 3
- b) 1 and, 3
- c) 2 and 4
- d) 4
- e) 1, 2, 3 and 4

7. Which option is true:

- a) Disulfide bonds are important to maintain the structure of trypsin-like serine proteases, for this reason there are some conserved disulfide bonds.
- b) Some residues into the S1 pocket are different in chymotrypsin and trypsin and it confers specificity of substrate to each serine protease.
- c) There is a conserved disulfide bond that contributes to the structure of the S1 pocket
- d) S1 pocket is located near the catalytic triad.
- e) All of them are true.

8. Which of the following statements about the subtilisin-like proteins is true:

- 1. Subtilisins are considered alpha/beta/alpha proteins.
- 2. The amino acids that form the oxyanion hole in trypsin-like proteins and subtilisin-like proteins are the same (Gly193 and Ser195).
- 3. Subtilisin-like proteins and trypsin-like proteins have a calcium-binding loop.
- 4. Subtilisins are classified as glutamic proteases.
- a) 1, 2 and 3
- b) 1 and, 3
- c) 2 and 4
- d) 4
- e) 1, 2, 3 and 4

9. According to boronic acids and serine proteases complexes, choose which of the followings statements is false:

- a) The complex of a chymotrypsin with a boronic acid showed big changes in the structure conformation of the oxyanion hole.
- b) Boronic acids can form tetrahedral boronate complexes.
- c) Boronic acids are transition-state analogues of serine proteases.
- d) One of the hydroxyl groups of the boron interacts with the oxyanion hole, while the other is involved in the formation of the transition state conformation.
- e) None all the above.

10. A superimposition between different serine-proteases from the same family and different species:

- a) Will have a score lower than 5.5 and a RMSD value higher than 2
- b) Will have a score between 5.5 and 9.8 and a RMSD value higher than 2
- c) Will have a score between 5.5 and 9.8 and a RMSD value lower than 2
- d) Will have a score higher than 9.8 and a RMSD value lower than 2
- e) Will have a score lower than 5.5 and a RMSD value higher than 9.8