

Photosynthetic reaction center from *Rhodopseudomonas viridis*

 $\bullet \bullet \bullet$

Mar Talens Pau Torren Clàudia Valenzuela Júlia Valls María Vega

> 4° Human Biology Structural Biology

INDEX

- Introduction
 - Purple bacteria and Rhodopseudomonas viridis
 - Applications of purple bacteria
- Structure organisation
 - Subunits
 - Arrangement of cofactors
 - Light harvesting complex
- Functional overview
 - Function of Photosynthetic reaction center and chemical processes behind it
- Interactions
- Evolutionary aspects:
 - Relationship with photosystem II
 - Homology with other bacteria

INTRODUCTION

PURPLE BACTERIA

Purple bacteria are **gram-negative phototrophic** bacteria, pigmented with bacteriochlorophyll *a* or *b*, together with various carotenoids, which give them colours ranging between purple, red, brown, and orange.

TAXONOMY

Genus Blastochoris

Family Blastochloridaceae

Order Hyphomicrobacteria

Class Alphaproteobacteria

Phylum Proteobacteria

Species

Blastochloris viridis = Rhodopseudomonas viridis

Which applications might have purple bacteria?

New, efficient and economic methods to **treat water**

- Removal of macro-pollutants
- Removal of heavy metals

Purple bacteria

Photo from: <u>https://cutt.ly/bzcacQY</u> Public Domain Versatile metabolism

Survive in restraining conditions

STRUCTURAL ORGANISATION

Photosynthetic reaction center

Resolution: 2,9Å

Introduction	Structural organisation	Functional overview	Interactions	Evolutionary aspects
Co-factors				
Heme mole	cules (x4)		THE S	
Bacterioch	orophyll b (x4)]	33	
Bacteriophe	eophytin b (x2)			
Carotenoid	(x1)	Core	31624	
Non-heme i	iron (x1)		F.F.F.	
Quinones (x	(3)	t t		jong- y
			The second	

H subunit

Structural regions

- N-terminal segment contains a transmembrane helix
- **Globular domain** contains antiparallel β sheets

Secondary structure

Introduction	Structural organisation	Functional overview	Interactions	Evolutionary aspects
Ц cubunit		chain H 1 MYHGALAC	\HLD <mark>IAQLVWYAQWLV</mark>	/ IWTVVLLYLRRE
		chain H 36 DRREGYPL	VEPLGLVKLAP <mark>EDGC</mark>	VYELPYPKTFVL
		chain H 71 PHGGTVTV	PRRRPETRELK LAQ	DGFEGAPLQPTG
N-terminal segn	nent	chain H 106 NPLVDAVG	SPASYAERAEVVDATV	DGKAKIVPLRVA
- 0		chain H 141 TDFSIAEC	GDVDPRGLPVVAADGV	EAGTVTDLWVDR
A TI				CLEDKVSATTAGG
				B-sheet
			N-terminal s	segment.
			Transmembr	ane helix
				ane nenz.
7 1			IIERIZ - As	ырпро
~ ~ ~	K MAAAAA			
E-P				
1				
	5			

Introduction

L subunit

Co-factors Bacteriochlorophyll-b Bacteriopheophytin-b Quinone

chain L	1	AL	L S I	ER	KY	RV	RG	GΤ	L I	GGE	LF	DF	WV	G P	′ F <mark>V</mark>	/ G F	FG	V S	ΑI	FF	ΙFL	GV	S L	ΙG	YA	ASQ
chain L	56	GP	TWI	D P F	AI	SI	NP	PD	LK	YGL	GA	AP	LL	EGO	FW	VQA	ΙT	VC	ALO	GAI	= I S	SWM	LR	EV	ΕI	SRK
chain L	111	LG	I G	VHV	P L	AF	CV	ΡI	FΜ	FC۱	/LQ	VF	RP	LLL	GS	SWG	ΗA	FΡ	YG	ILS	SHL	DW	VN	NF	GY	QYL
chain L	166	NW	HYI	NPC	ίΗМ	SS	VS	FL	FV	NAM	1A L	GL	HG	GLI	LS	S V A	NP	GD	GDI	K V ł	KT A	A E H	ΕN	QY	FR	DVV
chain L	221	GY	S I	GAL	SI	HR	LG	LF	LA	SN 1	FL	TG	AF	GTI	AS	G P	FW	T R	GW	PEV	w	SWW	LD	ΙP	FW	S

M subunit

Co-factors Bacteriochlorophyll-b Bacteriopheophytin-b Quinone Non - heme iron Carotenoid

chain M	1	A DYQTIYTQIQARGPHITVSGEWGDNDRVGKPFYSYWLGKIGDAQIGPIYLGASG
chain M	56	<mark>I A A F A F G S T A I L I I L F NMA A E V</mark> H F <mark>D P L Q F F R Q F F W L</mark> G L Y P P K A Q Y G M G I P <mark>P L H D G</mark>
chain M	111	GWWLMAGLFMTLSLGSWWIRVYSRARAL <mark>GLG</mark> THIAWNFAAAIFFVLCIGCIHPTL
chain M	166	<mark>V G S W S E G</mark> V P F <mark>G I W P H I D W L T A F S I R Y</mark> G <mark>N F Y Y C P W H G F S I G F A Y G C G L L F A A H G A T</mark>
chain M	221	<mark>I L A V A R F G</mark> G D <mark> R E I E Q I T D</mark> R G T A V E R A A L F W R W T I G F N A T I <mark>E S V H R W G W F F S L M V M</mark>
chain M	276	<mark>V S A S V G I L L T</mark> G T F V D <mark>NWY LWC V K H</mark> G A A P D Y P A Y L P A T P <mark>D P A S L</mark> P G A P K

Subunits L-M: Core complex

Secondary structure

10 membrane-spanning alpha helices

Helices cross each other in an X shape

C subunit: Cytochrome

chain C -19 MKQLIVNSV	ATVALASLVAGCFEPPPATTTQTGFRGLSMGEVLHPATVKA	Helix
chain C 31 KKERDAQYP	PALAAVKAEGP <mark>PVSQVY</mark> KNVKVLGNL <mark>TEAEFLRTMTAITEW</mark>	β -she
chain C 81 VSPQEGCTY	CHDENNLASEA <mark>KYPYVVARRMLEMTRAINTNWTQHVA</mark> QTGV	
chain C 131 TCYTCHRGT	PLPPYVRYLEPTLPLNNRETPTHVERVE <mark>TRSGYVVRLAKYT</mark>	
chain C 181 AYSALNYDP	FTMFLANDKRQVRVVPQTALPLVGVS <mark>RGKER</mark> RPLSDAYATF	
chain C 231 A LMMS I SDS	LGTNCTFCHNAQTFESWGKKSTPQRAIAWWGIRMVRDLNMN	
chain C 281 YLAPLNAS L	PASRLGRQGEAPQADCRTCHQGVTKPLFGASRLKDYPELGP	
chain C 331 I KAAAK		

C subunit: Cytochrome

Heme groups are connected to cytochrome cysteines with thioether bonds

CYS: 244, 247, 305, 308, 135, 132, 90, 87

C subunit: Cytochrome

Fe helps to **stabilize the union** between subunit C and heme groups interacting with Histidines.

HIS: 91, 124, 136, 248, 309

Light harvesting complex

17 alpha-polypeptides

17 beta-polypeptides

16 gamma-polypeptides

Light harvesting complex

17 alpha-polypeptides

17 beta-polypeptides

16 gamma-polypeptides

Periplasm Short N-terminal helix Cytoplasm

Light harvesting complex

17 alpha-polypeptides

17 beta-polypeptides

16 gamma-polypeptides

Light harvesting complex

17 alpha-polypeptides

17 beta-polypeptides

16 gamma-polypeptides

N-terminus on periplasm

Gamma-polypeptide gap for quinol exchange

Two BCB and one carotenoid bound between each alpha-beta heterodimer

FUNCTIONAL OVERVIEW

- Which is the function of the Photosynthetic Reaction Center?
- Which are the chemical processes behind the function?

Photosynthetic electron transport

Introduction

Functional overview

Photosynthetic electron transport

- A photon excites an electron of BC_{1 P} 1.
- The excited electron moves to BP, 2.
- The excited electron moves to 3. menaquinone-9
- Two electrons reach the 4. ubiquinone-9 and it becomes protonated
- QBH, dissociates and moves to the 5. Cytochrome b/c1 protein
- There the electrons and protons are 6. transferred outside the membrane to generate a proton gradient and synthesize ATP

Photoexcitation

INTERACTIONS

- Which interactions take place between cofactors and the core complex subunit in order to develop their function?
- Which are the fundamental interactions that cause unidirectional transport?
- Which interactions allow the transport of the excited electrons?
BCB excitation

- A photon excites an electron of 1. BC_{ID}
- The excited electron moves to BP, 2.
- The excited electron moves to 3. menaquinone-9
- Two electrons reach the 4. ubiquinone-9
- Quinone B is twicely protonated 5.
- QBH, dissociates and moves to the 6. Cytochrome b/c1 protein
- There the electrons and protons are 7. transferred outside the membrane to generate a proton gradient and synthesize ATP

Special pair

- Overlap of the pyrrole rings
- Two-fold symmetry
- Paralel pyrrole rings

Obey the symmetry	Break the symmetry
HIS L173 , M200	ВС_{ма} contacting carotenoid molecule
Accessory BChl-bs rings	Side chains of accessory BChl-bs
H ₂ O molecules h-bonded to HIS and accessory BChl-bs	Subunit H transmembrane helix
Subunits L and M transmembrane helices	

Obey the symmetry	Break the symmetry
HIS L173 , M200	ВС_{ма} contacting carotenoid molecule
Accessory BChl-bs rings	Side chains of accessory BChl-bs
H ₂ O molecules h-bonded to HIS and accessory BChl-bs	Subunit H transmembrane helix
Subunits L and M transmembrane helices	

Obey the symmetry	Break the symmetry
HIS L173 , M200	BC _{MA} contacting carotenoid molecule
Accessory BChl-bs rings	Side chains of accessory BChl-bs
H ₂ O molecules h-bonded to HIS and accessory BChl-bs	Subunit H transmembrane helix
Subunits L and M transmembrane helices	

Symmetry

Obey the symmetry	Break the symmetry
HIS L173 , M200	BC _{MA} contacting carotenoid molecule
Accessory BChl-bs rings	Side chains of accessory BChl-bs
H ₂ O molecules h-bonded to HIS and accessory BChl-bs	Subunit H transmembrane helix
Subunits L and M transmembrane helices	

HIS M200

Obey the symmetry	Break the symmetry
HIS L173 , M200	BC _{MA} contacting carotenoid molecule
Accessory BChl-bs rings	Side chains of accessory BChl-bs
H ₂ O molecules h-bonded to HIS and accessory BChl-bs	Subunit H transmembrane helix
Subunits L and M transmembrane helices	

Obey the symmetry	Break the symmetry
HIS L173 , M200	BC_{MA} contacting carotenoid molecule
Accessory BChl-bs rings	Side chains of accessory BChl-bs
H ₂ O molecules h-bonded to HIS and accessory BChl-bs	Subunit H transmembrane helix
Subunits L and M transmembrane helices	

Symmetry

Obey the symmetry	Break the symmetry
HIS L173 , M200	BC_{MA} contacting carotenoid molecule
Accessory BChl-bs rings	Side chains of accessory BChl-bs
H ₂ O molecules h-bonded to HIS and accessory BChl-bs	Subunit H transmembrane helix
Subunits L and M transmembrane helices	

Subunit M

Obey the symmetry	Break the symmetry
HIS L173 , M200	BC _{MA} contacting carotenoid molecule
Accessory BChl-bs rings	Side chains of accessory BChl-bs
H ₂ O molecules h-bonded to HIS and accessory BChI-bs	Subunit H transmembrane helix
Subunits L and M transmembrane helices	

Obey the symmetry	Break the symmetry
HIS L173 , M200	BC_{MA} contacting carotenoid molecule
Accessory BChl-bs rings	Side chains of accessory BChl-bs
H ₂ O molecules h-bonded to HIS and accessory BChI-bs	Subunit H transmembrane helix
Subunits L and M transmembrane helices	

Obey the symmetry	Break the symmetry
HIS L173 , M200	BC_{MA} contacting carotenoid molecule
Accessory BChl-bs rings	Side chains of accessory BChl-bs
H ₂ O molecules h-bonded to HIS and accessory BChI-bs	Subunit H transmembrane helix
Subunits L and M transmembrane helices	

Protein-pigment interactions

Interactions between:

Nitrogen of histidine L173 with Mg²⁺ of BC_{LP} and Nitrogen of histidine M200 with Mg²⁺ of BC_{MP}

BC_{LP} acetyl group to histidine L168

BC_{MP} acetyl group to tyrosine M195

Protein-pigment interactions

Interactions between:

Nitrogen of histidine L173 with Mg²⁺ of BC_{LP} and Nitrogen of histidine M200 with Mg²⁺ of BC_{MP}

BC_{LP} acetyl group to histidine L168

BC_{MP} acetyl group to tyrosine M195

Protein-pigment interactions

Interactions between:

Nitrogen of histidine L173 with Mg²⁺ of BC_{LP} and Nitrogen of histidine M200 with Mg²⁺ of BC_{MP}

BC_{LP} acetyl group to histidine L168

BC_{MP} acetyl group to tyrosine M195

Protein-pigment interactions

Interactions between:

Nitrogen of histidine L173 with Mg²⁺ of BC_{LP} and Nitrogen of histidine M200 with Mg²⁺ of BC_{MP}

BC_{LP} acetyl group to histidine L168

BC_{MP} acetyl group to tyrosine M195

Protein-pigment interactions

Special pair environment of aromatic residues in direct contact of with its tetrapyrrole rings

Tyrosine L162 located between the special pair and the closest heme group (HE3) of the cytochrome

Protein-pigment interactions

Special pair environment of aromatic residues in direct contact of with its tetrapyrrole rings

Tyrosine L162 located between the special pair and the closest heme group (HE3) of the cytochrome

Introduction

Functional overview

Electron transfer from BCB to BPB

- A photon excites an electron of BC_{IP} 1.
- The excited electron moves to BP 2.
- The excited electron moves to 3. menaquinone-9
- Two electrons reach the 4. ubiquinone-9
- Quinone B is twicely protonated 5.
- QBH, dissociates and moves to the 6. Cytochrome b/c1 protein
- There the electrons and protons are 7. transferred outside the membrane to generate a proton gradient and synthesize ATP

Unidirectional transport

Electrons are transferred from the special pair only to the cofactors of the L chain in an **unidirectional way**

Structural differences of BCB rings:

Deviation from symmetry: M ring more deformed than L ring.

BP_L is 0.5A closer to the special pair than BP_M is.

Unidirectional transport

Structural differences of BCB rings:

Deviation from symmetry. M ring more deformed than L ring.

 ${\rm BP}_{\rm L}$ is 0.5A closer to the special pair than ${\rm BP}_{\rm M}$ is.

Differences in overlap of electron orbitals

Unidirectional transport

Differences in structural order between L and M branches

Phytyl side chains of \mathbf{BC}_{MA} and \mathbf{BP}_{M} are partially disordered at their ends

Carotenoid in M chain also contributes to structural differences.

M-branch is more disordered than the L-branch.

M chain

L chain

Unidirectional transport

Differences between BP, and BP,

BP_M interacts with valine M131, while BP_L interacts with glutamic acid L104, through H-bonds.

Tryptofan **M250** is bound to BP_L and facilitates the electron transmission to QA. The equivalent in chain L is phenylalanine **L216**, with a smaller side chain, so it cannot perform a similar bridging.

Unidirectional transport

Differences between BP_L and BP_M

BP_M interacts with valine M131, while BP_L interacts with glutamic acid L104, through H-bonds.

Tryptofan **M250** is bound to BP_L and facilitates the electron transmission to QA. The equivalent in chain L is phenylalanine **L216**, with a smaller side chain, so it cannot perform a similar bridging.

Unidirectional transport

Differences between BP_L and BP_M

BP_M interacts with valine M131, while BP_L interacts with glutamic acid L104, through H-bonds.

Tryptofan **M250** is bound to BP_L and facilitates the electron transmission to QA. The equivalent in chain L is phenylalanine **L216**, with a smaller side chain, so it cannot perform a similar bridging.

Electron transfer from BCB to BP_L

BCB _{LP}	The phytyl chain is in Van der Waals contact to tetrapyrrole rings of BCB _{LA} and BP _L
	Distance between the special pair and BP _L is close to 10A
BCB _{LA}	Van der Waals contacts with both the special pair and BP
	It is in the middle of the special pair and BP _L , but BP _L is directly reduced.

BCB _{LP}	The phytyl chain is in Van der Waals contact to tetrapyrrole rings of BCB _{LA} and BP _L
	Distance between the special pair and BP _L is close to 10A
BCB _{LA}	Van der Waals contacts with both the special pair and BP
	It is in the middle of the special pair and BP _L , but BP _L is directly reduced.

Electron transfer from BCB to BP_L

BCB _{LP}	The phytyl chain is in Van der Waals contact to tetrapyrrole rings of BCB _{LA} and BP _L
	Distance between the special pair and BP _L is close to 10A
BCB _{LA}	Van der Waals contacts with both the special pair and BP
	It is in the middle of the special pair and BP _L , but BP _L is directly reduced.

BCB _{LP}	The phytyl chain is in Van der Waals contact to tetrapyrrole rings of BCB _{LA} and BP _L
	Distance between the special pair and BP _L is close to 10A
BCB _{LA}	Van der Waals contacts with both the special pair and BP
	It is in the middle of the special pair and BP _L , but BP _L is directly reduced.

Protein environment of the pigments: BPB

BP₁ Hydrogen bonds

Ring V ester carbonyl group and tryptophan L100.

Ring V keto carbonyl oxygen and glutamic acid L104. Unique for the L-branch.

Protein environment of the pigments: BPB

BP_L Hydrogen bonds

Ring V ester carbonyl group and tryptophan L100.

Ring V keto carbonyl oxygen and glutamic acid L104. Unique for the L-branch.

Electron transfer from BCB to BP_L

Protein environment of the pigments: Special pair

Aromatic residues

Neighborhood of BP_L is richer in aromatic residues than that of BP_M

<u>Tryptophan M250.</u> Bridge between BP_L and Q_A

From BP₁ to QA

- A photon excites an electron of BC_{1 P}
- The excited electron moves to BP, 2.
- The excited electron moves to 3. menaquinone-9 (QA)
- Two electrons reach the 4. ubiquinone-9.
- Quinone B is twicely protonated 5.
- QBH, dissociates and moves to the 6. Cytochrome b/c1 protein
- There the electrons and protons are 7. transferred outside the membrane to generate a proton gradient and synthesize ATP

From BP_L to QA (MNQ-9) Quinones. Near the non-heme iron.

Non-heme iron. Bound by five protein side chains:

Two histidines from L chain Two histidines from M chain One glutamic acid from M chain

From BP_L to QA (MNQ-9)

Non-heme iron. Octahedral environment.

Axial ligands

His L230 His M264

Equatorial ligands

His L190 His M217 Glu M232

His L190: binding of Q_B **His M217:** binding of Q_A

/M ALA 216
From BP_L to QA (MNQ-9)

Non-heme iron. Octahedral environment.

Axial ligands

His L230 His M264

Equatorial ligands

His L190 Glu M232

His L190: binding of Q_B **His M217:** binding of Q_A

From BP_L to QA (MNQ-9)

Quinone A (MNQ-9)

Head group bound in a hydrophobic pocket.

Carbonyl oxygens bound to -NH of Ala M258 and N6 of His M217

From BP_L to QA (MNQ-9)

Quinone A (MNQ-9)

Trp M250 is part of the QA'S binding pocket and participates in the electron transfer

From BP₁ to QA (MNQ-9)

Isoprenoid side chain of QA is folded along the surface of the L-M complex QA binding pocket is well shielded from the cytoplasm by the globular domain of the H-subunit

From QA to QB

- A photon excites an electron of BC_{1 P}
- The excited electron moves to BP, 2.
- The excited electron moves to 3. menaquinone-9
- Two electrons reach the 4. ubiquinone-9
- Quinone B is twicely protonated. 5.
- QBH, dissociates and moves to the 6. Cytochrome b/c1 protein
- There the electrons and protons are 7. transferred outside the membrane to generate a proton gradient and synthesize ATP

From QA to QB

Hydrogen bonds to Histidine L190, Serine L223 and glycine L225

Phe L216 forms a significant part of the QB binding pocket

From QB⁻⁻ to QBH,

- A photon excites an electron of BC_{1 P}
- The excited electron moves to BP, 2.
- The excited electron moves to 3. menaquinone-9
- Two electrons reach the 4. ubiquinone-9.
- Quinone B is twicely protonated 5.
- QBH, dissociates and moves to the 6. Cytochrome b/c1 protein
- There the electrons and protons are 7. transferred outside the membrane to generate a proton gradient and synthesize ATP

From QB^{--} to QBH_2

QB is twicely protonated and transferred to cytochrome bcl.

QB site: polar nature Bottom is formed to a large part by the side chain of Glu L212.

Protons' path: Cytoplasm → Glu L212 → QB From QB⁻⁻ to QBH₂

Rhodobacter sphaeroides

First proton transfer:

Asp H124 \rightarrow His H126 \rightarrow His H128

Asp L210 \rightarrow Asp L213 \rightarrow Ser L223

Second proton transfer:

Involves glutamic L212

From QB⁻⁻ to QBH,

- A photon excites an electron of BC_{1 P}
- The excited electron moves to BP, 2.
- The excited electron moves to 3. menaquinone-9
- Two electrons reach the 4. ubiquinone-9.
- Quinone B is twicely protonated 5.
- QBH, dissociates and moves to the 6. Cytochrome b/c1 protein
- 7. There the electrons and protons transferred outside the are membrane to generate a proton gradient and synthesize ATP

EVOLUTIONARY ASPECTS

- How are chains M and L related?
- Is the Reaction Center of *Rhodopseudomonas viridis* related to the reaction center of Plants photosystem II?
- Are the Reaction Center of *Rhodopseudomonas viridis* sequences conserved among Purple Bacteria and other Photosynthetic bacteria?

Evolutionary theory of heterodimeric RC

Photosynthetic reaction centers have a **heterodimeric arrangement** with two subunits.

- 1. Monomeric ancestor
- 2. Gene duplication and dimerization
- 3. Divergence
- 4. Heterodimeric complex

Two potential electron transfer pathways

Subunits L-M: Core complex

Sequence alignment

CLUSTAL 2.1	multiple sequence alignment
1prcL	-ALLSFERKYRVRGGTLIGGDLFDFWVGPYFVGFFGVSAIF
1ргсМ	ADYQTIYTQIQARGPHITVSGEWGDNDRVGKPFYSYWLGKIGDAQIGPIYLGASGIAAFA :: : :.** . :* :::*:* * ::* *::*:
1prcL	FIFLGVSLIGYAASQGPTWDPFAISINPPDLKYGLGAAPLLEGGFWQAITVCA
1ргсМ	<pre>FGSTAILIILFNMAAEVHFDPLQFFRQFFWLGLYPPKAQYGMGIPPLHDGGWWLMAGLFM * .: :* : :** * :: **. :**:* .** :**:* :*</pre>
1prcL	LGAFISWMLREVEISRKLGIGWHVPLAFCVPIFMFCVLQVFRPLLLGSWGHAFPYGILSH
1ргсМ	TLSLGSWWIRVYSRARALGLGTHIAWNFAAAIFFVLCIGCIHPTLVGSWSEGVPFGIWPH :: ** :* . :* **:* *:. ***:. : ::* *:****:** .*
1prcL	LDWVNNFGYQYLNWHYNPGHMSSVSFLFVNAMALGLHGGLILSVANPGDGDKV
1ргсМ	IDWLTAFSIRYGNFYYCPWHGFSIGFAYGCGLLFAAHGATILAVARFGGDREIEQITDRG :**:. *. :* *::* * * *:.* : .: :. **. **
1prcL	KTAEHENQYFRDVVGYSIGALSIHRLGLFLASNIFLTGAFGTIASGPFWTRGWPEWWGWW
1prcM	TAVERAALFWRWTIGFNATIESVHRWGWFFSLMVMVSASVGILLTGTFVDN-WYLWCVKH .:.*: ::* .:*:. *:** * *:: ::::.* : :*.* * *
1prcL	LDIPFWS
1prcM	GAAPDYPAYLPATPDPASLPGAPK * :.

Introduction

Functional overview

Core complex: L - M superimposition

RMSD: 1.28 Nfit: 225 1% 29.22

1PRC Deisenhofer, J., et al

Photosystem reaction center origin

- Photosystem II of plants contains two homologous proteins D1 and D2
- Photosynthetic reaction center of purple bacteria contains two homologous proteins L and M

L and D1 alignment

Amino acids important for the function:

- histidine173: ligand to the Mg2+ of the special pair
- L: **Phe216 i** D1: **Phe255** binding to Q_B

Amino acids properties are more conserved than the sequence, which may lead to convergent evolution.

1prcL D1	ALLSFERKYRVRGGTLIGGDLFDFWVGPYFVGFFGVSAIFFIFLGVSLIGY MTAILERRESTSLWGRFCNWITSTENRLYIGWFGVLMIPTLLTATSVFIIAFIAAPPVDI
	: : * * * . *: *.* :: :*.::: *: :.
1prcL D1	AASQGPTWDPFAISINPPDLKYGLGAAPLLEGGFWQAITVCAL DGIREPVSGSLLYGNNIISGAIIPTSAAIGLHFYPIWEAASVDEWLYNGGPYELIVLHFL
	.:*: . ** ** * * :**::*.: *
1prcL D1	GAFISWMLREVEISRKLGIGWHVPLAFCVPIFMFCVLQVFRPLLLGSWGHAFPYGILSHL LGVACYMGREWELSFRLGMRPWIAVAYSAPVAAATAVFLIYPIGQGSFSDGMPLGISGTF
	:* ** *:* :**: :.:*:*: .: :: *: ***::* ** . :
1prcL D1	DWVNNFGYQYLNWHYNPGHMSSVSFLFVNAMALGLHGGLILSVANP NFMIVFQAEHN-ILMHPFHMLGVAGVFGGSLFSAMHGSLVTSSLIRETTENESANEGYRF ::: * :: :* ** .*: :* .:: .:**.*: * **
1prcL D1	GDGDKVKTAEHENQYFRDVVGYSIGALSIHRLGLFLASNIFLTGAFGTIASG GQEEETYNIVAAHGYFGRLIFQYASFNNSRSLHFFLAAWPVVGIWFTALGISTMAFNLNG *: :: : ** :: : * :***: * :*:* *
1prcL D1	PFWTRGWPEWWGWWLDIPFWS FNFNQSVVDSQGRVINTWADIINRANLGMEVMHERNAHNFPLDLAAVEVPSTNG :.:. : * * ** :

M and D2 alignment

Amino acids important for the function:

- histidine200: ligand to the
 Mg2+ of the special pair
- M: **Trp 250** i D2: **Trp254** binding to Q_A

Amino acids properties are more conserved than the sequence, which may lead to convergent evolution.

1.1.1.1.1.1.1.1.1	
1prcM	ADYQTIYTQIQARGPHITVSGEWGDNDRVGKP-FYSYWLGKIGDAQIGPIYLGASGIA-A
D2	-MTTATGKEAKEENDLEDTMDDWLRRDREVEVGWSGLLLEPCAYEALGGWETGTTEVTSW
	.** +* . * .* .*
1prcM	EAEGSTATLITLENMAAEVHEDPLOEEROEEWLGLYPPKAOYGMGIPPLHDGGWWLMAGL
D2	VTHCLASSVI ECONELTAAVSTPANSLAHSLIL - LWCDEAOCDETP-WCOLCCLWTEVAL
02	
1prcM	EMTLSLGSWWIRVYSRARALGLGTHTAWNFAAATEEVLCIGCTHPTLVGSWSEGVPEGTW
D2	HCAECI TCEMI DOEEI ADSVOI DDVNATAESCOTAVEVSVEI TVDI COSCUEEADSECVA
02	
1prcM	PHIDWLTAESIRYGNEYYCPWHGESIGEAYGCGLLEAAHGATILAVAREGGDRE
D2	ATERETI FEOGREHNWITT NREHMMGVAGVI GAALL CATHGATVENTI FEOGREANTERAF
02	
1prcM	IEOITDRGTAVERAALEWRWTIGENATIESVHRWGWEESLMVMVSASVGILLTGTE
D2	
02	
	VDNWYLWCVKHGAAPDPOAYLPATPDPASLPGAPK-
02	Ι ΡΑΥΔΕΥΣΩΕΤΡΑΔΕΩΡΕΕΕΤΕΥΤΚΝΤΙ Ι ΝΕΩΤΡΑΜΜΑΔΩΩΩΡΗΕΝΙ ΤΕΡΕΕΥΙ ΡΡΩΝΑΙ
02	
1	

Introduction	Structural organisation	Functional overview	Interactions	Evolutionary aspects
Homology M			1 Rhoo 2 Ru 3 Rh 4 Allo	dopseudomonas viridis ubrivivax_gelatinosus odospirillum_rubrum ochromatium_vinosum
			5 Rhc	odobacter_sphaeroides
			6 R05	eopacter_dentmicans
206 208 210 212 214 216	218 220 222 224 226 228 230 2	232 234 236 238 240 242 244	246 248 250 252 254 256 258	260 262 264 266 268 270 272
WHGFSIGFAYGC	GLLFAAHGATILAV	ARFGGDREIEQITD	RGTAVERAALFWRW	TIGFNATIESVHR

-23456

 3
 208
 210
 212
 214
 216
 218
 220
 222
 224
 226
 230
 232
 234
 236
 238
 240
 242
 244
 246
 248
 250
 252
 254
 256
 258
 260
 262
 264
 266
 268
 270
 272

 H
 S
 F
 S
 I
 G
 F
 A
 H
 G
 A
 T
 L
 A
 V
 A
 F
 G
 D
 R
 I
 D
 R
 T
 D
 R
 T
 D
 R
 T
 T
 D
 R
 T
 D
 R
 R
 N
 N
 T
 T
 E
 S
 I
 A
 D
 R
 G
 T
 A
 T
 E
 S
 I
 A
 D
 R
 G
 T
 A
 T
 T
 E
 S
 I
 A
 D
 R
 G
 T
 A
 A
 T
 T
 E
 S
 I
 A
 D
 R
 G

Histidine M200

Histidine M217 Glutamic acid M232 Tryptophan M250 Alanine M258 Histidine M264

Homology M

Rhodopseudomonas viridis
 2 Rubrivivax_gelatinosus
 3 Rhodospirillum_rubrum
 4 Allochromatium_vinosum
 5 Rhodobacter_sphaeroides
 6 Roseobacter_dentrificans

Histidine M200 Histidine M217 Glutamic acid M232

Tryptophan M250 Alanine M258 **Histidine M264**

Introduction	Structural organisation	Functional overview	Interactions	Evolutionary aspects
Homology M			1 Rho o 2 Ru 3 Rh	dopseudomonas viridis ubrivivax_gelatinosus iodospirillum_rubrum
			4 Alic 5 Rhc 6 Ros	ochromatium_vinosum odobacter_sphaeroides seobacter_dentrificans
206 208 210 212 214 216	218 220 222 224 226 228 230 2	32 234 236 238 240 242 244 :	246 248 250 252 254 256 258	260 262 264 266 268 270 27
WHGFSIGFAYGC	GLLFAAHGATILAV	ARFGGDREIEQITD	RGTAVERAALIWRW	TIGFIATIESVHF
FHALSIAFLYGA	TLLFAMHGATILAV	SRFGGERELEQIAD	RGTASERAQLEWRW	TMGFIATTESIHF
EHMLSIAFLYGS	ALLSAMHGATILAV	SRLGGDREVEOITD	RGTAAERAALEWRW	TMGENATMESIHE

E

Histidine M200 Histidine M217 Glutamic acid M232

GSV

GG

Tryptophan M250 Alanine M258 Histidine M264

GDR

	Int	roc	duc	ctic	on					St	ruo	ctι	ıra	il o	rga	an	isa	itic	'n		F	ur	JC.	tio	na	al c	vve	ervi	ev	V				Ir	nte	ra	cti	on	5				E	vol	uti	ion	ar	y as	spe	ect	S
	Ho)II	10		08	<u>s</u> y																																1 2 4 F	Rho 2 Al 3 I Rho 5 R 6 R	loc Rul do ho	o ps hrc oriv pse dok	eu riva uc ac	i do ati ax g don cter ter	mo yela nor r sp dei	vir vir nas he ntri	s vi nosu osu pal roic fica	ridi um ust les ans	i s ris			
110	112	114	11(5 1	18	120	1	22	12	4	126	12	8	130	13;	2 1	34	136	1:	38	140	14	42	144	1.	46	148	15	0	152	15	54	156	15	8 1	60	162	1	64	166	16	8	170	17:	2 1	74	176	17	8 1	80	182
LF	E	E	IS	R	K L	G	I	G V	V H	١V	PI	LA	F	CI	V P	I	FM	1 F	CI	/ L	Q	VF	R	P	LI	LL	G	SW	G	Н	AF	= p	Y	GI	L	SH	I L	DV	vv	N	NF	G	Y	QY	L	NW	I H	YN	P	G H	М
LF	Е	Έ	I C	R	κL	G	I	G F	E H	ł I	P	FA	F	AF	FA	I	G A	Y	L	/ L	V	٧V	/ R	P	II	LM	G	AW	G	н	GF	= p	Y	GΙ	L	SH	I L	DV	vv	S	N V	G	Y	QF	L	H F	н	ΥN	P	A H	М
LF	E	Έ	I C	R	K L	G	M	QY	(H	I V	Р	I A	. F	SI	FA	I	LA	Y	V T	L	V	VI	R	P	II	L M	G	AW	G	н	GF	= p	Y	GΙ	F	S H	I L	DV	vv	S	N V	G	Y	QΥ	L	ΗF	н	ΥN	P /	A H	м
LF	E	E E	I C	R	K L	G	I	G F	H	I V	P	FA	. F	SF	FA	I	FA	Y	V T	L	V	VI	R	. P	V I	LM	G	SW	I S	Y	GF	= p	Y	GI	F	TH	I L	DV	vv	S	NT	G	Y	S Y	G	QF	н	YN	P /	A H	м
LF	E	E E	I C	R	K L	G	I	GΥ	(H	ł I	PI	FA	F	AF	FΑ	I	LA	Y	L T	L	V	LF	R	. P	VN	MM	G	AW	G	Y	AF	= p	Y	GI	W	TH	I L	DV	٧V	S	ΝT	G	Y	ΤY	G	NF	н	YN	P /	AH	М
LF	E	/ E	I C	R	K L	G	M	G Y	(H	V	P	FG	F	A /	AA	Ι	IA	Y	MT	L	V	IF	R	. P	LI	LM	G	AW	G	н	GF	= P	Y	G I	F	SH	I L	DV	VV	S	NV	G	Y	AY	L	HF	H	YN	P	AH	М

Glutamic L104

Tyrosine L162 Histidine L168 Histidine L173 Histidine L190 Asparatic L210

		ntı	roc	duc	ctio	on Structural organisation F													ur	າct	io	na	l o'	vei	rvi	ew	/				Ir	nte	rac	tic	ons	5				E١	/ol	uti	ion	ar	y a	sp	ec	ts					
	Homology L															2	1 I 2 4 R !	Rha 2 All 3 F hoo 5 Rl 5 R	do Ruk dop hoc	hro briv ose dob	eu iva ud act	doi atiu ax g lom cter ter	mo um jela nor sp de	na vir itin ias he ntri	s vi Iosi Osi pal roic ifica	i rid um ust ust des ans	is Tris																										
110	11	12	114	11	6	118	120	1	22	12	24	126	5 1	28	130	1	32	134	136	1	38	140	14	2	144	14	6	148	150	0 1	152	15	4	156	158	3 10	60	162	16	4	166	168	8	170	17	2 1	74	176	17	78	180	18	32
L	RE	v	E	IS	R	K L	G	I	GV	NH	ΗV	P	L	AF	C	VI	ΡI	FM	1 F	C	/ L	Q	VF	R	P	LL	. L	GS	s w	G	H A	A F	Р	Y	G I	LS	5 H	LI	D W	v v	NI	NF	C	Y	2 Y	L	NN	/ н	YN	I P	G	H N	1
L	RE	V	Е	I C	R	K L	G	I	G	FH	I I	P	F	AF	A	F /	A I	GA	Y	L	/ L	V	v v	R	Р	IL	. M	G A	W	G	н	GF	Р	Y	G I	LS	5 H	LI	DW	V	SI	N V	¢	Y	2 F	L	H F	i H	YN	I P	A	H M	1
L	RE	V	Е	I C	R	K L	G	М	Q	YF	+ V	P	I	A F	S	F/	A I	LA	Y	V	r L	V	VI	R	Р	I L	. M	G A	W	G	H	GF	Р	Y	G I	F S	5 H	LI	DW	V V	SI	N V	¢	Y	2 Y	L	H F	H	YN	I P	A	I M	1
L	R E	V	Е	I C	R	K L	G	Ι	GI	FH	+ V	P	F	AF	S	F /	ΑI	FA	Y	V	r L	V	V I	R	P	V L	. M	GS	s w	S	Y	GF	Ρ	Y	G I	F	гн	LI	DW	v v	s r	ΝT	¢	Y	ŝΥ	G	QF	н	YN	I P	A	I M	1
L	RE	V	Е	I C	R	K L	G	I	G 1	YF	I I	Ρ	F	A F	A	F /	ΑI	LA	Y	LT	r L	V	LF	R	P	VM	1 M	G A	w	G	YA	A F	Ρ	Y	G I	W T	гн	LI	DW	V V	S I	ΝT	¢	Y	ΓY	G	NF	E H	YN	I P	A	I N	1
L	RE	V	Е	I C	R	K L	G	M	G 1	YH	I V	P	F	GF	A	A	AI	IA	Y	M	L L	V	IF	R	P	LL	. M	G A	W	G	н	GF	P	Y	G I	F S	5 Н	LI	DW	V	SI	NV	C	Y	Y	L	HF	: н	YM	I P	A	H N	1

Glutamic L104 **Tyrosine L162** Histidine L168 Histidine L173 Histidine L190 Asparatic L210

	h	ntr	roc	luc	tic	n	1 Structural organisation Fu													Inc	ctio	эn	alo	SVe	er∖	viev	W					nte	era	cti	or	าร				E	Evo	lu	tio	na	ry	asp	bec	ts				
	I	0	Ĩ	10)ᢓ	ŞУ	7																														1 4	Rh 2 A 3 Rho 5 F 6 F	nod Allo Ru oda Rha Ros	op chr ibri ops odc eol	ser on iviv eu oba	ud nat vax do icte	iun gel mo er sj r de	ona n vi lati nas phe	as v inos nos s pa eroi rific	virio sun sus alus ides can	dis n stris s	S			
110	11	2	114	116	5 1	18	120	13	22	124	4	126	12	8	130	132	2 13	4	136	138	14	0	142	14	4	146	14	8 1	50	152	2 1	54	156	15	58	160	16	2	164	166	5 1	68	17	0 1	72	174	17	76	178	180	182	2
L	RE	v	E	IS	R	K L	G	I (G W	/ H	٧	PI	LA	F	C \	P	IF	M	FC	v	LQ	v	F	RP	, L	LI	G	S	WG	H	А	FP	Y	GI	L	SI	HL	D	w v	/ N	Ν	FO	G Y	Q	YL	N	V H	1 1	NF	G	H M	ē
L	R E	v	E	C	R	K L	G	I	G F	Н	I	PI	FA	F	AF	F A	IG	A	YL	V	LV	v	V	RP	, I	LN	1 G	A	WG	с н	G	FP	Y	G I	L	SI	HL	D	WV	15	N	V	G Y	Q	FL	. н	FH	1	NF	A	H M	ľ,
L	R E	v	E	C	R	K L	G	M	QΥ	Н	۷	P	ΙA	F	SF	F A	IL	Α.	ΥV	Т	LV	v	I	RP	' I	LN	1 G	A	WG	G H	G	FP	Y	G I	F	SI	H L	D	W V	/ S	N	V	G Y	Q	YL	. н	F H	1	NF	A	H M	Ē
L	R E	V	E	C	R	K L	G	I	G F	Н	V	PI	FA	F	SF	F A	I F	A	YV	Т	LV	v	I	RP	v	LN	1 G	S	WS	S Y	G	FP	Y	G I	F	Т	HL	D	w v	/ S	N	Т	γ	s '	YG	Q	FH	1	NF	A	H M	le,
L	RE	V	E	C	R	ΚL	G	I	GΥ	н	I	PI	FA	F	AF	F A	ΙL	. Α	ΥL	. т	LV	L	F	RP	v	MN	1 G	A	WG	γ	Α	FP	Y	GI	W	Т	HL	D	wν	/ S	N	то	G Y	Т,	YG	N	FH	1 1	NF	A	H M	L
L	RE	V	E	C	R	K L	G	M	G Y	н	V	PI	FG	F	AA	AA	II	A	YN	1 Т	LV	I	F	RP	, L	LN	1 G	A	WG	G H	G	FP	Y	GI	F	SI	HL	D	WN	/ S	N	V	G Y	A	YL	. н	FH	1	NF	A	H M	1

Glutamic L104 Tyrosine L162 **Histidine L168** Histidine L173 Histidine L190 Asparatic L210

	lr	ntr	od	uct	tio	n				S	Str	uc	tu	ra	l or	organisation Functional overview Interactions Evolutionar														nar	y a	sp	bec	ts																		
		0	m	0		g	SY																															1 2 4 F	Rh 2 Al 3 Rho 5 R 6 R	loc Rul do ho	o ps hrc oriv pse dok	eu iva iud bac	i do atiu ax g lon cter ter	mo yela nor r sp dei	vir vir atin as he ntri	s vi nosi iosi pal roid	irid um us lust des ans	lis tris				
110	11.	2	114	116	11	8	120	12	22	124	1	26	128	3 1	30	132	13	4	136	138	14	10	142	1.	44	146	14	48	150	15	2	154	156	15	58	160	162	1	64	166	16	8	170	17:	2 1	174	176	3 1	78	180	1	82
L	R E	v	EI	S	RK	L	G	I	s w	Н	v	PL	A	F	C V	P	IF	М	FC	v	LC	2 V	F	RF	L	LI	LO	SS	w	GН	А	FF	Y	GI	L	SI	I L	DN	N V	N	NF	G	Y	QY	L	NV	VН	YI	NP	G	н	M
L	R E	v	ΕI	С	RK	L	G	I	F	н	I	PF	A	F	A F	A	I G	A	YL	V	LV	/ V	V	RF	o I	LI	MG	G A	W	GН	G	FI	Y	G I	L	SH	I L	DV	N V	S	N V	G	Y	QF	L	H F	F H	YI	N P	A	н	N
L	R E	v	ΕI	С	RK	L	GN	мс	γ	н	V	ΡI	A	F	S F	A	IL	A	YV	Т	LV	/ V	I	RI	o I	LI	M	G A	w	G H	G	FF	Y	G I	F	SI	I L	D١	N V	S	N V	G	Y	QΥ	L	H F	F H	YI	NP	A	H	N
L	R E	v	ΕI	С	RK	L	G	I	F	н	V	PF	A	F	S F	Α	I F	Α	YV	Т	LV	/ V	I	RF	P V	LI	M	SS	w s	5 Y	G	FI	Y	G I	F	TH	I L	DV	N V	S	NT	G	Y	S Y	G	QF	F H	YI	N P	A	H	N
L	R E	V	ΕI	С	RK	L	G	IC	γ	н	Ι	PF	A	F.	A F	Α	ΙL	Α	ΥL	. т	LV	/ L	F	RF	v	M	M	G A	w	GΥ	А	FF	Y	GI	W	T	I L	DV	N V	S	ΝT	G	Y	ΤY	G	NF	F H	YI	NP	A	H	N
L	RE	V	ΕI	С	RK	L	GN	MO	Y	н	V	PF	G	F	AA	A	ΙI	А	YN	1 Т	LV	/ I	F	RF	L	LI	MO	G A	W	GН	G	FF	Y	GI	F	SI	I L	DV	N V	S	NV	G	Y	AY	L	HF	÷ H	YI	NP	A	H	M

Glutamic L104 Tyrosine L162 Histidine L168 **Histidine L173** Histidine L190

Asparatic L210

Introduction	Structural organisation	Functional overview	Interactions	Evolutionary aspects
Homology L			1 Rhodops 2 Allochro 3 Rubriv 4 Rhodopse 5 Rhodob 6 Roseoba	eudomonas viridis matium vinosum ivax gelatinosus udomonas palustris pacter spheroides acter dentrificans
192 194 196 198 200 202 204	206 208 210 212 214 216 218 220	222 224 226 228 230 232 234	236 238 240 242 244 246 248 250	0 252 254 256 258 260 262 26
AMALGLHGGLILSV	ANPGDGDKVK	TA <mark>EHEN</mark> QY <mark>F</mark> RDVV	GYSIGALSIH RLGLF	LASNIFLTGAFGTI
C L A L S M <mark>H</mark> S S L I L S V	TNPQKGEEVK	T S <mark>E H E N</mark> T F <mark>F</mark> R D I V	GYSIGALAIHRLGLF	LALSAVFWSAVCIV
T L A M S M H G G L I L S A	ANPKKGEPMK	TT <mark>DHED</mark> TF <mark>F</mark> RDAV	GYSIGSLGIHRLGLF	LALSAAFWSAVCIV
CLALAL <mark>H</mark> GGLVLSA	LNPDRGEPVK	SPEHENTVFRDLV	GYSIGTIGIHRLGLF	LALSAVFFSAVCMI
ALALAL <mark>H</mark> SALVLSA	ANPEKGKEMR	T P D H E D T F F R D L V	GYSIGTLGIHRLGLL	LSLSAVFFSALC <mark>M</mark> I
T L A L A L H G L I L S A	CNPEKGEEAK	T P <mark>D H E D</mark> T F <mark>F</mark> R D F I	G Y S V G T L G I H R L G Y L	LAINAGLWSAICII

Glutamic L104 Tyrosine L162 Histidine L168 Histidine L173 **Histidine L190** Asparatic L210

	Int	rod	ucti	on			S	stru	ctur	al o	rgar	nisa	tio	n	F	un	ctio	nal	ove	rvie	W			Int	tera	ctic	ons			E١	/olu	itior	hary	/ as	pec	ts
	Ho)M	0	0	gy	L																						1 2 3 4 5 6	Rha Allo Rub Rha Rha Ros	odop chrc oriviv odop odob eoba	oseu omat vax g oseu oseu acte	dom ielati dom er spl r der	vinc vinc inosi onas hero hero	s vir osum us s pal ides cans	r idis n lustr	is
192	194	196	198	200	202	204	206	208	210	212	214	216	218	220	222	224	226	228	230	232	234	236	238	240	242	244	246	248	250	252	254	256	258	260	262	-

AMALG ILSVANPGDGDKVK RLGLELASNIELTGAE ALSIL CLALSMHGSLILSVTNPOKGEE TLAMSMHGGLILSAANPKKGEPMK LALSAA CLALALHGGLV ALALHGALVLSAANPEKGKEMR-F D F RDIVGY LISISAV R D F I G Y S V G T L G I H R L G Y L L A I N A G L W S A I C I I ED F

Glutamic L104 Tyrosine L162 Histidine L168 Histidine L173 Histidine L190 Asparatic L210

6

Glutamic L212 Aspartic L213 Phenylalanine L216 Serine L223 Glycine L225 Histidine L230

		lr	nt	roo	du	cti	on					S	Str	uc	ctu	ira	al c	org	jar	nis	sa	tic	n			F	ur	nct	tio	na	al	ov	er	∕i∈	ew	'				Int	er	ac	tio	ns					E١	/ol	ut	ior	าลเ	ry a	asp	be	cts	S
			0	n	10		0	g	y																																					1 2 3 4 5 6	Rh All Ru Rh Rh Ro	ocl Ibri Ioc	lop hro iviv lop lob	sei ax sei act	ud atiu ge ude cer er	om Jm lati om spł der	vir ino ion her	nos sus as roic ifici	vir um pal les ans	i di n ust	s :ris	
19	2	19	4	196	19	8	200	20	2	204	4 :	206	20	08	210	0	212	2	14	21	6	218		220	2	22	22	4	226	2	228	23	0	232	2	34	236	238	3 2	40	24	2 2	44	248	5 2	48	25() :	252	254	4	256	25	8 :	260	26	2	264
A	M	A	L	G	LH	G	G	LI	L	S	v	A	NF	PG	G D	G	D	K \	K	- 1	-	-	≂:	-		- 1	T A	E	н	EI	N	QY	F	R	D	v v	G	S	1	G	A L	S	I	R	L	GL	. F	L	AS	N	I	FI	LT	G	AF	F G	т	I
C	L	A	L	S	мн	G	S	LI	L	S	V	т	NF	PQ	λK	G	Е	E١	I K	- 1	-	-	-	-		- 1	r s	E	Н	ΕI	N T	TF	F	R	D	I٧	G	S	1	G	A L	Α	I	R	L	Gι	F	L	AL	. 5	A	VF	FW	IS	A 1	I C	I	v
Т	Ļ	A	M	S	M H	G	G	LI	L	S	Α	A	NF	P K	К	G	Е	PN	N K	- 1	-	-	2	-		- 1	ГΤ	D	Н	ΕI	D	TF	F	R	D	AV	G	S	1	G	5 L	G	I	R	L	GL	. F	L	AL	. S	А	AF	FW	IS	A N	/ C	I	v
C	L	A	L	Α	LH	G	G	LV	L	S	Α	LI	NF	PC	R	G	Е	P \	I K	- 1	-	-	\mathbb{Z}	-	÷ ,	- 5	5 P	Е	Н	ΕI	N	тν	F	R	DI	LV	G	S	1	G	ΓΙ	G	I	I R	L	GL	. F	L	AL	. S	А	VF	FF	S	A \	/ C	М	I
A	L	A	L	Α	L H	G	A	LV	L	S	Α	A	NF	PE	K	G	К	EN	1 R	2 -	-	-	-	-	-	- 1	ГР	D	Н	EI	DT	ΤF	F	R	DI	LV	G	S	1	G	r L	G	I	I R	L	Gι	. L	L	s l	. 5	А	VF	FF	S	AI	C	М	I
Т	L	A	L	Α	LH	G	G	LI	L	S	A	C	NF	PE	ΕK	G	Е	E A	A K	- 1	-	-	÷	-		- 1	ГР	D	н	EI	DT	ΤF	F	R	DI	FI	G	S		G	Γ L	G	I	R	L	G Y	L	L	AI	N	A	GL	LW	IS	AI	I C	Ι	I

Glutamic L104 Tyrosine L162 Histidine L168 Histidine L173 Histidine L190 Asparatic L210

Introduction	Structural organisation	Functional overview	Interactions	Evolutionary aspects
Homology C			1 2 3 4 5	Chain_C Rubrivivax gelatinosus Allochromatium vinosum Roseobacter denitrificans Chloroflexus aurantiacus
1 2 4 6 6 10 12 14 16 18	20 22 24 26 28 30 32 34 36 38 4	0 42 44 46 48 50 52 54 56 58 66	0 62 64 66 68 70 72 74 76 78 80 M Γ P K W Γ D K W N A D N P T N I Γ G K V I T S S P P V T P T D G R Q N W M G	82 84 86 88 90 92 94 96 98 100 - - - - - - - - - C A L A V R I S T L T V A V T A A A L L A N L G K Q L T L P A V A V V A S V V L L P A I L I G V L G V A V F G A A A I V S V V L L P A I L I G V L G V A V F G A A A I V S T Q A W N E G V Q A G Q A W I Q Q Y P N
102 104 106 108 110 112 114 116 118 F - E P P - P A T T T Q T G F R G L S G C E R P - P V D A V Q R G Y R G T G G C E R P - P P E V V Q K G Y R G V G G C E R P - P P E V V Q K G Y R G V G G C E R P - P P E V V Q K G Y R G V G I G N P A Q T A S M Q T G P R G T G T	120 122 124 126 128 130 132 134 136 138 S M G E V L H P A T V K A K K E R D A Q Y G M Q H I V N P R T L A E Q I P T - Q Q A A M E Q N Y N P R L L E A S I K A - N L P G M II V A E F N V T R F A P D P T I E E Y	140 142 144 146 148 150 152 154 156 158 P P A L A A V K A - E G P P V S Q V Y I<	160 162 164 166 168 170 172 174 176 178 K N V K V L G N L T E A E F L R T M T A Q N V K V L G H L S V A E F T R Q M A A E N V Q V L K D L S V A E F T R T M V A E N V Q V L G D L T D D N F N R V M T A V N V Q V L I G M S S A Q I W T Y	180 182 184 186 188 190 192 194 196 11 I T E W V S P Q E G C T Y C H D E I </td
202 204 206 208 210 212 214 216 218 N N L A S E A K Y P Y V V A R R M L E E N L A D D S K Y Q K V V S R R M L E G N W A S D D I Y T K V V S R R M F E E T Y G E D N L Y T K V V A R R M I Q N N F A S D E Y P Q K I A A R N M L R	220 222 224 226 228 230 232 234 236 238 24 I: M T R A I N T N W T Q H V A Q T G V M T Q K V N T Q W T Q H V A A T G V I: L V R A T N S N W K D H V A E T G V Q M T Q N I N E N W D G II V N A N A E V G V R L V R D V N A E F I V N L P N W Q G N Y V	10 242 244 246 248 250 252 254 256 258 26 17 C Y T C H R G T P P P - - V R 17 C Y T C H C N P V K E - - I W 17 C Y C H C N P V K E - - I W 16 T C Y C H C N V	0 262 264 266 268 270 272 274 276 278 280 L E P L N R E P T H V E R V E R V E R V E R V E R V E R V E R V E R V E R R R I I D G Q N Q R R D F I I D G Q N Q N I T P V P I K V Q N A I I N Y V I	282 284 286 288 290 292 294 296 298 300 T R S G Y V V R L A K Y T A Y S A L N Y A A K V V G L T S L P Y A S S T V A Y S A L P L A T P L S Q S T S L P S I L D P A Q K P E A I R E P V L L K
302 304 306 308 310 312 314 316 318 D P F T M F L A N D K R Q V R V V P Q D P F T T F L - K E E T N V R V Y G T D P Y T P F L - D Q S N E I R V I G Q N A L E I Y L T E Y E A V N V II D L D A I L F Y I - Y N Y Q V W K P F D P	320 322 324 326 328 330 332 334 336 338 34 2 T - - - A L L V G V S R G K R T - - - - A L P - - T G T S T - - - - A L P - - - T G T T T - - - - - A L P - - - T G T T T T T A L P - - - A G N T <	10 342 344 346 348 350 352 354 356 358 36 R R P L S D A Y A T F A L M M S I S K A D I K Q A E K T Y G L M M H F S F S - L K Q A E W T Y G L M M Q I S S V E V A S I Q K T E M T F S L M N Y F S S R T Q D Q V T I N Q N V M N Y Q A	0 362 364 366 368 370 372 374 376 378 380 D S L G T N C T F C H N A Q T F E S W G G A L G V N C T Y C H N T N G F G S W - D S L G V N C T F C H N S R S F Y D W - N S L G V N C V F C H N S R A F Y D P W S L G V G C T F C H N S R N F V A Y -	382 384 386 388 390 392 394 396 398 400 K K S T - - - - P Q R - I A WW D N A A - - - - P Q R - T A WY K Q S T - - - - P Q R - T WY G Q II T P Q WA T L L E L N P A G D N V L N P L Y A Y N K L K K L K L
402 404 406 408 410 412 414 416 418 G I R M V R D L N M N Y L G I R M A R D L N N N F M A I R H V R D I N Q N Y I G R Q M V I E M N Q E Y A Q R M L L L T T W L A E N W P R Y G	420 422 424 426 428 430 432 434 436 438 44 A P L N A S L P A S R I E G L N A S L P A S R W P L N D A L P A S R I E G L N D A L P A S R I E R L N D A L P A S R I P L C D C Y P C D R S A I A K P E I P T G S G A A S R Y S Y Q F	0 442 444 446 448 450 452 454 456 458 48 L G R Q - G E A P Q A - D C R T C H Q G L G P T - G D V A K I - N C S T C H Q G K G P Y - G D P F K V - G C M T C H Q G L G P V Y A D A P K A A C K T C II K G L G D G Q I Y N V P G C Y T C H Q G	0 462 464 466 468 470 472 474 476 478 480 V T K P L F G A S R L K D Y P E L G - A Y K P L Y G A Q M A K D Y P G L K - A Y K P L Y G A Q M A K D Y P A L Y E - Y Q K P M Q G L N V I A D W P E L A T N N I P L A S I N	482 484 486 488 490 492 494 496 498 50 P I K A A A K

Homology H

1 Chain_H 2 Rhodobacter capsulatus 3 Rhodobacter sphaeroides

ļ	1 1	-	-			_	T	- 1		-		1	1	-	-î				1	_	-	1		1	_	-	- 1		1	_		- 1	_	1	- 1		-	1		1	-		1	- 1		-	_		- 1		1		_	-
1	1 2	2	4	÷.	6		8	10		12	1	14	1	6	18	3	20	1	22	2	4	26		28	3	0	32		34	3	6	38	4	0	42	4	14	46		48	50		52	5	4	56	5	8	60	6	2	64	e	56
N	1 Y	' H	G	A	L	A	QH	I L	D	I	A	QI	LV	/ W	IY	Α	Q	W	L	/ 1	N 1	T	V	V	LI	Y	Ľ	R	RE	EC	R	R	E	G Y	P	L	VE	P	L	GI	V	K	L	A P	E	D	G	2 V	Y	EL	P	Y	PI	K
N	1 V	G	V	N	F	F	GC) F	D	L	A	s I	LA	A I	W	S	F	W	- /	AF	F L	A	Y	L	I	Υ	Ľ	Q	TE	EN	M	R	E (G Y	Р	LI	EN	D	-	D	sк	L	SI	PN	Q	G		P	F	PV	/ P	s	P	ĸ
N	1 V	G	V	Т	A	F	GN	F	D	L	A	s I	LA	I	Y	S	F	W	- :	IF	L	A	G	L	I١	Y	L	Q	TE	EN	M	R	E (GΥ	Р	LI	EN	I E	-	D	ЗΤ	Ρ	A	AN	Q	G		P	F	PL	- P	к	P	K
	- 1		-	_	1		1	1		1		1	1		1		1		1	-		1	_	1	- 1		1	- 3	1	1		1			1			1		1	-		1	-		1	1		-	1		1		T
	68		70		72	7	4	76	1	78	8	0	82	2	84		86	8	38	90	0	92		94	9	6	98	1	00	10	2	104	10)6	108	1	10	112	2 1	14	116	5	118	12	0	122	12	24	126	12	28	130	13	3
т	F	V	L	Р	Н	G	5 -	т	v ·	T١	VF	PF	R	R	P	Е	-			Т	R	Е	L	K I	A	Q	т	D	GF	E	G	Α	PL	. Q	Ρ	т	G N	P	L		A	V	G	PA	S	Y	AE	R	Α	ΕV	v v	D	A T	Г
т	F	D	L	A	D	GF	R -	K	I	٧١	VF	P S	s v	E	Ν	Е	E	Ał	HF	R	Т	D	L	A	E	R	т	S \	V N	I E	G	Y	PF	R	Ρ	т	G <mark>N</mark>	Р	M		G	V	G	PA	S	W	VP	R	R	DE	E P	E	V	D
Т	F	I	L	Р	н	GF	RG	Т	L	T١	VF	P G	S P	E	S	Е	-			D	R	Ρ	I	A	A	R	Т	A١	V S	S E	G	F	PH	A	Ρ	т	G D	Р	M	KC	G	V	GI	P A	S	W	VA	R	R	DL	P	E	L	D
_																											-																											
13	12	134	4	136	5	138	14	0	142	1	44	1.	46	14	8	150	1	152	1	54	15	6	158	1	60	16	2	164	16	66	168	3 1	70	17	2	174	17	6	178	1	80	182	1	84	186	6	88	19	0	192	19	4 1	196	
Т	۰v	D	G	K	А	K	ΙV	P	L	R	V	AT	T D	F	S	I	A	E	G) \	D /	Ρ	R	G	LF	> v	V	A	A C	0 0	V	Е	A (ςт	V	тι	DL	. W	V	DI	RS	E	H '	YF	R	Y	LE	EL	S	V A	A G	S	A	R
D	A	н	G	н	Ν	К	IQ	P	м	R	K ·	- 7	T E	M	K	٧	S	A	G	RD) P	R	G	М	P \	1 9	A	GI	D T	T E	v	V	GI	κI	v	D	MM	vv	D	I	PE	Q	L	VR	Y	L	E \	/ E	L	N S	5 G	к	K	K
D	G	Н	G	Н	Ν	ĸ	I K	P	М	K	A ·	- 1	AA	G	F	Н	V	S	A	G K	(N	Ρ	I	G	LF	v	R	G	CD	L	E	I	A (ЗK	V	V	DI	W	V	D	ΙP	Е	QI	MA	R	F	LE	EV	E	LK	K D	G	S T	T
																																	į.										,											
20	0	20	2	204	4	206	20	8	210	1	212	2	14	2	16	21	8	220	2	222	2	24	22	6	228	2	30	232	2 2	234	23	36	238	3 2	40	242	2 3	244	24	6	248	25	50	252	2	54	256	6 3	258	26	0 2	262	26	54
L	. 1	P	L	G	F	C	D١	/ K	K	D	K	I	V V	V T	r s	S I	L	S	Е	Q	F /		V	P	R	L	Q S	R	D	Q	I 7	r L	R	Е	EC	K	V	S /	AY	Y	A	G	G L	L	Y	A	P	Е	R /	A E	S	LI	L -	1
P	N	1 T	M	1 L	Κ	I	WS	5 D	R	v	R	V	N A	A]	Т	S	D	L	F	D	Т	I P	D	I	Κ	S	PD	v	V	т	κL	. E	Е	D	K 1	S	A	Y	VA	G	G	YN	A Y	A	K	G \	/ K	Р	YA	A L	-			
L	P	M	Q	M	V	K	V	2 S	N	R	٧	н	V	N A	A L	. S	S	D	L	F	A (G I	P	т	I	K	S P	т	E	V	Тι	L	E	E	DK	(I	С	G	YV	A	G	GL	M	1 Y	A	AF	ĸ	R	KS	5 V	V	AA	AN	1

CONCLUSIONS

Purple bacteria are important because they can be used in **processes of water** decontamination

Each subunit has a **specific structure** that allows it to perform its **function**

Interactions between subunits and cofactors allow the electron transport and define its path

The photoreaction center from *Rhodopseudomona viridis* and Photosystem II might have a **common ancestor**

The L and M subunits are more conserved among different species than C and H subunits

THANK YOU FOR YOUR ATTENTION!

Do you have any questions?

BIBLIOGRAPHY

BIBLIOGRAPHY

- Blankenship R. Molecular mechanisms of photosynthesis. Chichester, West Sussex: Wiley Blackwell; 2014.
- C B van Niel. The culture, general physiology, morphology, and classification of the non-sulfur purple and brown bacteria Bacteriol Rev. 1944 Mar;8(1):1-118.
- Deisenhofer J, Michel H. The photosynthetic reaction centre from the purple bacterium Rhodopseudomonas viridis. *Bioscience Reports*. 1989;9(4):383-419.
- Kozlova M, Juhnke H, Cherepanov D, Lancaster C, Mulkidjanian A. Proton transfer in the photosynthetic reaction center of Blastochloris viridis. *FEBS Letters*. 2007;582(2):238-242.
- Lancaster C, Bibikova M, Sabatino P, Oesterhelt D, Michel H. Structural Basis of the Drastically Increased Initial Electron Transfer Rate in the Reaction Center from a Rhodopseudomonas viridis Mutant Described at 2.00-Å Resolution. Journal of Biological Chemistry. 2000;275(50):39364-39368.
- Lancaster C, Michel H. The coupling of light-induced electron transfer and proton uptake as derived from crystal structures of reaction centres from Rhodopseudomonas viridis modified at the binding site of the secondary quinone, QB. Structure. 1997;5(10): 1339-1359.
- Podstawka A. Blastochloris viridis Drews F, F | Type strain | DSM 133, ATCC 19567 | BacDiveID:6160 [Internet].
 Bacdive.dsmz.de. 2021 [cited 9 March 2021]. Available from: <u>https://bacdive.dsmz.de/strain/6160</u>
- Qian P, Siebert C, Wang P, Canniffe D, Hunter C. Cryo-EM structure of the Blastochloris viridis LH1–RC complex at 2.9 Å. Nature. 2018; 556(7700): 203-208.

BIBLIOGRAPHY

- Taxonomy browser (Rhodopseudomonas) [Internet]. Ncbi.nlm.nih.gov. 2021 [cited 9 March 2021].
 Available from: <u>https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?lvl=0&id=1073</u>
- Talaiekhozani A, Rezania S. Application of photosynthetic bacteria for removal of heavy metals, macro-pollutants and dye from wastewater: A review. Journal of Water Process Engineering. 2017;19:312-321.
PEM QUESTIONS

1. Select the **CORRECT** option:

- a) Blastochloridis viridis also known as Rhodopseudomonas viridis is a purple sulfur bacteria which deposits S⁰ inside the cell.
- b) The core subunit of the photosynthetic reaction center is formed by 11 spanning helices, 6 in the M chain and 5 in the L chain.
- c) The photosynthetic reaction center has fifteen co-factors, one of which is a non-heme iron.
- d) Chains L and C have a lot of non-polar residues because they are transmembrane.
- e) The H subunit has a globular domain and does not have any transmembrane helix.
- 2. Which of the following statements about the *Rhodopseudomonas viridis* photosynthetic reaction center **cofactors** are **TRUE**?
 - 1. The four heme groups are connected to cytochrome cysteines through thioether bonds.
 - 2. The carotenoid is in contact with the accessory bacteriochlorophyll b of chain M.
 - 3. The bacteriochlorophyll b is formed by four pyrrole rings: a special pair and an accessory chain.
 - 4. The quinones are very far from the non-heme iron.
 - a) 1, 2, 3
 - b) 1, 3
 - c) 2, 4
- d) 1, 2, 3, 4
- e) 4

3. Which statement about the **bacteriochlorophyll b special pair** is **FALSE**:

- a) The special pair are arranged with a nearly perfect twofold symmetry.
- b) Transmembrane helices of subunits L and M contribute to maintain the twofold symmetry.
- c) a and b are correct
- d) Histidines L173 and M200 act as a ligand to the special pair Mg^{2+} ions.
- e) All options are correct

4. Select the **CORRECT** option about the **light-harvesting complex** of the *Rhodopseudomonas viridis* photosynthetic reaction center:

- 1. The light harvesting complex is not involved in the energy transfer to the reaction center.
- 2. Has an absorption maximum at 680 nm.
- 3. It consists of α and β apoproteins bound to bacteriochlorophyll and carotenoid covalenlty.
- 4. The light harvesting complex is associated with the reaction center forming a polymeric ring-like structure around it.
- a) 1,2,3
- b) 1,3
- c) 2,4
- d) 4
- e) 1,2,3,4

- 5. Which of the following statements is **TRUE**?
- a) Glutamic acid L104 is conserved in all currently known sequences of reaction centre L-subunits from purple bacteria
- b) The photosynthetic reaction center from *Blastochloris viridis* is related to the photosystem II from plants.
- c) a and b are true.
- d) The core complex subunits L and M have 60% structural homology.
- e) All are true.

6. Which of the following statements regarding **photoexcitation** is/are **TRUE**?

- a) The photosynthetic reaction in *Rhodopseudomonas viridis* is a cyclic electron transport.
- b) The electron follows an unidirectional pathway in the photosynthetic reaction center.
- c) Both a and b are correct.
- d) The photosynthetic reaction starts at chain H.
- e) All the statements are correcT

7. Which of these statements about **quinones** redox processes is **TRUE**?

- a) Quinone A reduces Quinone B to QB- and then quinone B is protonated to QBH.
- b) Quinone A does not participate in the reduction of quinone B.
- c) Quinone B is transported to the cytochrome and then is protonated.
- d) Quinone A reduces quinone B two times to a fully reduced QB-- and then it is twicely protonated to QBH₂
- e) Quinone A is in direct contact with the cytoplasm to be easily protonated.

8. Which of these statements about **important residues** in photosynthetic function are **TRUE**?

- a) Tyrosine 162 is located between the special pair and the closest heme group (HE3) of the cytochrome, and may play a role during reduction of P+ by the cytochrome.
- b) Glutamic acid L104 is conserved in all currently known sequences of reaction centre L-subunits from purple bacteria and is involved in the protonation of QB.
- c) Both a and b are correct
- d) Tryptophan M250 is an especially noteworthy aromatic residue, whose side chain forms a bridge between BPL and the next electron acceptor, QA- .
- e) All the statements are correct.

9. Select the correct answer about the **evolutionary theory** of the photosynthetic reaction center of *Rhodopseudomonas viridis*:

- a) It is thought that the ancestor of photosynthetic reaction centers from plants and bacteria was already heterodimeric.
- b) Photosystem II from plants and Photosynthetic reaction center of purple bacteria do not share a similar pattern in their core complex.
- c) L and M subunits from the photosynthetic reaction center of *Rhodopseudomonas viridis* are homologous to DI and D2 subunits from the photosystem II of plants.
- d) The histidine residues that coordinate the special pair of bacteriochlorophyll II molecules are found in a different relative position with respect to photosystem II from plants.
- e) Bacteria and plants photosynthetic reaction center do not share a common ancestor.

10. Select the **FALSE** option:

- 1. The subunit H has a transmembrane helix in its N-terminal segment which corresponds to the eleventh transmembrane helix from the core complex.
- 2. The 4 heme groups are placed in the H subunit
- 3. Histidines 173L and 200M are bound to a H₂O molecule which in turn is bound to the accessory bacteriochlorophyll b through hydrogen bonds.
- 4. The side chains of the accessory bacteriochlorophyll b help to maintain the symmetry.
- a) 1,2,3
- b) 1,3
- c) 2,4
- d) 4
- e) 1,2,3,4