

INTRODUCTION & CONCEPTS

STRUCTURE

STRUCTURE

GERMLINE CONFIGURATION OF IMMUNOGLOBULIN GENES

REARRANGEMENT

IMMUNOGLOBULIN LIKE-FOLD

GREEK-KEY FOLD

IMMUNOGLOBULIN G

SCOP CLASSIFICATION

CLASS	All beta proteins
FOLD	Immunoglobuline - like $oldsymbol{eta}$ - sandwich
SUPERFAMILY	Immunoglobulin
FAMILY	V set domains CI set domains C2 set domains

SECONDARY STRUCTURE

• beta-sheet

- alpha-helix
- helix
- turn
- coil

1IGY Mus musculus 3,2 Å

TOPOLOGY

HYDROGEN BONDS

GLYCINE AND PROLINE

HYDROPHOBIC AND HYDROPHILIC RESIDUES

DISULPHIDE BRIDGES

DISULPHIDE BRIDGES \rightarrow INTRA-CHAIN

DISULPHIDE BRIDGES \rightarrow HEAVY AND LIGHT CHAIN

DISULPHIDE BRIDGES \rightarrow HINGE

DISULPHIDE BRIDGES \rightarrow HINGE

CONSTANT REGION

GLYCOSYLATION

- Complement dependent cytotoxicity

GLYCOSYLATION

IgG RECEPTORS

FcyR I

4X4M Homo sapiens 3,48 **Å**

IgG SUBTYPES

0,86 { 0,78 {

RMSD

Aspartate - 265 Glutamate - 269 and 294

lgG4	4c55	GPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVE	47
lgG2	4haf	AGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVOFNWYVDGVE	48
IgG1	3ave	LLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVE	50
^{0,57} 1gG3	6d58	GPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVQFKWYVDGVE	47

	4c55	VHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLP-SSI	96
	4haf	VHNAKTKPREEQFNSTFRVVSVLTVVHQDWLNGKEYKCKVSN-KGLPAPI	97
	3ave	VHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSN-KALPAPI	99
	6d58	VHNAKTKPREEQYNSTFRVVSVLTVLHQDWLNGKEYKCKVSN-KALPAPI	96
		****************	*
	4c55	EKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWE	146
	4haf	EKTISKTKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWE	147
	3ave	EKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWE	149
	6d58	EKTISKTKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWE	146

	4c55	SNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEAL	196
	4haf	SNGQPENNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEAL	197
	3ave	SNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEAL	199
	6d58	SSGQPENNYNTTPPMLDSDGSFFLYSKLTVDKSRWQQGNIFSCSVMHEAL	196
		* ********	
	4c55	HNHYTQKSLSLS 208	
	4haf	HNHYTQKSLSLS 209	
	3ave	HNHYTQKSLSLS 211	
	6d58	HNHFTQKSLSL- 207	
		*** ******	

IgG SUBTYPES

0,86 { 1gG4 1gG2 0,78 { 1gG1 1gG1 1gG3	4c55 4haf 3ave 6d58	GPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVE AGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVQFNWYVDGVE LLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVE GPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVQFKWYVDGVE	47 48 50 47
RMSD			
	4055	VHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLP-SST	96
	4haf	VHNAKTKPREEQFNSTFRVVSVLTVVHQDWLNGKEYKCKVSN-KGLPAPI	97
	3ave	VHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSN-KALPAPI	99
	6d58	VHNAKTKPREEQYNSTFRVVSVLTVLHQDWLNGKEYKCKVSN-KALPAPI	96
	4c55	EKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWE	146
	4haf	EKTISKTKGOPREPOVYTLPPSREEMTKNOVSLTCLVKGFYPSDIAVEWE	147
	3ave	EKTISKAKGOPREPOVYTLPPSRDELTKNOVSLTCLVKGFYPSDIAVEWE	149
	6d58	EKTISKTKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWE	146
	4c55	SNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEAL	196
	4haf	SNGQPENNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEAL	197
	3ave	SNGOPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEAL	199
	6d58	SSGOPENNYNTTPPMLDSDGSFFLYSKLTVDKSRWOOGNIFSCSVMHEAL	196
		* *******	
	4c55	HNHYTQKSLSLS 208	
	4haf	HNHYTOKSLSLS 209	
	3ave	HNHYTOKSLSLS 211	
	6d58	HNHFTQKSLSL- 207	
		*** ******	

LALA MUTANTS

3HKF (*Mus musculus*) 2.50 Å 3AVE (*Homo sapiens*) 2.00 Å 6D4E (*Macaca mulatta*) 2.80 Å

IgGI AMONG SPECIES

CLUSTAL W(1.60) multiple sequence alignment

Bhkf	SSVFIFPPKPKDVLTITLTPKVTCVVVDISKDDPE-VQFSWFVDDVEVHTAQTQ
ave	LLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTK
d4e	GPSVFLFPPKPKDTLMISRTPEVT <mark>C</mark> VVVDVSQEDPDVKFNWYVNGAEVHHAQTK
bkf	PRE-EQFNSTFRSVSELPIMHQDWLNGKEFKCRVNSAAFPAPIEKTISKTKGRPKAPQ
lave	PREEQ YNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQ
d4e	PRETQYNSTYRVVSVLTVTHQDWLNGKEYTCKVSNKALPAPIQKTISKDKGQPREPQ
Bhkf	VYTIPPPKEQMAKDKVSLTCMITDFFPEDITVEWQWNGQPAENYKNTQPIMDTDGSYFVY
lave	VYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLY
d4e	VYTLPPSREELTKNQVSLTCLVKGFYPSDIVVEWESSGQPENTYKTTPPVLDSDGSYFLY
Bhkf	SKLNVQKSNWEAGNTFTCSVLHEGLHNHHTEKSLS
lave	SKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLS
d4e	SKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSVS

VARIABLE REGION

COMPLEMENTARITY-DETERMINING REGIONS (CDR)

CANONICAL STRUCTURES

Chothia classification

ł	IEAVY CHAIN	canonical structure
Hi		I, 2, 3
	H2	I, 2a, 2b, 2c, 3a, 3b, 3c, 4
	H3	-
	LIGHT CHAIN	canonical structure
	LAMBDA (λ)	I λ , 2 λ , 3a λ , 3b λ , 4 λ
LI	KAPPA (k)	Ik, 2k, 3ak, 3bk, 4k
L2		I
12_	LAMBDA (λ)	la λ , lb λ , l λ c, 2 λ
- L3	KAPPA (k)	Ik, 2k, 3k, 4k, 5k

LIGHT CHAIN (LAMBDA)

8fab

2rhe

1mfa

7fab

1gig

2fb4

1ind

8fab

2rhe 1mfa

7fab

1gig

2fb4 1ind

l	LIGHT CHAIN	canonical structure
	LAMBDA (λ)	Ι λ , 2 λ , 3aλ, 3bλ, 4λ
LI	KAPPA (k)	Ik, 2k, 3ak, 3bk, 4k
L2		I
	LAMBDA (λ)	Iaλ, Ibλ, Iλc, 2λ
	KAPPA (k)	1k, 2k, 3k, 4k, 5k

L1	L2	L3

CLUSTAL	W(1.60)	multiple	sequence	alignment
---------	---------	----------	----------	-----------

E--LTQPPSVSVSPGQTARITCSA-N-A--LP--NQYAYWYQQKPGRA-PVMVIYKDTQR --LTQPPSASGTPGQRVTISCTG-S-ATDIG--SNSVIWYQQVP-GKAPKLLIYYNDLL I-VVTQESALTTSPGETVTLTCRSSTGT--VT-SGNHANWVQEKPDHL-FTGLIGDTNNR --LTQPPSVSGAPGQRVTISCTG-S-SSNIGAGH-NVKWYQQLPGTA-PKLL-----I A-VVTQESALTTSPGETVTLTCRSSTGA--VT-TSNYANWVQEKPDHL-FTGLIGGTNNR QSVLTQPPSASGTPGQRVTISCSG-T-SSNIG-SSTVNWYQQLP-GMAPKLLIYRDAMR A-VVTQESALTTSPGETVTLTCRSSTGA--VT-TSNYANWVQEKPDHL-FTGLIGGTNNR

PSGIPQRFSSSTSGTTVTLTISGVQAEDEADYYCQAWDN--SASIFGGGTKLTVLG---Q PSGVSDRFSASKSGTSASLAISGLESEDEADYYCAAWNDSLDEPGFGGGTKLTVLG---Q APGVPARFSGSLIGDKAALTITGAQPEDEAIYFCALWSN--NHWIFGGGTKLTVLGQGE-FHN-NARFSVSKSGTSATLAITGLQAEDEADYYCQSYDR--SLRVFGGGTKLTVLG---Q APGVPARFSGSLIGDKAALTITGAQTEDEAIYFCALWYS--NHWVFGGGTKLTVLG---Q PSGVPDRFSGSKSGASASLAIGGLQSEDETDYYCAAWDVSLNAYVFGTGTKVTVLG---Q APGVPARFSGSLIGDKAALTITGAQTEDEARYFCALWYS--NLWVFGGGTKLTVLG---Q

L2

7fab

LIGHT CHAIN (KAPPA)

1hil 2imm 1flr 1fvc 1igm 1fgv 1vfa 2fbj 1tet 2cgr

1hil

2imm 1flr

1fvc 1igm 1fgv 1vfa 2fbj

1tet 2cgr

CLUSTAL W(1.60) multiple sequence alignment

l	LIGHT CHAIN	canonical structure
11	LAMBDA (λ)	ι λ , 2 λ , 3aλ, 3bλ, 4λ
LI	KAPPA (k)	Ik, 2k, 3ak, 3bk, 4k
L2		I
	LAMBDA (λ)	laλ, lbλ, lλc, 2λ
5	KAPPA (k)	Ik, 2k, 3k, 4k, 5k

L1 L2 L3

				and some set of the set		
STKVDKKIEF	RDIVMTQSPS	SLTVTAGEK	VTMSCTS <mark>SQ</mark>	SLFNSGKQK	NYLTWYQ	QKPGQP
	- DIVMTQSPS	SLSVSAGER	VTMSCKSSQ	SLLNSGNQK	NFLAWYQ	QKPGQP
	- DVVMTQTPL	SLPVSLGDQ	ASISCRSSO	SLVH-SNGN	TYLRWYL	QKPGQS
WGQGTLVTVS	SDIOMTOSPS	SLSASVGDR	VTITCRASO	DVN	TAVAWYO	OKPGKA
	-DIOMTOSPS	SLSASVGDR	VTITCOASO	DIS	NYLAWY	OKPGKA
	-DIOMTOSPS	SLSASVGDR	VTITCRASO	DIN	NYLNWYC	OKPGKA
	-DIVLTOSPA	SLSASVGET	VTITCRASG	NIH	NYLAWYO	OKOGKS
	- FTVI TOSPA	TTAASI GOK	VTITCSASS	svs	- SI HWYO	OKSGTS
	- DVI MTOTPI	SI PVSI GDO	ASTSCKSSO	STVH-SSGN	TYFEWY	OKPGOS
	- FI VMTOSPI	SL PVSL GDO	ASTSCRESO	SLVH-SNGN	TYLHWYL	OKPGOS
	LEVINGOLE	SEI VOLODQI	NOTOON DQ	SETH SHOR		cyci ugo
PKVI TYWAST	RESGVPDRET	GSGSGTDET	TISSVOAF	DI AVYYCON	DYSNPL T	EGGGTK
PKILTYGAST	RESGVPDRET	GSGSGTDET	TISSVOAE	DLAVYYCON	DHSYPIT	EGAGTK
DKVI TYKVS	RESGUPDRES	GSGSGTDET	KISRVEAE	DIGVYECSO	STHVDWT	EGGGTK
DELLTVEASE	I VSCUDEDES	CSPSCTDET	TTESLODE	DEATVYCOO	UVTTODT	FCOCTK
PRELITION	LISUVPSRFS	COCCOTDET	LTISSLUPE	DFATTYYCOO		FOUGIK
PELKITUASI	LEIGVPSRFS	GSGSGTDFT	TTOOLODE	DIATTYCQQ	TUNLPLI	FOPGIK
PKLLIYYISI	LESGVPSRFS	GSGSGTDYT	LIISSLQPE	DEATYYCQQ	GNILPPI	FGAGIK
PQLLVYYII	LADGVPSRFS	GSGSGTQYS	LKINSLQPE	DEGSYYCQH	FWSTPRI	FGGGIK
PKPWIYEIS	LASGVPARFS	GSGSGTSYS	LTINTMEAE	DAAIYYCQQ	WTYPLIT	FGAGTK
PKLLIYKVSN	RFSGVPDRFS	GSGSGTDFT	LKISRVEAE	DLGVYYCFQ	GSHIPFT	FGSGTK
DVI I TVDVCM	IDECOV/DDDEC	COCOTACT	LITCOVEAE	DICUNECCO	OTHER POLY	FOOTH

HEAVY CHAIN

HEAVY CHAIN	canonical structure
HI	I, 2, 3
H2	I, 2a, 2b, 2c, 3a, 3b, 3c, 4
H3	-

Ofab	WODERED DI SCIASCETES NU VENUENDADE KELEMANTUN NES	TVVCDC
arab	VVQPGRSLRLSCIASGETES-N-TGMHWVRQAPG-KGLEWVAVIWTNGS	- ITTGDS
1991	ILUPSUILSLICSFSGFSLSIYGMGVSWIRUPSG-KGLEWLAHIFWDG-I	-KRYNPS
1011	LVKPGGSLKLSCAASGESES-S-YGMSWVRQIPD-KRLEWVAIISNGGG	-TYYPUS
1TVC	LVQPGGSLRLSCAASGENIK-D-IYIHWVRQAPG-KGLEWVARIYPING-	- TRYADS
1mta	VARPGASVKMSCKASGYTFT-N-YWMHWIKQRPG-QGLEWIGAIYPGNS-/	- IFYNHK
ligm	LVQPGGSLRLSCAASGFTFN-I-FVMSWVRQAPG-KGLEWVSGVFGSGG	- TDYADA
1fgv	LVQPGGSLRLSCATSGYTFT-E-YTMHWMRQAPG-KGLEWVAGINPKNG-G	-TSYADS
1vfa	LVAPSQSLSITCTVSGFSLT-G-YGVNWVRQPPG-KGLEWLGMIWGDG-I	- TDYNSA
2fb4	VVQPGRSLRLSCSSSGFIFS-S-YAMYWVRQAPG-KGLEWVAIIWDDGSI	-QHYADS
1gig	LVAPSQSLSITCTVSGFLLI-S-NGVHWVRQPPG-KGLEWLGVIWAGG-I	-TNYNSA
7fab	LVRPSQTLSLTCTVSGTSFD-D-YYWTWVRQPPG-RGLEWIGYVFYTG-1	- TLLDPS
1acy	VIKPSQSLSLTCIVSGFSITRTNYCWHWIRQAPG-KGLEWMGRICYEG-	-IYYSPS
1ai1	VIKPSQSLSLTCIVSGFSITRTNYCWHWIRQAPG-KGLEWMGRICYEG-	-IYYSPS
1tet	LKTPGETVRISCKASGYTFT-T-YGMSWVKQTPG-KGFKWMGWINTYSG-V	-PTYADD
2fbj	LVQPGGSLKLSCAASGFDFS-K-YWMSWVRQAPG-KGLEWIGEIHPDS-G	TINYTPS
1baf	LVKPSQSQSLTCTVTGYSITSD-YAWNWIRQFPGNK-LEWMGYMSYSG-S	- TRYNPS
2cgr	LMKPGASVQISCKATGYTFS-E-YWIEWVKERPG-HGLEWIGEILPGSG-H	- TNYREK
1ind	SVKPGGSLKLSCAASGFTLS-G-ETMSWVRQTPE-KRLEWVATTLSGGG-F	-TFYSAS
1flr	LVQPGRPMKLSCVASGFTFS-D-YWMNWVRQSPE-KGLEWVAQIRNKPYNY-I	- TYYSDS
1ggc	ILQPSQTLSLTCSFSGFSLSTYGMGVSWIRQPSG-KGLEWLAHIFWDG-	-KRYNPS
		and a marked
8fab	VKGRFTISRDNSKRTLYMOMNSLRTEDTAVYYCARDP-D-IL	AFS-FDY
1aai	LKSRLKISKDTSNNOVFLKITSVDTADTATYYCV0E	G-YIY
1hil	VKGRFTISRDNAKNTLYLOMSSLKSEDSAMYYCARRERYD	EN-G-FAY
1fvc	VKGRFTISADTSKNTAYLOMNSLRAEDTAVYYCSRWG-GDG	Y-A-MDY
1mfa	FRAKTKLTAVTSTTTAYMELSSLTSEDSAVYYCTRGG-H	-G-YYGDY
1igm	VKGRFTITRDNSKNTLYLQMNSLRAEDTAIYYCAKHR-VSYVL	T-G-FDS
1fgv	VKGRFTISVDKSKNTLYLOMNSLRAEDTAVYYCARWR-GLDV	R-Y-FDV
1vfa	LKSRLSISKDNSKSQVFLKMNSLHTDDTARYYCARER-D	Y-R-LDY
2fb4	VKGRFTISRNDSKNTLFLOMDSLRPEDTGVYFCARDGGHGFC-SSAS	CF-G-PDY
1aia	LMSRVSISKDNSKSOVFLKMKSLOTDDTAMYYCARDF-YDYDVF	YY-A-MDY
7fab	LRGRVTMLVNTSKNOFSLRLSSVTAADTAVYYCARNLIA	G-G-IDV
1acv		T-Y-EDV
1ai1	INSUSTINCTION AND AND AND AND AND AND AND AND AND AN	
	IKSRSTISRDTSLNKFFIOLISVTNEDTAMYYCSRENHMY	T-Y-FDV
1tet	IKSRSIISRDISLNKFFIQLISVINEDIANYCSRENHM	W-Y-FDV
1tet 2fbj	IKSRSTISRDTSLNKFFIQLISVINEDIANYCSRENHMYE FKGRFAFSLETSASTAYLQINNLKNEDTATYFCARRS- LKDKFIISRDNAKNSLYLOMSKVRSEDTALYYCARLH-Y-	W-Y-FDV W-Y-FDV YGY-NAY
1tet 2fbj 1baf	IKSRSIISRDISLNKFFIQLISVINEDIANYCSRENHMYE FKGRFAFSLETSASTAYLQINNLKNEDTATYFCARRS- LKDKFIISRDNAKNSLYLQMSKVRSEDTALYYCARLH-Y- LRSRISITRDTSKNOFFLOLKSVTTEDTATYFCARG	T-Y-FDV W-Y-FDV YGY-NAY W-P-LAY
1tet 2fbj 1baf 2cgr	IKSRSIISRDISLNKFFIQLISVINEDIANTICSKENHM IKSRSIISRDISLNKFFIQLISVINEDIANYCSRENHM FKGRFAFSLETSASTAYLQINNLKNEDTATYFCARRS. LKDKFIISRDNAKNSLYLQMSKVRSEDTALYYCARLH -Y. LRSRISITRDTSKNQFFLQLKSVTTEDTATYFCARGY.	T-Y-FDV W-Y-FDV YGY-NAY W-P-LAY S-S-MDY
1tet 2fbj 1baf 2cgr 1ind	IKSRSIISRDISLNKFFIQLISVINEDIAMYCSRENHM	W-Y-FDV -YGY-NAY -YGY-NAY -W-P-LAY -S-S-MDY
1tet 2fbj 1baf 2cgr 1ind 1flr	IKSRSTISRDTSLNKFFIQLISVINEDTAMYYCSRENHM	R - FDV W-Y - FDV - YGY - NAY W-P - LAY - S - S - MDY R - FVH
1tet 2fbj 1baf 2cgr 1ind 1flr 1ggc	IKSRSIISRDISLNKFFIQLISVINEDIAMYICSRENHM	W-Y-FDV W-Y-FDV -YGY-NAY W-P-LAY -S-S-MDY R-FVH G-MDY G-YIY

Fab \rightarrow CDR \rightarrow hotspot hypothesis \downarrow residues determine the binding energy

ANTIBODY-ANTIGEN INTERACTION

Reversible noncovalent interaction forces

- Electrostatic forces
- Hydrogen bonds
- Van der Waals forces
- Hydrophobic forces

SPIKE Structure of the SARS-CoV-2 spike glycoprotein (closed state) 2.80 Å

333

MGILPSPGMPALLSLVSLLSVLLMGCVAETGTQCVNLTTRTQLPPAYTNSFT RGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGTNGTKRFDNPVLP FNDGVYFASTEKSNIIRGWIFGTTLDSKTOSLLIVNNATNVVIKVCEFOFCN DPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSOPFLMDLEGKOGNFKNI REFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTL LALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCAL DPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNAT RFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYA DSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNY NYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTN GVGYOPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNFNFNGLTGTGVLT ESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVITPGTNTS NOVAVLYODVNCTEVPVAIHADOLTPTWRVYSTGSNVFOTRAGCLIGAEHVN NSYECDIPIGAGICASYQTQTNSPSGAGSVASQSIIAYTMSLGAENSVAYSN NSIAIPTNFTISVTTEILPVSMTKTSVDCTMYICGDSTECSNLLLOYGSFCT QLNRALTGIAVEQDKNTQEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPS KRSFIEDLLFNKVTLADAGFIKQYGDCLGDIAARDLICAQKFNGLTVLPPLL TDEMIAQYTSALLAGTITSGWTFGAGAALQIPFAMQMAYRFNGIGVTQNVLY ENQKLIANQFNSAIGKIQDSLSSTASALGKLQDVVNQNAQALNTLVKQLSSN FGAISSVLNDILSRLDPPEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRAS ANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQEK NFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGN CDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVV NIQKEIDRLNEVAKNLNESLIDLQELGKYEQYIKGSGRENLYFQGGGGSGYI PEAPRDGOAYVRKDGEWVLLSTFLGHHHHHHHH

ТΜ

IC

HRI

>6VXX 1

HR₂

highly conserved epitope
NTD - SD1 - SD2 - FP

572

Ν

CONCLUSIONS

WE CONCLUDE THAT...

- Immunoglobulins are essential for antigen recognition and immune response
- The basic immunoglobulin fold is a greek key motif beta sandwich
- Disulfide bridges are important for the maintenance of the Ig structure
- Glycosylations at ASN-297 play an essential role in structure integrity and Fc receptor recognition.
- Mutations at the hinge region (LALA mutants) lead to widening of the Fc opening.
- There are different subtypes of IgC, all of them with similar Fc regions
- The Fc region of IgCI is conserved among the species analyzed
- Fab interacts with the antigen through hypervariable regions (CDRs), which conform the antigen binding site
- There are conserved CDR structures which are called canonical structures.
- RBD is a highly conserved epitope from Spike that interacts with the Immunoglobulin C

PEM QUESTIONS

1. Which is the main fold of immunoglobulins?

a. Jelly roll

b. Greek key sandwich

- c. TIM barrel
- d. Rossman fold
- e. beta-barrel

2. In which immunoglobulin domain do IgG1 LALA mutants have the mutations?

- a. CDR1
- b. CDR2
- c. CDR3
- d. Fc region
- e. Hinge region
- 3. How many canonical structures have L2 (CDR2 of light chain) domain?
 - a. (
 - b. 1
 - c. 2
 - d. 3
 - e. 4

4. Mark the wrong answer about complementary determining regions (CDRs):

- a) There are CDR in both the light and heavy chains.
- b) Canonical structures refer to a limited number of conformations of the CDRs
- c) They are involved in binding of antigens
- d) They are part of the variable region of immunoglobulins

There are only 2 CDRs for each, the light and heavy chain.

5. Related to the hydrophobicity of immunoglobulins, indicate the true sentences:

- 1) The hydrophobic residues are mostly inside, as they repel water.
- 2) Hydrophilic residues on the surfaces contact with water as it is energetically advantageous
- 3) Hydrophobicity decreases along with distance from the center of the domain
- 4) Light-chain IgG domains are found not to contain regular hydrophobic cores

a. 1,2,3 b. 1,3 c. 2,4 d. 4 e. 1,2,3,4

e)

- 6. The variable chains in immunoglobulins are essential for the recognition of the antigens. Its acronym CDR comes from te words:
 - a. Committee in Defense of the Republic
 - . Complementarity-determining region
 - c. Complex-determining region
 - d. Canonical-detecting receptor
 - e. Common dual region

7. Mark the wrong answer related to the antigen-antibody interaction:

- a) RBD is an epitope from Spike (SARS CoV-2) that interacts with the Immunoglobulin G
- b) Some of the interactions that stabilize the structure are hydrogen bonds
- c) The antigen interacts with both the heavy and the light chain
- d) The binding Ab-Ag is based on reversible covalent interaction forces.
- e) It is based on electrostatic forces, Van der Waals, hydrogen bonds and hydrophobic forces.
- 8. Mark the correct answer about immunoglobulin structure
 - a) The hinge region is the same length in all IgG subtypes (IgG1, IgG2, IgG3 and IgG4) and all the Ig isotypes (IgG, IgM, IgE, IgD and IgA)
 - b) Disulfide bonds are not conserved in different IgG subtypes and isotypes

c) Glycosylation of the Fc region of Immunoglobulins is essential for their correct function

- d) Proline and glycine are mainly found in the beta strands and they are not present in the turns and coils.
- e) The immunoglobulin structure is conformed by multiple alpha helices and none beta-sheets.

9. FcγRI...

a) Binds to Fc region

- b) Binds to Fab region
- c) Binds to CDRs
- d) Does not bind to any part of immunoglobulines
- e) Binds to antigens

10. Which is the most abundant immunoglobuline in human serum?

- a) Ig A
- b) Ig E
- c) Ig D
- d) Ig G e) Ig M

BIBLIOGRAPHY

- Al-Lazikani B, Lesk AM, Chothia C. Standard conformations for the canonical structures of immunoglobulins. J Mol Biol. 1997 7;273(4):927-48
- Banach M, Roterman I, Prudhomme N, et al. Hydrophobic core in domains of immunoglobulin-like fold. J Biomol Struct Dyn. 2014 32(10):1583-600.
- Das M, Basu G. Clycine rescue of β-sheets from cis-proline. J Am Chem Soc. 2012 10;134(40):16536-9
- Davies AM, Sutton BJ. Human IgG4: a structural perspective. Immunol Rev. 2015 268(1):139-59
- Feige MJ, Nath S, Catharino SR, et al. Structure of the murine unglycosylated IgGI Fc fragment. J Mol Biol. 2009 21;391(3):599-608
- Harris LJ, Skaletsky E, McPherson A. Crystallographic structure of an intact IgCI monoclonal antibody. J Mol Biol. 1998 6;275(5):861-72
- Janeway CA Jr, Travers P, Walport M, et al. Immunobiology: The Immune System in Health and Disease. 5th edition. New York: Garland Science; 2001. The interaction of the antibody molecule with specific antigen. Available from: <u>https://www.ncbi.nlm.nih.gov/books/NBK27I60/</u>
- Juraszek J, Rutten L, Blokland S, et al. Stabilizing the closed SARS-CoV-2 spike trimer. Nat Commun. 2021 II;12(I):244
- Kiyoshi M, Tsumoto K, Ishii-Watabe A, et al. Clycosylation of IgC-Fc: a molecular perspective. Int Immunol. 2017 1;29(7):311-317
- Krapp S, Mimura Y, Jefferis R, et al. Structural analysis of human IgG-Fc glycoforms reveals a correlation between glycosylation and structural integrity. J Mol Biol.
 2003 31;325(5):979-89
- Lu J, Chu J, Zou Z, et al. Structure of FcyRI in complex with Fc reveals the importance of glycan recognition for high-affinity IgG binding. Proc Natl Acad Sci U S A.
 2015 20;112(3):833-8
- Matsumiya S, Yamaguchi Y, Saito J, et al. Structural comparison of fucosylated and nonfucosylated Fc fragments of human immunoglobulin GI. J Mol Biol. 2007 4;368(3):767-79

- North B, Lehmann A, Dunbrack RL Jr. A new clustering of antibody CDR loop conformations. J Mol Biol. 2011 18;406(2):228-56
- Rayner LE, Hui GK, Gor J, et al. The solution structures of two human IgGI antibodies show conformational stability and accommodate their CIq and FcyR ligands. J Biol Chem. 2015 27;290(13):8420-38
- Sasorith S, Cambon M, Lefranc MP. Immunoglobulin (IC) or antibody glycosylation. 2020. Available from: https://www.imgt.org/IMCTeducation/IMGTlexique/C/Clycosylation.html
- Schlothauer T, Herter S, Koller CF, et al. Novel human IgCI and IgC4 Fc-engineered antibodies with completely abolished immune effector functions. Protein Eng Des Sel. 2016 29(10):457-466
- Schroeder HW, Cavacini L. Structure and function of immunoglobulins. J Allergy Clin Immunol. 2010 125(2 Suppl 2):S41-52
- Sela-Culang I, Kunik V, Ofran Y. The structural basis of antibody-antigen recognition. Front Immunol. 2013 8;4:302
- Tomar DS, Li L, Broulidakis MP, et al. In-silico prediction of concentration-dependent viscosity curves for monoclonal antibody solutions. MAbs. 2017 9(3):476-489
- Valenzuela NM, Schaub S. The Biology of IgG Subclasses and Their Clinical Relevance to Transplantation. Transplantation. 2018 102(IS Suppl I):S7-S13
- Vargas-Madrazo E, Lara-Ochoa F, Almagro JC. Canonical structure repertoire of the antigen-binding site of immunoglobulins suggests strong geometrical restrictions associated to the mechanism of immune recognition. J Mol Biol. 1995 1;254(3):497-504
- Vidarsson G, Dekkers G, Rispens T. IgG subclasses and allotypes: from structure to effector functions. Front Immunol. 2014 20;5:520
- Walls AC, Park YJ, Tortorici MA, et al. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell. 2020 16;181(2):281-292
- Yuan M, Wu NC, Zhu X, et al. A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV. Science. 2020 8;368(649I):630-633