Histone deacetylases HDAC8

Ylenia González, Paula Mayo, Anna Ruiz and Júlia Terzulli

Index

- 1. HDACS
- 2. Classification
- **3.** HDAC8
- 4. Active Site
- 5. Deacetylation Reaction
- 6. Liberation Channel
- 7. Hydrophobicity
- 8. Intramolecular Interactions

- 8. Post-translational modifications
- 9. Trichostatin A
- 10. Mutations: diseases
- 11. Evolution
- 12. Conclusions
- 13. Bibliography
- 14. PEM Questions

HDACS

HDACs Physiological Role

Zn²⁺/NAD⁺-dependent proteolytic enzyme

HDACs Physiological Role

CLASSIFICATION

HDAC8

HDAC8 Physiological Role

Enzyme encoded in humans by HDAC8 gene, located in X chromosome

Also expressed in other eukaryotic organisms

 \rightarrow 42 kDa, 377 residues

Histones Non-histone proteins H2A, H2B, H3 and H4 (Lys16 and m52, CDCD, CDCD, CMC2

H2A, H2B, H3 and H4 (Lys16 and Lys20)

p53, CREB, ERRa, SMC3

HDAC8 Physiological Role

HDAC8 description – structure, SCOP

Class	Alpha and beta proteins (α/β)
Fold	Arginase/deacetylase
Superfamily	Arginase/deacetylase-like
Family	HDAC-like

3 layers: $\alpha/\beta/\alpha$, parallel β -sheet of 8 strands

HDAC8 (1T64), Homo sapiens, 1.90Å

HDAC8 description – structure

Topology diagram generated using PDBsum (EMBL-EBI)

HDAC8 description – structure

14 LVPVY IYSPEYVSMCDSLAKIPKRASMVHSLIEAYALHKQMRIVKPKVASMEEMATFHTDAYLQHLQKVSQEGDDDHPDSIEYGLGYDCPATEGIFDYAAAIGGATITAAQCLIDGMCKVAINWSGGWHAKKDE 149 ASGFCYLNDAVLGILRLRRKFERILYVDLDLHHGDGVEDAFSFTSKVMTVSLHKFSPGFFPGTGDVSDVGLGKGRYYSVNVPIQDGIQDEKYYQICESVLKEVYQAFNPKAVVLQLGADTIAGDPMCSFNMTPVG 284 IGKCLKYILQWQLATLILGGGGYNLANTARCWTYLTGVILGKTLSSEIPDHEFFTAYGPDYVLEITPSCRPDRNEPHRIQQILNYIKGNLKHVV

HDAC8 (1T64), Homo sapiens, 1.90Å

STAMP – Superimposition of human HDACs

HDAC2 (7LTG) Homo sapiens 1.80Å HDAC 8 (1T64) Homo sapiens 1.90Å HDAC 4 (2VQJ) Homo sapiens 2.10Å HDAC 7 (3COY) Homo sapiens 2.10Å HDAC3 (4A69) Homo sapiens 2.06Å

STAMP – HDACs dendrogram

ACTIVE SITE

Substrate binding surface

These loops create several different conformations that allow HDAC8 to bind to different substrates

Residues in the active site

- D101
- H142
- H143
- G151
- F152
- D178
- H180
- F208
- M274
- D267
- Y306

Deacetylation reaction

1. <u>Active site:</u> Zn²⁺ bound to H180, D267 and D178. Y306, and H142 and H143.

- 1. <u>Active site:</u> Zn²⁺ bound to H180, D267 and D178. Y306, and H142 and H143.
- The Zn²⁺ and H143 promote the nucleophilic attack of the water molecule to the carbonyl group of the acetyl-lysine. The proton from the water molecule binds to H143.

- .. <u>Active site:</u> Zn²⁺ bound to H180, D267 and D178. Y306, and H142 and H143.
 - The Zn²⁺ and H143 promote the <u>nucleophilic attack</u> of the water molecule to the carbonyl group of the acetyl-lysine. The proton from the water molecule binds to H143.
 - The OH group binds to the carbonyl group of acetyl-lysine forming a tetrahedral intermediate, stabilized by Y306. The OH group remains attached to the metal ion.

- <u>Active site:</u> Zn²⁺ bound to H180, D267 and D178. Y306, and H142 and H143.
- The Zn²⁺ and H143 promote the <u>nucleophilic attack</u> of the water molecule to the carbonyl group of the <u>acetyl-lysine</u>. The proton from the water molecule binds to H143.
- 3. The OH group binds to the carbonyl group of acetyl-lysine forming a tetrahedral intermediate, stabilized by Y306. The OH group remains attached to the metal ion.
- 4. The proton from the H143 is transferred to the leaving amino group of lysine, causing the collapse of the tetrahedral intermediate and the release of the acetate group.

LIBERATION CHANNEL

Residues in the liberation channel (I)

Residues in the liberation channel (I)

HYDROPHOBICITY

Human HDACs alignment

Residues conserved in human HDACs

D101 — Substrate binding

HDAC10	GQFDa
HDAC2	VGE <mark>D</mark> -
HDAC5	llgpisqkmyavlpcggigVDSD-
HDAC9	VDS <mark>D</mark> -
HDAC1	VGE <mark>D</mark> -
HDAC3	kslnafnVGD <mark>D</mark> -
HDAC6	SNFDs
HDAC7	lagllaqrmfvmlpcggvgVDTD-
HDAC11	FLPN-
HDAC4	llgslasvf-vrlpcggvgVDSD-
HDAC8	LGYD-

Y306 Stabilization of tetrahedral intermediate		
HDAC10	- GGRVCAVLEGGYHLESLAESVCMTVQTL-	
HDAC2	LPLLMLGGGGYTIRNVARCWTYETAV	
HDAC5	-GGRVVLALEGGHDLTAICDASEACVSAL-	
HDAC9	-DGRVVLALEGGHDLTAICDASEACVNAL-	
HDAC1	LPMLMLGGGGYTIRNVARCWTYETAV	
HDAC3	IPLLVLGGGGYTVRNVARCWTYETSLL-	
HDAC6	-SGRIILILEGGYNLTSISESMAACTRSL-	
HDAC7	- GGAVVLALEGGHDLTAICDASEACVAAL-	
HDAC11	RRVPILMVTSGGYOKRTARIIADSILNL	
HDAC4	- GGRIVLALEGGHDLTAICDASEACVSAL-	
Q9BY41	LATLILGGGGYNLANTARCWTYLTGVI-	

Residues conserved in human HDACs

H142 H143 G151 F152 G - - HHGORAAANGFCV HDAC10 GalHHAKKSEASGFCY HDAC2 HDAC5 G--HHAEESTAMGFCF HDAC9 G--HHAEESTAMGFCF GglHHAKKSEASGFCY HDAC1 HDAC3 GalHHAKKFEASGFCY HDAC6 G--HHAEQDAACGFCF G--HHADHSTAMGFCF HDAC7 HDAC11 GgfHHCSSDRGGGFCA HDAC4 G - - HHAEESTPMGFCY HDAC8 GowHHAKKDEASGFCY

Deacetylation reaction

Hydrophobicity

Bound to Zn²⁺

Zn²⁺ coordination

____176 D178 H180

HDAC2

HDAC9

HDAC1

HDAC3

HDAC6

HDAC7

HDAC4

HDAC8

HDAC10 LVVDWDVHHGOGIOYL LYIDIDIHHGDGVEEA HDAC5 LIVDWDIHHGNGTOOA LIVDLDVHHGNGT00A LYIDIDIHHGDGVEEA LYIDIDIHHGDGVOEA LIVDWDVHHGNGTOHM LIVDWDVHHGNGT00T TIIDLDAHOGNGHERD HDAC11 LIVDWDVHHGNGTQQA LYVDLDLHHGDGVEDA

Residues conserved in human HDACs

D267 \longrightarrow Bound to Zn²⁺

HDAC10	ELVLVSAGFDSAIGD
HDAC2	SAVVLQCGADSLSGD
HDAC5	DVVLVSAGFDAVEGHls
HDAC9	DMVLVSAGFDALEGHtp
HDAC1	SAVVLQCGSDSLSGD
HDAC3	TCIVLQCGADSLGCD
HDAC6	ELVLVSAGFDAARGD
HDAC7	DLVLVSAGFDAAEGHpa
HDAC11	DVVVYNAGTDILEGD
HDAC4	DVVLVSSGFDAVEGHpt
HDAC8	KAVVLQLGADTIAGD

Intramolecular interactions

Hydrogen bonds – beta sheet

HDAC8 (1T64), Homo sapiens, 1.90Å

Hydrogen bonds – alpha helixes

Zn^{2+} in the active site

HDAC8 (1T64), Homo sapiens, 1.90Å

Zn^{2+} in the active site

	Atom	Distance
ASP 178	OD2	1.97 Å
HIS 180	ND1	2.15 Å
ASP 267	OD2	1.94 Å

Zn^{2+} in the active site – conserved residues in HDACs

D178 H180		D267	
HDAC10			
HDAC5	LIVDWDIHHGNGTQ	LVSAGFDAVEGH	
HDAC9	LIVDLDVHHGNGTQ	LVSAGFDALEGH	
HDAC1	LYIDIDIHHGDGVE	VLQCGSDSLSGD	
HDAC3	LYIDIDIHHGDGVQ	VLQCGADSLGCD	
HDAC6	LIVDWDVHHGNGTQ	LVSAGFDAARGD	
HDAC7	LIVDWDVHHGNGTO	LVSAGFDAAEGH	
HDAC11	TIIDLDAHQGNGHE	VYNAGTDILEGD	
HDAC4	LIVDWDVHHGNGTO	LVSSGFDAVEGH	
HDAC8	LYVDLDLHHGDGVEI	VLQLGADTIAGD	

K⁺ binding site

HDAC8 (1T64), Homo sapiens, 1.90Å

K⁺ binding site

	Atom	Distance	
ASP 176	OD1	2.52 Å	
ASP 176	Ο	2.74 Å	/A H 1807 /A D 200
ASP 178	Ο	2.34 Å	2.342.37Å
HIS 180	Ο	2.60 Å	2.5% /A S 199
LEU 200	Ο	2.37 Å	A 10 176
SER 199	Ο	2.96 Å	

K⁺ – conserved residues in HDACs

D	0176 D178 H180	L2
HDAC10	LVVDWDVHHGQGIQ'	SVLYFS
HDAC2	LYIDIDIHHGDGVE	RVMTVSF
HDAC5	LIVDWDIHHGNGTQ	SVLYISL
HDAC9	LIVDLDVHHGNGTQ	SILYISL
HDAC1	LYIDIDIHHGDGVE	RVMTVS
HDAC3	LYIDIDIHHGDGVQ	RVMTVSF
HDAC6	LIVDWDVHHGNGTQ	SVLYVSL
HDAC7	LIVDWDVHHGNGTQ	SVLYISL
HDAC11	TIIDLDAHQGNGHE	RVYIMDV
HDAC4	LIVDWDVHHGNGTQ	SVLYMSL
HDAC8	LYVDLDLHHGDGVEI	KVMTVSL

200 HR-YEhG HK-YG--HR - YDnG HR-YDeG HK-YG--HK-YG-N HR-YDhG HRhDD-G 'YN---R HR - YDdG HK-FS-P

K⁺ binding site

HDAC8 (1T64), Homo sapiens, 1.90Å

Post-translational modifications

Post-translational modification

PKA phosphorylation

MEEPEEPADSGQSLVPVYIYSPEYVSMCDSLAKIP KRA<mark>S</mark>MVHSLIEAYALHKQMRIVKPK

Phosphorylation has the potential to affect:

- Subcellular localization
- Protein-protein interactions
- Allosteric effects
- HDAC8 activity → conformational changes that propagate to the active site or enzyme-substrate interface

Post-translational modification

S39

A HIS 42 /A VAL 25 **SER 39** /AASP 29 /A GLU 335 /A PHE 336 ALYS 36

Residues conserved in human HDACs

S39

HDAC10	LTAALDRLRQRGLEQRCLRLSAREASEEELGLVHSPEYVSLVRETQ
HDAC2	IRMTHNLLLNYGLYRKMEIYRPHKATAEEMTKYHSDEYIKFLRSIRpd
HDAC5	IQSIWSRLQETGLLSKCERIRGRKATLDEIQTVHSEYHTLLYGTS
HDAC9	IQSIWSRLQETGLLNKCERIQGRKASLEEIQLVHSEHHSLLYgtnpldgQKldprill
HDAC1	IRMTHNLLLNYGLYRKMEIYRPHKANAEEMTKYHSDDYIKFLRSIRpd
HDAC3	LALTHSLVLHYGLYKKMIVFKPYQASQHDMCRFHSEDYIDFLQRVSpt
HDAC6	ILRIMCRLEELGLAGRCLTLTPRPATEAELLTCHSAEYVGHLRATE
HDAC7	IQSIWSRLQERGLRSQCECLRGRKASLEELQSVHSERHVLLYGTNP
HDAC11	WGKVINFLKEEKLLSDSMLVEAREASEEDLLVVHTRRYLNELKWSF
HDAC4	IQSIWSRLQETGLRGKCECIRGRKATLEELQTVHSEAHTLLYGTNP
HDAC8	ASMVHSLIEAYALHKQMRIVKPKVASMEEMATFHTDAYLQHLQKVSq

Trichostatin A

Structure

Molecular weight: 302,37 g/mol Formula: $C_{17}H_{22}N_2O_3$ ÇH₃ H₃C′ Dimethylamine Ketone Polyene H₃C | 2.673A - Hydroxamate: it H₃C′ binds to Zn²⁺ due to chelation

TSA in the liberation channel

Hydrogen bonds in the active site

- HIS142 (NE2) TSA: hydrogen bond (2,766Å)
- TYR 306 (OH) TSA: hydrogen bond (2,519Å)
- HIS143 (NE2) TSA: hydrogen bond (2,700Å)

TSA interactions in the active site

HDAC atom	TSA atom	Distance	Bond
HIS 143-NE2	N1	2.70 Å	Hydrogen
HIS 142-NE2	N1	3.47 Å	Van der Waals
HIS 143-CD2	N1	3.23 Å	Van der Waals
Zn ²⁺	01	2.00 Å	Covalent
HIS 142-NE2	01	2.77 Å	Hydrogen
HIS 143-NE2	01	3.11 Å	Van der Waals
Zn ²⁺	02	2.22 Å	Covalent
TYR 306-CE1	02	3.35 Å	Van der Waals
TYR 306-CZ	02	3.35 Å	Van der Waals
TYR 306-OH	02	2.52 Å	Van der Waals

Mutations: diseases

Cornelia de Lange disease

Cornelia de Lange syndrome (CdLS) is a dominantly **inherited congenital malformation disorder**.

→ Caused by mutations in the cohesin-loading protein NIPBL or in the core cohesin components SMC1A and SMC3.

SMC3 is acetylated during S-phase to establish cohesiveness of chromatin-loaded cohesin. Loss of HDAC8 activity results in increased SMC3 acetylation and inefficient dissolution of the cohesin complex.

SMC3 with retained acetylation is loaded onto chromatin = altered transcription

Mutations in HDAC8 related to Cornelia de Lange disease

Mutation	Position
Histidine (H) \rightarrow Arginine (R)	180
Glycine (G) \rightarrow Arginine (R)	320
Aspartic acid (D) \rightarrow Alanine (A)	176

D176A mutation

- D176 is bound to a monovalent cation (K⁺) at the active site.
- D176 accepts a hydrogen bond from one of the catalytic histidine residues, H142, and stabilizes the positively charged imidazolium cation → key role in electrostatic catalysis.

D176A mutation

$\textbf{D176} \rightarrow \textbf{A176}$

- Deletion of the negatively charged carboxylate side chain of D176 results in the dissociation of the K⁺ ion to which it is coordinated.
- The side chain of H142 rotates and shifts 1.4 Å to form a new hydrogen bond with Y174.
- Lower pKa of H142 due to the loss of D176-H142 hydrogen bond → proton dissociation to yield the neutral imidazole form.
- The consequences for catalysis are severe: D176A HDAC8 exhibits a reduction in kcat.

K+ binding is necessary to stabilize the protein scaffolding in a catalytically competent conformation

D176A mutation

Shift of histidine 142: 1.4 Å HIS 142: HDAC8 without mutation HIS 142: HDAC8 with mutation

HDAC8	HDAC8 mutated
ASP 176	ALA 176
TYR 174	TYR 174
HIS 142	HIS 142

Evolution

Phylogenetic tree

D101 in different species

Homo sapiens Danio rerio Xenopus tropicallis Bos taurus Mus musculus Pan troglodytes Panthera pardus Notechis scutatus Latimeria chalumnae Equus caballus Gallus gallus Catharus fuscescens Araneus ventricosus Alligator sinensis Trichinella nelsoni Schistocephalus solidus Stylophora pistillata Sarcophilus harrisii Perkinsus chesapeaki

MATFHTDAYLQHLQKVSqegDDDHPDSIEYGLGYDCPA
MAVFHTDSYLQHLHKISqdgDNDDPQSADFGLGYDCPV
MAAFHTDSYLQHLHKVSeegDNDDPETLEYGLGYDCPI
MASFHTDAYLQHLQKVSedgDDDHPDSIEYGLGYDCPA
MATFHTDAYLQHLQKVSqegDEDHPDSIEYGLGYDCPA
MATFHTDAYLQHLQKVSqegDDDHPDSIEYGLGYDCPA
MATFHTDAYLQHLQKVSqegDDDHPDSVEYGLGYDCPA
MAAFHTDAYLQHLQQVSeegNEDHPDSAEFGLGYDCPA
MATFHTDAYLQHLQKVSeegDEDHPESGEYGLGYDCPT
MATFHTDAYLQHLQKVSqegDDDHPDSIEYGLGYDCPA
MASFHTDAYLQHLQKVSeegDDDHPESVEYGLGYDCPA
MASFHTDAYLQHLQKVSeegDDDHPESVEYGLGYDCPA
LKSFHSEEYIDFLKKINdlseeellDEEEEEMEKYGIGYDCPF
PAGYDCPA
VGVFHSDDYISFVKNASagliaeveDVESEPMRDYGLGYDCPI
kyLSSFHSHDFLESLRLLDgyyaddadpdipDDVMDSLEEYGLAYDCQGI
LSAFHSLDYVKCLEKLAsncddEEMEETAAEYGLGFDCPLI
MASFHTDAYLQHLQKVSeegDDEHPDSVEFGLGYDCPS
LAVFHDRRYLDFIRNPSETERKRHVVDpfvkynlsllPWTDCTL

H142 and H143 in different species

Homo sapiens Danio rerio Xenopus tropicallis Bos taurus Mus musculus Pan troglodytes Panthera pardus Notechis scutatus Latimeria chalumnae Equus caballus Gallus gallus Catharus fuscescens Araneus ventricosus Alligator sinensis Trichinella nelsoni Schistocephalus solidus Stylophora pistillata Sarcophilus harrisii Perkinsus chesapeaki

EGIFDYAAAIGGATITAAQCLIDG---MCKVAINWSGgwHHAK-EGIFDYAAAVGGATLTAAQNLLDG---KCDVAINWAGgwHHAK-EGIYDYAAAVGGATLTAAEOLMAG---KTRIAINWPGgwHHAK-EGIFDYAAAVGGATITAAOCLIDG---MCKVAINWSGgwHHAK-EGIFDYAAAIGGGTITAAQCLIDG---KCKVAINWSGgwHHAK EGIFDYAAAIGGATITAAOCLIDG---MCKVAINWSGgwHHAK EGIFDYAAAVGGATITAAQCLIDG---MCKVAINWSGgwHHAKnhtglsasgigggssfl KGVFEYAAAVGGGTLTAARCLVEQ---KGRVAINWAGgwHHAK EGIFDYAAAVGGASLTAAQCLIDR - - - SCKIAINWPGgwHHAK -EGIFDYAAAVGGATITAAQCLIDG---MCKVAINWSGgwHHAK-EGIFDYAAAVGGATITAAQCLLDG---KCKVAINWPGgwHHAK EGIFEYAAAVGGATITAAQCLLDG---KCKVAINWPGgwHHAK-PQIFDAASMIGGATVTAAKALLSG---EYQIAVNWGGgwHHAK-EGIFDYAAAVGGATITAAQCLMDG---KCKVAINWPGgwHHAK-PALYEYGRATVGATVHCAQLLVDG - - - KAKLAVNVNGgwHHAR PGVYDYALSAVRATLAAVDALLKR - - - KCOVAINWAGgwHHGK · DDLLDCMSVIAGGTLTAAEMLNKK---ECSIAINWOGgwHHAO EGIFDYAAAVGGATITAAQCLIDG---KCNIAINWAGgwHHAK-EGVYDYCCRTAGASLDAAQWLCDN-TESRPVAINWNGgmHHAH

G151, F152, D176, D178 and H180 in different species

Homo sapiens Danio rerio Xenopus tropicallis Bos taurus Mus musculus Pan troglodytes Panthera pardus Notechis scutatus Latimeria chalumnae Equus caballus Gallus gallus Catharus fuscescens Araneus ventricosus Alligator sinensis Trichinella nelsoni Schistocephalus solid Stylophora pistillata Sarcophilus harrisii Perkinsus chesapeak

	KDEASGFCYLNDAVLGILRLRRKFERILYVDLDLH
	KDEASGSCYVNDAVLGILKLREKYDRVLYVDVDLH
	KDEASGFCYLNDAVLGILKLREKFDRVLYVDMDLH
	KDEASGFCYLNDAVLGILRLRRKFDRILYVDLDLH
	KDEASGFCYLNDAVLGILRLRRKFDRILYVDLDLH
	KDEASGFCYLNDAVLGILRLRRKFERILYVDLDLH
	pgsfcnaalsawktspsgyGDEASGFCYLNDAVLGILRLRRKFDRILYVDLDLH
	RFDRVLYVDLDLH
	KDEASGFCYINDAVLGILKLRQKYERVLYVDLDLH
	KDEASGFCYLNDAVLGILRLRRKFDRILYVDLDLH
	KDEASGFCYLNDAVLGILRLRQKFDRILYIDLDLH
	KDEASGFCYLNDAVLGILRLROKFDRVLYIDLDLH
	KDQADGFCYVNDIVLGILHLLKKYKRVLYVDLDLH
	KDEASGFCYLNDVVLGILKLRQKFDRILYIDLDLH
	RSAAAGFCYFNDCVIGILKLRERFKRVLYIDLDAH
S	RAEASGFCYLNDVVIGLNYLLSsaafQDSRKRVIYLDFDLH
	KFDRILYVDIDLH
	KDEASGFCYLNDAVLGILHLRRKFDRILYIDLDLH
	VYDRVLYVDLDYH

D183 in different species

Homo sapiens Danio rerio Xenopus tropicallis Bos taurus Mus musculus Pan troglodytes Panthera pardus Notechis scutatus Latimeria chalumnae Equus caballus Gallus gallus Catharus fuscescens Araneus ventricosus Alligator sinensis Trichinella nelsoni Schistocephalus solidus Stylophora pistillata Sarcophilus harrisii Perkinsus chesapeaki

HGDGVEDAFSFTSKVMTVSLHK - - -- ESPGFFPGT -GDV-SDVG---L-GK-GR - GDV - TDTG - - - - L - GK - GR HODGVEDAESETSKVMTVSLHK---- ESPGEEPGT -HGDGVEDAESETSKVMTVSLHK-- ESPGFFPGT -GDV-SDIG----L-GK-GR HGDGVEDAFSFTSKVMTVSLHK-- FSPGFFPGT -GDV-SDVG----L-GK-GR HGDGVEDAESETSKVMTVSLHK-- ESPGEEPGT -GDM-SDVG---L-GK-GR GDV-SDVG----L-GK-GR HGDGVEDAFSFTSKVMTVSLHK-- FSPGFFPGT -HGDGVEDAFSFTSKVMTVSLHK -- FSPGFFPGT -GDV-SDVG----L-GK-GR HGDGVEDAFSFTSKVMTVSLHK---- FGPGFFPGT -GDV-TEVG----L-GK-GR HODGVEDAESETSKVMTVSFHK - - --YSEGEEPGT-GDV-TDIG----L-GK-GR HGDGVEDAFSFTSKVMTVSLHK - - -- FSPGFFPGT -GDV-SDVG----L-GK-GR HGDGVEDAFSFTSKVMTVSLHK - - -- FSPGFFPGT GDV-TDIG----L-GK-GR -FSPGFFPGKlnlggtGDV-TDVG----L-GK-GR HGDGVEDAFSFTSKVMTVSLHK-HODGVEEAFAHTSRVLCFSVHK--NEIGFYPGT GLL-NDIG---Y-GK-GK HGDGVEDAESETSKVMTVSLHK-- FSPGFFPGT -GDV-SEVG----L-GK-GR HODAVEDAFCSTRSVLTVSLHC --YEAGFYPCS -GSV-DDVG----V-GS-GK HGDGVEEAFAYSSRVVTFSVHH-GDItPDSSgfftG-ARgGR - ASPGFFPGT -HODGVEDAESETSKVMSVSFHK-- FSPGFFPGT -GGC-HDVG----L-GK-GK HODGVEDAFSFTSKVMTVSLHK - - - - FSPGFFPGT -GDV-SDVG----L-GK-GR HGDAVEEAFYSCPRVVTLSIHSapskSSGNSFPGT-GAV-YDIG---PdGTpGK

D267 in different species

Homo sapiens Danio rerio Xenopus tropicallis Bos taurus Mus musculus Pan troglodytes Panthera pardus Notechis scutatus Latimeria chalumnae Equus caballus Gallus gallus Catharus fuscescens Araneus ventricosus Alligator sinensis Trichinella nelsoni Schistocephalus solidus Stylophora pistillata Sarcophilus harrisii Perkinsus chesapeaki

YYSVNVPIODGIODEKYYOICESVLKEVYOAFNPKAVVLOLGADTIAGDPMC---SFNM-WYAVNVPFEDGVRDDRYCQTFTSVMQEVKALFNPEAVVMQLGADTMAGDPMC---SFNM-YYSVNVPLQDGIQDEKYYQICEGVLKEVFTTFNPEAVVLQLGADTIAGDPMC---SFNM-YYSVNVPIODCIODERYYHICESVLKEVYIAFNPKAVVLOLGADTIAGDPMC---SFNM-YYSVNVPIODGIODEKYYHICESVLKEVYOAFNPKAVVLOLGADTIAGDPMC---SFNM-YYSVNVPIODGIODEKYYOICESVLKEVYOAFNPKAVVLOLGADTIAGDPMC---SFNM-YYSVNVPIODGIODEKYYHICESVLKEVYIAFNPKAVVLOLGADTIAGDPMC---SFNM-YYSVNVPLODGIKNETYYOLCAAVLKDVYAAFHPGAVVLOLGADTIAGDPMC---AFNL-CYAVNVPLODGIODDKYFOICESILKEVYTAFSPOAVVLOLGADTLAGDPMC---SFNM-YYSVNVPIODGIODEKYYHICESVLKEVYIAFNPKAVVLOLGADTIAGDPMC---SFNM-YYSVNVPIQDGIQDEKYYQICETVLKEVYAAFNPEAVVLQLGADTIAGDPMC---SFNM-YYSVNVPIODGIRDEKYYOICESVLEEVYAAFNPDAVVLOLGADTIAGDPMC---SFNM-HYTINVPLYDGIQDSQYIELIIPLLSKTQKKFQPDIVVCQCGADTLAGDPFA---AFNL-YYTVNVPIODGIODEKYYOICETVLKEVYAAFNPEAVVLOLGADTIAGDPMC---SFNM-YYAVNVPFRQGLVDEQLLSTFDALVPKIVHLYRPEVVFLQLGTDGLAGDPVA---AFNL-YSCFNLPLAEGTGDETWLSTVKPILSALHASLOPSFIVVOCGADGLTSDPHR---VFNLs YYTVNVPLKDGITDKPFIEIFSRVMSEVKKRFKPSIVVCQCGVDTLAGDPMA---SFNL-YYSVNVPIODGIRDEKYYOVCKSVLKEVYVAFNPKAVVLOLGADTIAGDPMC---SFNL-GHAVNLPMKPGLTDDLFLYALRTTLEALLORFRPSCLVVQSGSDSLAGDLLTshsGFNL-

Y306 in different species

Homo sapiens Danio rerio Xenopus tropicallis Bos taurus Mus musculus Pan troglodytes Panthera pardus Notechis scutatus Latimeria chalumnae Equus caballus Gallus gallus Catharus fuscescens Araneus ventricosus Alligator sinensis Trichinella nelsoni Schistocephalus solidus Stylophora pistillata Sarcophilus harrisii Perkinsus chesapeaki

-TPVGIGK-CLKYILOWO---LATLILGGGGGYNLANTARCWTYLTGVI-lgktlsseipd -TPVGVAK-CLTYILGWE---LPTLLLGGGGGYNLANTARCWTYLTGT--vlgqtlsseip -TPQGIGK-CLKYVLQWQ---LPTLILGGGGGYHLPNTARCWTYLTALI-vgrtlsseipd -TPVGIGK-CLKYILOWE---LATLILGGGGGYNLANTARCWTYLTGVI-lgktlsseipd -TPVGIGK-CLKYVLQWQ---LATLILGGGGGYNLANTARCWTYLTGVI-lgktlsseipd -TPVGIGK-CLKYILOWO---LATLILGGGGGYNLANTARCWTYLTGVI-lgktlsseipd -TPVGIGK-CLKYILQWQ---LATLILGGGGGYNLANTARCWTYLTGVI-lgktlsseipd -TPEGIGK-CLNYVLQWQ---LPTLILGGGGGYHLANTARCWTYLTGVI-lgktlpseipd -TPLGVEK-CLKYVLQWE---LPTLILGGGGGYNLANTARCWTYLTGVI-lgktlsseipd -TPVGIGK-CLKYILOWO---LATLILGGGGGYNLANTARCWTYLTGVI-lgktlsseipd -TPEGVGK-CLKYVLOWO---LATLILGGGGGYNLANTARCWTYLTGVI-lgrtlsseipd -TPEGVGK-CLKYVLQWQ---LATLVLGGGGGYNLANTARCWTYLTGVI-lgrtlsseipd -TLKAPAE-CIKLLKSWN---IPLLALGGGGYNAVNTARCWTYLLSIL-ldktvesdipd -TPVGVGK-CLKYVLQWQ---LATLILGGGGGYNLANTARCWTYLTGVI-lgrtlsseipd - TPSAYAG - VVCRVLGFG - - - KPCLLVGGGGGYMPTNVSRCWALVLGAL - lggnldddipe vDQNCAHAgAVRQVLSWG---LPTLLLGGGGGYHFPDTARLWALLTSI--tlsavrgniye -TOYSIGE-CVKYLMEWN---LPLLLLGGGGYNVKNSARCWAYLTGV--vlnqqlspdip -TPVGLGK-CLKYILQWQ---LATLILGGGGGYHLANTARCWTYLTGVI-lgrtlsseipd -STRGHAT-AVQELRRLG---IPTLVLGGGGYSLTSVAKCWSMETAV--wlnrgepflsp

Conclusions

Conclusions

- HDAC plays an important role in gene expression as it is responsible for histone deacetylation.
- 2. Residues of the active site are conserved among HDAC classes
- 3. Residues of the active site are conserved throughout evolution
- 4. Mutations in HDAC8 cause the molecule to malfunction, leading to disease.

Bibliography

Bibliography

Banerjee S, Adhikari N et al. Histone deacetylase 8 (HDAC8) and its inhibitors with selectivity to other isoforms: An overview. *Eur J Med Chem*. 2019;164:214-240.

Dowling DP, Gantt SL, et al. Structural studies of human histone deacetylase 8 and its site-specific variants complexed with substrate and inhibitors. *Biochemistry*. 2008;47(51):13554-13563.

Shukla VK, Siemons L, et al. Aromatic side-chain flips orchestrate the conformational sampling of functional loops in human histone deacetylase 8. *Chem Sci.* 2021;12(27):9318-9327.

Somoza JR, Skene RJ, et al. Structural Snapshots of Human HDAC8 Provide Insights into the Class I Histone Deacetylases. *Structure*. 2004;12(7):1325–34.

Osko JD, Porter NJ, et al. Structural analysis of histone deacetylase 8 mutants associated with Cornelia de Lange Syndrome spectrum disorders. *J Struct Biol.* 2021;213(1):107681.

Vannini A, Volpari C, et al. Crystal structure of a eukaryotic zinc-dependent histone deacetylase, human HDAC8, complexed with a hydroxamic acid inhibitor. *Proc Natl Acad Sci USA*. 2004;101(42):15064–9.

Wolfson NA, Pitcairn CA, et al. HDAC8 substrates: Histones and beyond. Biopolymers. 2013;99(2):112-126.

PEM Questions

PEM Questions

HDACs are classified into:

- 1. 3 classes
- 2. 5 classes
- 3. 2 classes
- 4. 4 classes 🗸
HDAC8 is a ... histone deacetylase

- a. Class IV
- b. Class III
- c. Class II
- d. Class I 🗸
- e. Class V

HDAC8 has:

- a. 0 loops
- b. 7 loops
- c. 9 loops 🗸
- d. 6 loops
- e. 11 loops

Which ion is important in the deacetylation reaction?

- 1. Na
- 2. Pb
- 3. K
- 4. Zn
 - a) 1, 2 and 3 b) 1 and 3
 - c) 2 and 4
 - d) 1, 2, 3 and 4
 - e) 4 🗸

What parts of the HDAC8 have an important role in the deacetylation reaction?

- 1. The active site
- 2. N-terminal region
- 3. The liberation channel
- 4. C-terminal loop
 - a) 1, 2 and 3
 - b) 1 and $3\checkmark$
 - c) 2 and 4
 - d) 1, 2, 3 and 4
 - e) 4

Which residues are more conserved in HDACs family?

- a) Residues of the active site \checkmark
- b) Residues close to K⁺
- c) Loop 3 residues
- d) N-terminal residues
- e) C-terminal residues

TSA is an inhibitor of HDAC8 because it binds to:

- a) N-terminal residues
- b) S39
- c) Specifically to Zn^{2+}
- d) The active site \checkmark
- e) It does not inhibit HDAC8

Mutations in HDAC8 causes different pathologies such as:

- 1. Cornelia de Lange disease
- 2. Talassemia
- 3. Patau syndrome
- 4. Down syndrome
 - a) 1 🗸
 - b) 2 and 4
 - c) 1, 2 and 3
 - d) 4
 - e) 1,2,3 and 4

In Cornelia de Lange disease, which binding site is affected?

- 1. K⁺ binding site
- 2. Fe^{2+} binding site
- 3. Zn^{+2} binding site
- 4. P binding site
 - a) 1 🗸
 - b) 2 and 4
 - c) 1, 2 and 3
 - d) 4
 - e) 1,2,3 and 4

Phosphorylation of this residue inhibit the enzymatic activity of HDAC8:

- a) K36
- b) S39 🗸
- c) H42
- d) D29
- e) P42

Histone deacetylases HDAC8

Ylenia González, Paula Mayo, Anna Ruiz and Júlia Terzulli