TRANSCRIPTION FACTORS

Gemma Giménez, Sabrina Ravelo, Clara Sala, Denisse Riqueros Structural Biology March 2022

Introduction

Transcription factors are proteins that **bind to DNA-regulatory sequences**, localized in the 5-upstream region of target genes in order to promote, or block the recruitment of RNA polymerase.

This may result in **increased or decreased gene transcription**, protein synthesis, and subsequent altered cellular function.

Proteins

Helix-loop-helix

Helix-loop-helix

Biological function

FUNCTION

Myoblast determination protein 1 (MyoD) is part of the myogenic regulatory factor (MRF) family of TFs that control the determination and differentiation of skeletal muscle cells

Master regulatory factor \rightarrow enables myoblast proliferation during development

Reactivation during muscle regeneration (exercise or tissue damage)

Epaxial (primaxial); Somite-derived MCT
Hypaxial (primaxial); Somite-derived MCT
Hypaxial (abaxial); Lateral plate-derived MCT

Figure 2. Whole-mount in situ hybridization for MyoD mRNA in wild-type in mice embryos. Chen JC, Ramachandran R, Goldhamer DJ. Essential and redundant functions of the MyoD distal regulatory region revealed by targeted mutagenesis. Dev Biol. 2002 May 1;245(1):213-23.

Figure 3. Development of axial muscles in tetrapods. Sefton EM, Kardon G. Connecting muscle development, birth defects, and evolution: An essential role for muscle connective tissue. Curr Top Dev Biol. 2019;132:137-176.

SCOP classification

Class	All alpha proteins
Fold	HLH-like 4-helices; bundle, closed, left-handed twist; 2 crossover connections
Superfamily	HLH, helix-loop-helix DNA-binding domain
Family	HLH, helix-loop-helix DNA-binding domain
Protein	Myod B/HLH domain
Species	Mouse (Mus musculus)

General structure

Sequence and regions

General structure

3D structure

Sequence and structure analysis

MSA: Evolution among different species

Methodology and multiple sequence alignment results

Structural alignment: bHLH family

PDB ID	Resolution	Protein	Length	PDB ID	Resolution	Protein	Length
1MDY	2.80 Å	MyoD	68	1NLW	2.00 Å	Mad	80
		MyoD	62			Max	76
1AM9	2.30 Å	SREBP1	82	2YPB	2.87 Å	SCL	91
		SREBP1	82			E47	82
1NKP	1.80 Å	Мус	88	2QL2	2.50 Å	NeuroD1	60
		Max	83			E47	60

13

Same family structures

Structural alignment (monomers)

	BA	ASIC		HELIX1		LOOP	
srebp1	QSRGE	KRTAHNAIE	KRYRSSI	NDKIIELK	DLV	-VGTEA-	KLNKSAV
max	D	KRAHHNALE	RKRRDHI	KDSFHSLR	DSVPS	-LQ-GE-	KASRAQI
mad		SRSTHNEME	KNRRAHLI	RLSLEKLK	GLVPL	-GP-DSS	RHTTLSL
myc	GH-MNV	KRRTHNVLE	RORRNELI	KRSFFALR	DQIPE	-LE-NNE	KAPKVVI
myod	MELKRK-TT-NAD	RRKAATMRE	RRRLSKVI	NEAFETLK	RSTSS	-NP-NQ-	RLPKVEI
scl	GPHT-KVV	RRIFTNSRE	RWRQQNVI	NGAFAELR	KLIPT	HPP-DK-	K LSKNEI
e47		RRMANNARE	RVRVRDI	NEAFRELG	RMCQLHL	-KA	-QTKLLI
neurod1	s	RRMKANARE	RNRMHGLI	NAALDNLR	KVVP	-CY-SKTQ-	K LSKIET
srebp1	LRKAIDYIRFLOH	ISNOKLKOEN	LSLRTAV	HKSKSL-K			
max	LDKATEYIQYMRR	KNHTHOODI	DDLKRON	ALLEQOVR	ALG-GC		
mad	LTKAKLHIKKLED	SDRKAVHQI	DOLOREO	RHLKROLE	K		
myc	LKKATAYILSVQA	EEQKLISEE	DLLRKRR	EQLKHKLE	QLGGC -		
myod	LRNAIRYIEGLQA	LL-R-D					
scl	LRLAMKYINFLAK	LLNDQE					
e47	LQQAVQVILGLEQ	QVRE					
neurod1	LRLAKNYIWALSE	ILRS					

bHLH family structures

Sc = 6.74 RMS = 0.47 Len = 72 nfit = 49

bHLH family structures

Monomers superimposition

bHLH family structures

Dimer interactions DNA-protein interactions

Dimer interactions - Hydrophobic core

Dimer interactions - Dimerization specificity

Dimer interactions - Dimerization specificity

Dna interactions

a 10

Specific and non-specific interactions

DNA-protein interactions

	BASIC						
srebp1	QSRGEKRTAHNAIEKRYRSSI						
max	DKRAHHNALERKRRDHI						
mad	SRSTHNEMEKNRRAHL						
myc	GH-MNVKRRTHNVLERQRRNEL						
myod	MELKRK-TT-NADRRKAATMRERRRLSKV						
scl	GPHT-KVVRRIFTNSRERWRQQNV						
e47	RRMANNARERVRVRDI						
neurod1	SRRMKANARERNRMHGL						

Glu118 Arg121

5' TCAACAGCTGTTGA 3' 3' AGTTGTCGACAACT 5'

DNA-protein interactions

	BASIC
srebp1	QSRGEKRTAHNAIEKRYRSSI
max	DKRAHHNALERKRRDHI
mad	SRSTHNEMEKNRRAHL
myc	GH-MNVKRRTHNVLERQRRNEL
myod	MELKRK-TT-NADRRKAATMRERRRLSKV
scl	GPHT-KVVRRIFTNSRERWRQQNV
e47	RRMANNARERVRVRDI
neurod1	SRRMKANARERNRMHGL
	Arg111 Thr115 Glu118

DNA-protein interactions: STABILIZATION

5' <u>TCA</u>ACAGCTGTTGA 3' 3' AGTTGTCGACAACT 5'

DNA-protein interactions: STABILIZATION

5' TCAACAGCTGTTGA 3' 3' AGTTGT<u>CG</u>ACAACT 5'

DNA-protein interactions

		12	BASIC											
S	rebp1				Q	SRG	EK	RTA	AHN/	I	EK	RY	RSS	I
["	ax					[DK	RAH	HHN/	L	ER	KR	RDH	II
["	ad						-S	RST	THNE	M	EK	NR	RAH	IL
["	iyc				- GH	- MN	VK	RRT	THN\	/L	ER	QR	RNE	L
	yod		MEL	KRK	- TT	-NAI	DR	RK/	AATM	1R	ER	RR	LSK	V
S	cl			G	PHT	-KV	VR	RIF	TNS	SR	ER	WR	QQN	IV
e	47						-R	RMA	ANN/	٩R	ER	VR	VRD	I
n	eurod1					!	SR	RM	KAN/	٩R	ER	NR	MHC	iL
							Arg1	.10	Arg	117	' Arg	g119		

DNA-protein interactions

	HELIX 1	LOOP		
srebp1 max mad myc myod scl e47 neurod1	INDKIIELKDLV IKDSFHSLRDSV LRLSLEKLKGLV LKRSFFALRDQI VNEAFETLKRST VNGAFAELRKLI INEAFRELGRMC LNAALDNLRKVV	VGTEA-K PS-LQ-GE-K PL-GP-DSSR PE-LE-NNEK SS-NP-NQ-R PTHPP-DK-K QLHL-KA	LNK KSAV ASR RAQI HTT TLSL APK KVVI LPK KVEI LSK KNEI QTK KLLI LSK KIET	Arg143 Lys146
srebp1 max mad myc myod scl e47 neurod1	LRKAIDYIRFLQH LDKATEYIQYMRR LTKAKLHIKKLED LKKATAYILSVQA LRNAIRYIEGLQA LRLAMKYINFLAK LQQAVQVILGLEQ LRLAKNYIWALSE	ISNQKLKQENLSLRT KNHTHQQDIDDLKR SDRKAVHQIDQLQR EEQKLISEEDLLRK LL-R-D LLNDQE QVRE	AVHKSKSL QNALLEQQ EQRHLKRQ RREQLKHK	-K VRALG-GC LEK LEQLGGC-

HELIX 2
Important residues and interactions

DNA-protein interactions: MYOGENIC CODE

Myogenic code

The myogenic code is a sequence of residues absolutely required for dominant induction of myogenesis by the MRFs.

Alanine 114 and Threonine 115 (AT) may be required to set the basic domain in a particular conformation required for the proper binding to the E-box.

Important residues and interactions

DNA-protein interactions: MYOGENIC CODE

Myogenic code

The myogenic code is a sequence of residues absolutely required for dominant induction of myogenesis by the MRFs.

Alanine 114 and Threonine 115 (AT) may be required to set the basic domain in a particular conformation required for the proper binding to the E-box.

ANNEX: Same family structures

Multiple sequence alignment (MyoD in different species)

Chick	DRRKAATMRERRRLSKV
Cotja	DRRKAATMRERRRLSKV
Danre	DRRKAATMRERRRLSKV
Human	DRRKAATMRERRRLSKV
Mouse	DRRKAATMRERRRLSKV
Pig	DRRKAATMRERRRLSKV
Bovin	DRRKAATMRERRRLSKV
Sheep	DRRKAATMRERRRLSKV
Rat	DRRKAATMRERRRLSKV
Caeel	DRRKAATMRERRRLRKV

Multiple sequence alignment (MRF family)

Myog_bHLH	DRRRAATLREKRRLKK
Myf6_bHLH	DRRKAATLRERRRLKK
MyoD_bHLH	DRRKAATMRERRRLSK
Myf5_bHLH	DRRKAATMRERRRLKK
	::**:**

Structural alignment (monomers)

100	BASIC			
srebp1	QSRGEKRTAHNAIEKRYRSSI			
max	DKRAHHNALERKRRDHI			
mad	SRSTHNEMEKNRRAHL			
myc	GH-MNVKRRTHNVLERQRRNEL			
myod	MELKRK-TT-NADRRKAATMRERRRLSKV			
scl	GPHT-KVVRRIFTNSRERWRQQNV			
e47	RRMANNARERVRVRDI			
neurod1	SRRMKANARERNRMHGL			

Interactions summary

Figure 4. Ma PC, Rould MA, Weintraub H, Pabo CO. Crystal structure of MyoD bHLH domain-DNA complex: perspectives on DNA recognition and implications for transcriptional activation. *Cell*. 1994 May 6;77(3):451-9.

Zinc fingers

Small, functional, independently folded domain that requires coordination of one or more zinc ions to stabilize its structure.

Zn is coordinated by two Cys and two His residues

They are transcription factors that function by recognition of specific DNA sequences

Figure 5. William J, Lennarz, M. Daniel Lane. (2013) Encyclopedia of biological Chemistry: 42 Zinc Fingers. Academic Press

Zif268/EGR1

Basic features

- Transcription factor
- Binds to the DNA sequence 5'-GCG(T/G)GGGCG-3'
- Key role in the regulation of cell survival, proliferation invasion and cell death.
- Oncogenic role \rightarrow gastric and pancreatic cancer
- Tumor suppressor \rightarrow gliomas and melanocytomas

SCOP classification

Class	Small proteins Usually dominated by metal ligand, heme, and/or disulfide bridges		
Fold	Beta-beta-alpha zinc fingers (N-terminal beta-hairpin and C-terminal alpha-helical region; each part provides two zinc-coordinating residues)		
Superfamily	Beta-beta-alpha zinc fingers		
Family	Classic Zinc Fingers, C2H2		
Protein	ZIF268		
Organisme	Mus musculus (Mouse)		

Zif268: general structure

- 3 Zinc fingers
- Antiparallel β -sheet + α -helix
- Zn + hydrophobic core

1AAY Second structure correlation

C2H2 family: Consensus sequence

C = Cysteine residue
Z = Hydrophobic residue
H = Histidine residue
X = Any residue

Sequence and structure analysis

Methodology

Methodology

PDB ID	Resolution	Protein	Length	Organism
4r2e	1.80 Å	Wilms Tumor Protein	93	Homo sapiens
1aaY	1.60 Å	Zif268	90	Mus musculus
1ubd	2.50 Å	YY1	124	Homo sapiens
2gli	2,60 Å	Gli	155	Homo sapiens

Analyzing consensus sequence residues

MSA: Residues conservation among different species

MSA: Residues conservation among different C2H2 ZnF

Clustal 2.1 multiple sequence alignment

 $-\mathbf{Z}-\mathbf{X}_{1-2}-\mathbf{C}-\mathbf{X}_{2-4}-\mathbf{C}-\mathbf{X}_{3}-\mathbf{Z}-\mathbf{X}_{5}-\mathbf{Z}-\mathbf{X}_{2}-\mathbf{H}-\mathbf{X}_{3-5}-\mathbf{H}$

Structural analysis among different C2H2 ZnF

Superimposition with Zn atoms

Key residues (Consensus sequence)

Conservation of residues

Residues involved in Zn binding

Conservation of residues

Hydrophobic core

Hydrophobic core in the different fingers

Residues conservation among species

EGR1 (ZIF268): MOUSE YACPVESCDRRFSRSDELTRHIRIH FQCRICMRNFSRSDHLTTHIRTH FACDICGRKFARSDERKRHTKIH HUMAN YACPVESCDRRFSRSDELTRHIRIH FOCRICMRNFSRSDHLTTHIRTH FACDICGRKFARSDERKRHTKIH YACPVESCDRRFSRSDELTRHIRIH FOCRICMRNFSRSDHLTTHIRTH FACDICGRKFARSDERKRHTKIH RAT BOVTN YACPVESCDRRFSRSDELTRHIRIH PQCRISMRNFSRSDHLTTHIRTH FACDICGRKFARSDERKRHTKIH **XENOPUS** YACPVESCDRRFSRSDELTRHIRIH FQCRICMRNFSRSDHLTTHIRTH FACDICGRKFARSDERKRHTKIH COTURNIX -CDRRFSRSDELTRHIRIH FQCRICMRNFSRSDHLTTHIRTH FACDICGRKFARSDERKRHTKIH YGCPVESCDRRFSRSDELTRHIRIH FQCRICMRNFSRSDHLTTHIRTH FACDICGRKFARSDERKRHTKIH XENI A YACPVETCDRRFSRSDELTRHIRIH FQCRICMRNFSRSDHLTTHIRTH FACEICGRKFARSDERKRHTKIH **7FBRAFTSH** TAENTOPYGTA CDRRFSRSDELTRHIRIH FOCRICMRNFSRSDHLTTHIRTH FACDICGRKFARSDERKRHTKIH **** *********** *** *********** Finger 2 Finger 1 Finger 3

Zn Finger 3: Arg78 residue

- 1) Aliphatic carbon side chain of this Arg residue contributes to the proper formation of the hydrophobic core
- 2) Leu mutants had no ability to bind DNA
- 3) Arg78 water-mediated interaction with phosphate is essential for DNA binding

Figure 7. Negi, S., Imanishi, M., Sasaki, M., Tatsutani, K., Futaki, S., & Sugiura, Y. (2011). An arginine residue instead of a conserved leucine residue in the recognition helix of the finger 3 of Zif268 stabilizes the domain structure and mediates DNA binding. Biochemistry, 50(28), 6266-6272.

Zn Finger 3: Arg78 residue

Analyzing residues involved in DNA binding

Key residues (DNA binding specific)

Residues conservation among species

DNA Specific Interactions

DNA-binding consensus sequence

Zif268 consensus binding site

Residues involved in specific DNA binding

Figure 8. Miller, J. C., & Pabo, C. O. (2001). Rearrangement of side-chains in a Zif268 mutant highlights the complexities of zinc finger-DNA recognition. *Journal of molecular biology*, 313(2), 309-315.

Position -1

Position -1 Position 2 Position 3 Position 6

Position -1

Position -1

R18A mutation results in 100-fold loss affinity

Position -1 Position 2 Position 3 Position 6

Position 2: Interaction with position -1 residue

Finger 1

Finger 2

Position 2: Interaction with position -1 residue

D20A mutation results in a reduced specificity for guanine

Interaction between position -1 and position 2

H bond

Key residues (non-specific DNA binding)

DNA non-specific interactions: Arg 14 and His25

DNA non-specific interactions: Arg 14 and His25

DNA non-specific Interactions: Arg 18

DNA nos-specific interactions: Arg 18

DNA non-specific interactions: Lys33

DNA non-specific Interactions: Lys33

Linker region between finger 1 and finger 2

DNA non-specific interactions: Lys61

DNA non-specific Interactions: Lys61

Linker region between finger 2 and finger 3

Conclusions

Conclusions

Structure	MyoD and Zif268, which are structurally different can perform a similar function as transcription factors and bind to DNA.	
Conservation	Conservation of HLH and ZnF domains is high, demonstrating the huge importance of them for their function as transcription Factors.	
Hydrophobic and basic residues	Hydrophobic residues are essential for protein stability and basic residues are highly important for DNA-binding.	
DNA-binding specificity	These transcription factors have different DNA binding specificity since the sequences interacting are not the same.	
Stability and function	Stabilization of its structure is required in order to perform their function of DNA binding.	

Thank you for your attention!

Pem questions

1. Select the correct answers about MyoD:

- 1. According to SCOP it belongs to the helix loop helix family.
- 2. It binds specifically to the E-box (CAGCTG)
- 3. Some hydrophobic residues help to stabilize the protein.
- 4. Its helix 2 is the one that binds to the DNA.
 - a) 2 and 4
 - b) 1, 2 and 3
 - c) 1, 2, 3 and 4
 - d) 4
 - e) None the above

2. b/HLH proteins like MyoD bind to DNA through the region:

- a. Helix 1 (H1)
- b. Basic region
- c. Helix 2 (H2)
- d. Loop
- e. All of the above

3. In transcription factors, the contacts made with the phosphates of the DNA are:

- a. Specific contacts
- b. π stacking
- c. Unspecific contacts
- d. Water mediated contacts
- e. Hydrophobic contacts

4. The binding domain of MyoD recognizes the:

- a. Major groove of the DNA.
- b. Minor groove of the DNA
- c. Both of the above are correct
- d. An specific region of minor groove of the DNA
- e. All of them are correct.

5. Select the <u>WRONG</u> answer/s about the conservation of MyoD:

- 1. Basic residues needed for DNA-binding in helix 1 are highly conserved among species and other bHLH proteins
- 2. Hydrophobic residues are not conserved among species because they are not needed for the proper binding to the DNA
- 3. The myogenic code is conserved among the Myogenic Regulatory Factor family (MRFs)
- 4. Residues located in the loop are highly conserved among other members of the bHLH family of transcription factors.

- b) 1, 2 and 3
- c) 1, 2, 3 and 4
- d) 4
- e) None the above

Pem questions

6.Select the correct answers about Zif268:

- 1. According to SCOP it belongs to the helix loop helix family.
- 2. It has 4 zinc fingers
- 3. It is involved in the transcriptional activation of numerous muscle-specific genes
- 4. It is a transcription factor
 - a) 1,2,3,4 b) 1,2,3 c) 1 y 3 d) 2 y 4 e) 4

7.Which of the following are specific interactions of Zif268 with DNA? Indicate the true statement.

- a) Arg 18 of finger 1 with guanine
- b) Lys33 with the 5' phosphate of base 5
- c) Cys17 with Zn ion
- d) Lys61 with the 5' phosphate of base 2
- e) Arg98 with 5' phosphate of base 3

8. Which is the consensus sequence of C2H2 family?

- a) $.-Z-X_{1-2}-F-X_{2-4}-C-X_3-Z-X_5-Z-X_2-H-X_{3-5}-C$
- b) -Z-X₁₋₂-F-X₂₋₄-C-X₃-Z-X₅-Z-X₂-C-X₃₋₅-H
- c) -Z-X₁₋₂-C-X₂₋₄-C-X₃-Z-X₅-Z-X₂-Y-X₃₋₅-H
- d) $-Z-X_{1-2}-C-X_{2-4}-C-X_3-Z-X_5-Z-X_2-H-X_{3-5}-H$
- e) $-Z-X_{1-2}-G-X_{2-4}-C-X_3-Z-X_5-Z-X_2-H-X_{3-5}-H$

9.Which are the most different zinc fingers regarding the DNA binding specificity?

- a. Finger 1 and 3
- b. Finger 1 and finger 5
- c. Finger 1 and finger 2
- d. Finger 4 and finger 3
- e. All of them are exactly the same

10.Regarding the hydrophobic core of Zif268, select the false statement:

- a. It allows the stabilization of the zinc finger structure
- b. The residues involved are highly conserved
- c. In the three zinc fingers the residues forming the hydrophobic core are exactly the same.
- d. Tyr05, Phe16 and Leu22 are some residues forming the hydrophobic core.
- e. All of the above are true

Bibliography

- 1. Branden C, Tooze J. Introduction to protein structure. 2a ed. New York: Garland; 1999.
- 2. Finkelstein AV, Ptitsyn OB. Protein Physics: A Course of Lectures. San Diego: Elsevier Science & Technology; 2002.
- 3. Creighton TE. The Biophysical chemistry of nucleic acids & proteins. S.I: Helvetian Press; 2010.
- 4. Murre C. Helix-loop-helix proteins and the advent of cellular diversity: 30 years of discovery. *Genes Dev.* 2019;33(1-2):6-25.
- 5. Phillips SE. Built by association: structure and function of helix-loop-helix DNA-binding proteins. *Structure*. 1994;2(1):1-4.
- 6. Weirauch MT, Hughes TR. A catalogue of eukaryotic transcription factor types, their evolutionary origin, and species distribution. *Subcell Biochem*. 2011;52:25-73.
- 7. Pérez Sirkin DI, Lafont AG, Kamech N, Somoza GM, Vissio PG, Dufour S. Conservation of Three-Dimensional Helix-Loop-Helix Structure through the Vertebrate Lineage Reopens the Cold Case of Gonadotropin-Releasing Hormone-Associated Peptide. *Front Endocrinol (Lausanne)*. 2017;8:207.
- 8. Ma PC, Rould MA, Weintraub H, Pabo CO. Crystal structure of MyoD bHLH domain-DNA complex: perspectives on DNA recognition and implications for transcriptional activation. *Cell*. 1994;77(3):451-9.
- 9. Grove CA, De Masi F, Barrasa MI, Newburger DE, Alkema MJ, Bulyk ML, Walhout AJ. A multiparameter network reveals extensive divergence between C. elegans bHLH transcription factors. *Cell*. 2009;138(2):314-27.
- 10. Shirakata M, Friedman FK, Wei Q, Paterson BM. Dimerization specificity of myogenic helix-loop-helix DNA-binding factors directed by nonconserved hydrophilic residues. *Genes Dev.* 1993;7(12A):2456-70.
- 11. Vaquerizas JM, Kummerfeld SK, Teichmann SA, Luscombe NM. A census of human transcription factors: function, expression and evolution. *Nat Rev Genet*. 2009;10(4):252-63.
- 12. Jones S. An overview of the basic helix-loop-helix proteins. *Genome Biol.* 2004;5(6):226.
- 13. Murre C, Bain G, van Dijk MA, Engel I, Furnari BA, Massari ME, Matthews JR, Quong MW, Rivera RR, Stuiver MH. Structure and function of helix-loop-helix proteins. *Biochim Biophys Acta*. 1994;1218(2):129-35.

Bibliography

- 14. Davis RL, Cheng PF, Lassar AB, Weintraub H. The MyoD DNA binding domain contains a recognition code for muscle-specific gene activation. *Cell*. 1990;60(5):733-46.
- 15. Wendt H, Thomas RM, Ellenberger T. DNA-mediated folding and assembly of MyoD-E47 heterodimers. J Biol Chem. 1998;273(10):5735-43.
- 16. Hernández-Hernández JM, García-González EG, Brun CE, Rudnicki MA. The myogenic regulatory factors, determinants of muscle development, cell identity and regeneration. *Semin Cell Dev Biol*. 2017;72:10-18.
- 17. Rebar, E. J., & Pabo, C. O. Zinc finger phage: affinity selection of fingers with new DNA-binding specificities. *Science*. 1994:263(5147), 671-673.
- 18. Cassandri, M., Smirnov, A., Novelli, F., Pitolli, C., Agostini, M., Malewicz, M., ... & Raschellà, G. Zinc-finger proteins in health and disease. *Cell death discovery*. 2017;3(1):1-12.
- 19. Laity, J. H., Lee, B. M., & Wright, P. E. Zinc finger proteins: new insights into structural and functional diversity. *Current opinion in structural biology*. 2001;11(1):39-46.
- 20. Wang, B., Guo, H., Yu, H., Chen, Y., Xu, H., & Zhao, G. The role of the transcription factor EGR1 in cancer. *Frontiers in Oncology*. 2021;11:775.
- 21. Rebar, E. J., & Pabo, C. O. Zinc finger phage: affinity selection of fingers with new DNA-binding specificities. *Science*. 1994;263(5147):671-673.
- 22. Pace, N. J., & Weerapana, E. Zinc-binding cysteines: diverse functions and structural motifs. *Biomolecules*. 2014;4(2):419-434. Negi, S., Imanishi, M., Sasaki, M., Tatsutani, K., Futaki, S., & Sugiura, Y. An arginine residue instead of a conserved leucine residue in the recognition helix of the finger 3 of Zif268 stabilizes the domain structure and mediates DNA binding. *Biochemistry*. 2011;50(28):6266-6272.
- 23. Elrod-Erickson, M., Rould, M. A., Nekludova, L., & Pabo, C. O. Zif268 protein–DNA complex refined at 1.6 Å: a model system for understanding zinc finger–DNA interactions. *Structure*. 1996;4(10):1171-1180.
- 24. Pavletich, N. P., & Pabo, C. O. Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 Å. *Science*. 1991;252(5007):809-817.

TRANSCRIPTION FACTORS

Gemma Giménez, Sabrina Ravelo, Clara Sala, Denisse Riqueros Structural Biology March 2022

ANNEX: Same family structures

Structural alignment (dimers)

CLUSTAL W(1.60) multiple sequence alignment

SREBP1-SREBP1	QS-RGEKRTAHNAIEKRYRSSINDKIIELKDLVV-GTEAK-LNKSAVLRKA
Myc-Max	GHMNVKRRTHNVLERQRRNELKRSFFALRDQIPE-LENNEKAPKVVILKKA
Mad-Max	SRSTHNEMEKNRRAHLRLSLEKLKGLVPL-GPDSSRHTTLSLLTKA
SCL-E47	GPHTKVVRRIFTNSRERWROONVNGAFAELRKLIPTHPPDKK-LSKNEILRLA
MyoD-MyoD	MELKRK-TTNADRRKAATMRERRRLSKVNEAFETLKRSTS-SNPNOR-LPKVEILRNA
E47-NeuroD1	RRMANNARERVRVRDINEAFRELGRMCQLHL-KAQTKLLILQQA
SREBP1-SREBP1	IDYIRFLQHSNQKLKQENLSLRTAVHKSKS-LKSRGE-KRTAHN
Myc-Max	TAYILSVQAEEQKLISEEDLLRKRREQLKHKLEQLGGC-DKRAHHN
Mad-Max	KLHIKKLEDSDRKAVHQIDQLQREQRHLKRQLEKKRAHHN
SCL-E47	MKYINFLAKLLNDQESLEEKDL-RDRE-RRMANN
MyoD-MyoD	IRYIEGLQALLRTTNAD-RRKAAT
E47-NeuroD1	VQVILGLEQQVRSRRMKAN
SREBP1-SREBP1	AIEKRYRSSINDKIIELKDLVVG-TEAKLNKSAVLRKAIDYIRFLQHSNQKLKQE
Myc-Max	ALERKRRDHIKDSFHSLRDSVPS-LQ-G-EKASRAQILDKATEYIQYMRRKNHTHQQD
Mad-Max	ALERKRRDHIKDSFHSLRDSVPS-LQ-G-EKASRAQILDKATEYIQYMRRKNHTHQQD
SCL-E47	ARERVRVRDINEAFRELGRMCQMHLKSDKAQTKLLILQQAVQVILGLEQQVRERNLN
MyoD-MyoD	MRERRRLSKVNEAFETLKRSTSSNPN-QRLPKVEILRNAIRYIEGLQALLRD
E47-NeuroD1	ARERNRMHGLNAALDNLRKVVPCYSKTQKLSKIETLRLAKNYIWALSEILRS
SREBP1-SREBP1	NLSLRTAVHKS
Myc-Max	IDDLKRQNALLEQQVRALGGC
Mad-Max	IDDLKRQNALLEQQV
SCL-E47	
MyoD-MyoD	
E47-NeuroD1	