

Aquaporin 2

Structural Biology 2023-2024

Diego Moreno Marc Rodríguez Maria Figueroa Beatriz Pou

Summary

1.Introduction	2. Function	3. Structure	4. Family	5. Evolution
				Superimposition
History	Renal Function	Polarity	AQP family	Structural alignment
Aquaporines	Ligand	Salt bridges	Superimposition	Bacterial AQP
Family and	Translocation	Subunit	Structural	Plant AQP
genetics of AQP2	Sianallina	Interactions	alignment	Sequence alignment
SCOP	Pathway	Cd/Ca action	APQ7-6QZI	Phylogenetic tree
classification	Residues	ar/R filter	Sequence	
		NPA region	alignment	
			Phylogenetic tree	6 PEM questions

INTRODUCTION

History

Peter Agre, 2003 Nobel Prize winner in chemistry

Purified aquaporin-1 from human erythrocytes.

They proved AQP1 is a specific water channel by cRNA expression studies in Xenopus oocytes

Aquaporines

- Intrinsic membrane proteins found in all organisms.
- Main function: facilitate water movement across membranes.
- Also aquaglyceroporins transport.

AQP2

- Human aquaporin 2 (AQP2) is found in the kidney collecting duct.
- Trafficking between intracellular storage vesicles and the apical membrane
- Water channel responsible for reabsorption across the apical membrane.

Family and genetics of AQP2

- Major intrinsic protein superfamily
- Channels with unique structural features and diverse selectivity filters
- AQP2 protein is encoded by the AQP2 gene, clustered in chromosome 12q13

SCOP classification

Class	All alpha proteins	
Fold	Aquaporin-like	
Superfamily	Aquaporin-like	
Family	Aquaporin-like	
Domain	8072761	

FUNCTION

Renal Function

- AQP2 expressed in kidney collecting duct principal cells
- Role urinary concentration
- Importance of vasopressin
- Water reabsorition in colaboration with other AQPs

Ligand: H2O

- It is composed of two hydrogen atoms and one oxygen atom.
- Partial charges create polarity.
- Enable to form hydrogen bonds with electronegative atoms .

AQP2 translocation

- Vasopressin-stimulated phosphorylation of Ser256
- Additional phosphorylation of Thr269 (Ser269 in mouse) → prolonged residence
- As well as phosphorylation of Ser264

- Phosphorylation of Ser261
- AQP2 removal from apical membrane by ubiquitination of Lys270
- AQP2 stored in vesicles or target multi-vesicular bodies (VMB)

Signalling Pathway

Ser256 and Ser261

- Phosphorylation of Ser256 on the cytoplasmic COOH terminus by PKA
- Ser 264 is also phosphorylated to translocate AQP2
- Dephosphorylation of Ser261 also involved in this process

SER264

Lys270 and Ser264

- Activation of receptors by hormones, such as PGE2, ATP, and dopamine
- Induce ubiquitination on Lys270
 → internalization and lysosomal degradation
- Also Ser261 phosphorylated is reinstalled by PKC

LYS270 SER269

Glycosylation

- Region: Asn-X-Thr/Ser (where X can be every aa except Pro)
- Importance for AQP2 to exit the Golgi Complex and its proper routing the plasma membrane

Mutant T125M

- Mutation: change of Thr125
 → Met125
- Located within the glycosylation consensus sequence (Asn-X-Ser/Thr). This changes suppresses glycosylation
- Protein being retained in the ER and Golgi

Mutant T126M

- Mutation: change of Thr126 → Met126
- In this case glycosylation occurs, by UGT. Protein being retained in the ER
- Both related with Nephrogenic Diabetes insipidus

Nephrogenic Diabetes Insipidus

Hagströmer CJ, Steffen JH, Kreida S, Al-Jubair T, Frick A, Gourdon P, et al. Structural and functional analysis of aquaporin-2 mutants involved in nephrogenic diabetes insipidus. Scientific Reports | [Internet]. 123AD [cited 2024 Feb 23];13:14674. Available from: <u>https://doi.org/10.1038/s41598-023-41616-1</u> Nephrogenic diabetes insipidus (NDI) is an inability to concentrate urine due to impaired renal tubule response to vasopressin.

This leads to excretion of large amounts of dilute urine that need to be compensated with fluid intake to avoid severe dehydration and hypernatremia.

STRUCTURE

Structure

- Six transmembrane α-helices and five connecting loops.
- N and C-termini are cytosolic
- Two loops fold toward the membrane and move toward each other to form the pore.

Polarity

Non-polar/ hydrophobic	white
Polar/hydrophilic	green
Basic residues	blue
Acidic residues	red

Polarity

- Hydrophilic atoms focused towards interior alpha helices
- Also focused on both the top (outer) and bottom (cytoplasm)
- Hydrogen bonds

Polarity

Salt bridges

Asp150-Arg152	Glu3-Arg85	Glu232-His80
Chain B Chain C Chain D	Chain A	Chain C

Salt bridges

- In the case of chains B, C and D we find a Salt Bridge between Asp150 and Arg152.
- Distance is 2.95 Å
- Located innermost face (core)

Asp150-Arg152

Salt bridges

- Chain A single Salt Bridge between Glu3 and Arg85.
- Distance 2.78 Å
- Located outermost, closer membrane

Glu3-Arg85

A

2.78 Å

GLU3

85

Salt bridges

- Chain C additional Salt Bridge between Glu232 and His80
- Distance 2.87 Å
- Located between one tail and external alpha helices

Cadmium action

There is interaction with two Cd2+ ions

Cd2 partial occupancy (65%) located between loop and the C-terminal tail in protomer C

Ligated by HisC80, GluC232, and one water molecule

Helps position the C-terminal helix for this interaction **Cd1** has full occupancy and bind with promoter A and D

Between GluA155 of loop D and GlnD57 of TM helix 2 as well as two water molecules

Displaces loop D to the center AQP2, hydrogen bond between AsnA156, AsnD156, and GluB155

Subunits interactions

Interaction between lateral residues from helices TM1 and TM2 from one chain with the residues from helices 4 and 5 from the next subunits.

ar/R filter

- Red area corresponds to pore entrance (extracelular part) selectivity for Aromatic Arginine (ar/R)
- Creating pore 1.8 Å
- $ar/R \rightarrow Arg187$, His172 and Phe48

Does not enter

Enters

NPA region

- Key residues for the pore are NPA repetitions
- NPA \rightarrow Asn68, Pro 69 and Ala70
- Asn extremely conserved
- Only change tolerable in mutagenesis experiments is Asn by Ser (not seen nature)

H2O molecule goes through the pore interacting first with ar/R which only lets water pass.

Then interacts with the different residues of the NPA region which help the water to pass through.

FAMILY

Aquaporine Family

Orthodox AQP	Aquaglyceroporin AQP	Unorthodox AQP
AQP0, AQP1, AQP2, AQP4, AQP5, AQP6 and AQP8	AQP3, AQP7, AQP9 and AQP10	AQP11 and AQP12

Superimposition

Green	AQP2 (4NEF)
Orange	AQP5 (3D9S)
Blue	AQP4 (3GD8)
Purple	AQP1 (4CSK)
Red	AQP10 (6F7H)
Grey	AQP7 (6QZI)

ar/R and NPA regions are highly conserved in the different types of aquaporins

Consensus Conservation BMSD: ca	51 afwra	61 v AEFLatli	71 fvffgl <mark>G</mark> Sal	81 k.pg	91
3d9s.pdb, chain C 3gd8.pdb, chain A 4csk.pdb, chain A 4nef.pdb, chain A 6f7h.pdb, chain D 6qzi.pdb, chain A	5 VC . SVA FLKA 32 QA FWKA 6 KKKL FWRA 4 LR . SIA FSRA 18 SL LARQ 33 MVRE	VFAEFLATLI VTAEFLAMLI VVAEFLATTL VFAEFLATLL CLAEFLGVFV FLAEFMSTYV	FVFFGLGSAL FVLLSLGSTI FVFISIGSAL FVFFGLGSAL LMLLTQGAVA MMVFGLGSVA		
Consensus Conservation BMSD: ca	101 .psflqiaLa	111 FGLaiatlvq	121 a I G h i S G	131 a H i N P A v T I A	141 mlvgcqisil
3d9s.pdb, chain C 3gd8.pdb, chain A 4csk.pdb, chain A 4nef.pdb, chain A 6f7h.pdb, chain D 6qzi.pdb, chain A	40 . PTILQIALA 68 . VDMVLISLC 47 . QDNVKVSLA 39 . PSVLQIAMA 52 KGNFFTMFLA 64 YGSYLGVNLG	F G L A I G T L A Q F G L S I A T M V Q F G L S I A T L A Q F G L G I G T L V Q G S L A V T I A I Y F G F G V T M G V H	A L G P V S G C F G H I S G S V G H I S G A L G H I S G V G G N V S G V A G R I S G	GHINPAITLA GHINPAVTVA AHLNPAVTLG AHINPAVTVA AHLNPAFSLA AHMNAAVTFA	LLVGNQISLL MVCTRKISIA LLLSCQISIF CLVGCHVSVL MCIVGRLPWV NCALGRVPWR
	151	161	171	181	191
Consensus Conservation RMSD: ca	kap f <mark>Y</mark> iaaQ I	IGAiaaaail	yglt.p.ls.	a	gala.v
3d9s.pdb, chain C	86 RAFFYVAAQL	VGATAGAGIL	YGVA.P.LN.	A	RGNLA.V
4csk.pdb, chain A	93 RALMYIIAQC	VGAIVATAIL	SG.IT.SS.	L T	G . NSL . GR
4nef.pdb, chain A	85 RAAFYVAAQL	LGAVAGAALL	HEIT.P.AD.		RGDLA.V
6qzi.pdb, chain A	111 KFPVYVLGQF	LGSFLAAATI	YSLFYTAILH	FSGGQLMVTG	PVA. TAGIFA

	201	211	221	231	241
Consensus Conservation RMSD: ca	taladntt.a	gqgflvElil	TlqLvlcifA	stDsrr.dpv	gspaLal <mark>G</mark>
4nef.pdb, chain A 3d9s.pdb, chain C 3gd8.pdb, chain A 4csk.pdb, chain A 6f7h.pdb, chain D 6qzi.pdb, chain A	119 NALSNSTT.A 120 NALNNNTT.Q 148 TMVHGNLT.A 127 NDLADGVNSG 148 TYPAPYLS.L 160 TYLPDHMT.L	GQAVTVELFL GQAMVVELIL GHGLLVELII Q.GLGIEIIG NNGFLDQVLG WRGFLNEAWL	TLQLVLCIFA TFQLALCIFA TFQLVFTIFA TLQLVLCVLA TGMLIVGLLA TGMLQLCLFA	STDERR. GE STDSRRTSPV SCDSKRTDVT TTDRRRRDLG ILDRRN. KGV ITDQEN. NPA	N P G T P A L S I G G S P A L S I G G S I A L A I G G S A P L A I G P A G L E P V V V G L P G T E A L V I G
Consensus Conservation RMSD: ca	251 IsValghL.I	261 giayT <mark>G</mark> csmN	271 <mark>P A R</mark> s I g P a v i	281 tgv	291 F.swhWv
4nef.pdb, chain A 3d9s.pdb, chain C 3gd8.pdb, chain A 4csk.pdb, chain A 6f7h.pdb, chain D 6qzi.pdb, chain A	166 FSVALGHL.L 167 LSVTLGHL.V 195 FSVAIGHL.F 174 LSVALGHL.L 196 MLILALGLSM 208 ILVVIIGVSL	GIHYTGCSMN GIYFTGCSMN AINYTGASMN AIDYTGCGIN G. ANCGIPLN G. MNTGYAIN	PARSLAPAVV PARSFGPAVV PARSFGPAVI PARSFGSAVI PARDLGPRLF PSRDLPPRIF	TG	F.DDHWV F.S.PAHWV W.ENHWI F.S.AGNGWWWV FSNGENWWVV
Consensus Conservation BMSD: ca	301 fwVgPIvGAv	311 Lagil <mark>Y</mark> eyvl	321 fp	331	341
4nef.pdb, chain A 3d9s.pdb, chain C 3gd8.pdb, chain A 4csk.pdb, chain A 6f7h.pdb, chain D	204 FWIGPLVGAT 206 FWVGPIVGAV 233 YWVGPIIGAV 212 FWVGPFIGGA 245 PVVAPLVGAT	LGSLLYNYVL LAAILYFYLL LAGGLYEYVF LAVLIYDFIL VGTATYQ.LL	F P P A K F P N S L S L C P A P R S V A . L H	SERVAIIKGT	Y E PDEDWEEQ
oqzi.pub, chain A	251 FVVAFLLGAY	LUGIITL.VF	19.31		

6QZI- AQP7

- First NPA (94, 95 and 96), there is a change in Pro95 → Ala95
- Second NPA (226, 227 and 228), change in Ala228 → Ser228
- ar/R filter (In 4NEF: His172, Phe48 and Arg187) change in His214 → Gly214

6QZI- AQP7

- Due to the changes in residues of NPA and ar/R the size of the pore increases
- Hydrogen bond between the nitrogen Ala95 and Ser228
- Water transport less efficient than in AQP

Superimposition of STAMP Structural Alignment

Superimposition Results

Human	APQ1	AQP4	AQP5	AQP7	AQP10
AQPs	(4CSK)	(3GD8)	(3D9S)	(6QZI)	(6F7H)
AQP2 (4NEF)	AQP2 (4NEF) Sc: 7.50 QH = 0.73 RMSD: 1.17	Sc: 8.04 QH = 0.86 RMSD: 0.78	Sc: 8.02 QH = 0.82 RMSD: 0.81	Sc: 6.37 QH = 0.63 RMSD: 1.45	Sc: 6.31 QH = 0.59 RMSD: 1.49
	% Id:	% Id:	% Id:	% Id:	% Id:
	42.56%	48.88%	62.40%	31.40%	20.66%

Structural dendogram

Aquaporin 7 Aquaporin 10 Aquaporin 1 Aquaporin 4 Aquaporin 2 Aquaporin 5

- Two main nodes; one containing aquaglyceroporins (AQP7 and AQP10) and the other orthodox AQP

- AQP5 being the most similar to AQP2

Dendogram using Percent Identity

Aquaporin 7 Aquaporin 10 Aquaporin 1 Aquaporin 4 Aquaporin 2 Aquaporin 5

The results obtained with the sequence phylogenetic tree are the sames obtained in the structural analysis

EVOLUTION

Superimposition

Fish (7W7S)	Blue
Spinach (1Z98)	Green
Sheep (1SOR)	Orange
Bacteria (1FX8)	Purple
Human (4NEF)	Beige

Superimposition

Although animal and plant evolutionary lines separated about 1.6 billion years ago, these highly conserved proteins have an identical structural core

	1	11	21	31	41
Consensus		·······················		<mark>es</mark>	<mark>s F w r A v</mark>
Conservation					
RMSD: ca					AFODAVA
4net.pdb, chain A	<u>9</u>			. S. ELK. SI.	SOTSTIKOOC
1sor ndb chain A	5				SEWRAL
1798 pdb, chain A	1 <u>MSKEVSE</u>	FAOAHOHGKD	Y V D P P P A P F F	DIGE IKIW	SEWBAA
7w7s.pdb, chain A	0 . MA	<u>Enquilance</u>		. R. EFK. SK.	NEWKAV
-					
	51	61	71	81	91
Consensus	IAEFIAIILT	IFIGIGAAIG	W	S	d.vlqialAF
Conservation BMSD: co		_		_	
	14 FAFELATILE	VEEGLGSALN		-	PSVIOLAMAE
1fx8.pdb, chain A	12 LAEFLGTGLL	LEEGVGCVAA	LKVAG	S	FGOWEISVIW
1sor.pdb, chain A	14 FAEFFATLFY	VFFGLGASL.	. RW	A P. GP.	LHVLQVALAF
1z98.pdb, chain A	42 IAEFIATLLF	LYITVATVIG	HSK.ETVVCG	S V	G. LLGIAWAF
7w7s.pdb, chain A	14 LAELVGMTLF	IFLSLSAAIG	<mark>N</mark>	. KNSTN P	DQEVKVSLAF
	101	111	121	131	141
Consensus	101 GLaiatLyga	111 IghlSGAHiN	121 PAVTfallg	131 cavSILrAip	141 YiyAQILGAY
Consensus Conservation	101 <mark>G</mark> LaiatLvqa	111 Igh I <mark>SG</mark> AH i N	121 PAVT fallig	131 cqvSILrAip	141 YivAQILGAv
Consensus Conservation RMSD: ca	101 <mark>G</mark> LaiatLvqa	111 g h SGAH i N	121 PAVTfalllg	131 cqvSILrAip	141 YivAQILGAv
Consensus Conservation RMSD: ca 4nef.pdb, chain A	101 GLaiatLvqa 49GLGIGTLVQA	111 IghISGAHIN LGHISGAHIN	121 PAVTfallig PAVTVACLVG	131 cqvSILrAip CHVSVLRAAF	141 YivAQILGAV
Consensus Conservation RMSD: ca 4nef.pdb, chain A 1fx8.pdb, chain A	101 GLaiatLvqa 49 GLGIGTLVQA 49 GLGVAMAIYL	111 IghISGAHIN LGHISGAHIN TAGVSGAHLN	121 PAVT fallig PAVTVACLVG PAVTIALWLF	131 cqvSILrAip CHVSVLRAAF ACFDKRKVIP	141 Y i v AQILGAV YVAAQLLGAV F I VSQVAGAF
Consensus Conservation RMSD: ca 4nef.pdb, chain A 1fx8.pdb, chain A 1sor.pdb, chain A	101 GLaiatLvqa 49 GLGIGTLVQA 49 GLGVAMAIYL 49 GLALATLVQA	111 IghISGAHIN LGHISGAHIN TAGVSGAHLN VGHISGAHVN	121 PAVT fallig PAVTVACLVG PAVTIALWLF PAVTFAFLVG	131 cqvSILrAip CHVSVLRAAF ACFDKRKVIP SQMSLLRAIC	141 Y i v AQILGAV YVAAQLLGAV F I VSQVAGAF YVVAQLLGAV
Consensus Conservation RMSD: ca 4nef.pdb, chain A 1fx8.pdb, chain A 1sor.pdb, chain A 1z98.pdb, chain A	101 GLaiatLvqa 49 GLGIGTLVQA 49 GLGVAMAIYL 49 GLALATLVQA 82 GGMIFVLVYC 51 GLALATLVQS	111 IghISGAHIN IGHISGAHIN TAGVSGAHLN VGHISGAHVN TAGISGGHIN	121 PAVT fallig PAVT VACLVG PAVT IALWLF PAVT FAFLVG PAVT FGLFLA PAVT FGLFLA	131 cqvSILrAip CHVSVLRAAF ACFDKRKVIP SQMSLLRAIC RKVSLLRALV COJSVLKAVM	141 Y i v AQILGA v YVAAQLLGA V F I VSQVAGAF YVVAQLLGA V YMIAQCLGA I Y I VAQULGA SA
Consensus Conservation RMSD: ca 4nef.pdb, chain A 1fx8.pdb, chain A 1sor.pdb, chain A 1z98.pdb, chain A 7w7s.pdb, chain A	101 GLaiatLvqa 49 GLGIGTLVQA 49 GLGVAMAIYL 49 GLALATLVQA 82 GGMIFVLVYC 51 GLAIATLAQS	111 IghISGAHIN IGHISGAHIN TAGVSGAHLN VGHISGAHVN TAGISGGHIN LGHISGAHLN	121 PAVT fallig PAVTVACLVG PAVTIALWLF PAVTFAFLVG PAVTFGLFLA PAVTLGMLAS	131 cqvSILrAip CHVSVLRAAF ACFDKRKVIP SQMSLLRAIC RKVSLLRALV CQISVLKAVM	141 Y i v AQILGAV F I V SQVAGAF Y V V AQLLGAV YMIAQCLGAI Y I V AQMLGSA
Consensus Conservation RMSD: ca 4nef.pdb, chain A 1fx8.pdb, chain A 1sor.pdb, chain A 1z98.pdb, chain A 7w7s.pdb, chain A	101 GLaiatLvqa 49 GLGIGTLVQA 49 GLGVAMAIYL 49 GLALATLVQA 82 GGMIFVLVYC 51 GLAIATLAQS 151	111 IghISGAHIN LGHISGAHIN TAGVSGAHLN VGHISGAHVN TAGISGGHIN LGHISGAHLN 161	121 PAVT fallig PAVTVACLVG PAVTIALWLF PAVTFAFLVG PAVTFGLFLA PAVTLGMLAS 171	131 cqvSILrAip CHVSVLRAAF ACFDKRKVIP SQMSLLRAIC RKVSLLRALV CQISVLKAVM	141 Y i v AQILGAV F I V SQV AGAF Y V V AQLLGAV YMI AQCLGAI Y I V AQMLGSA
Consensus Conservation RMSD: ca 4nef.pdb, chain A 1fx8.pdb, chain A 1sor.pdb, chain A 1z98.pdb, chain A 7w7s.pdb, chain A Consensus	101 GLaiatLvqa 49 GLGIGTLVQA 49 GLGVAMAIYL 49 GLALATLVQA 82 GGMIFVLVYC 51 GLAIATLAQS 151 agaalvyg.t	111 IghISGAHIN IGHISGAHIN TAGVSGAHLN VGHISGAHVN TAGISGGHIN LGHISGAHLN 161	121 PAVT fallig PAVTVACLVG PAVTIALWLF PAVTFAFLVG PAVTFGLFLA PAVTLGMLAS 171 g	131 cqvSILrAip CHVSVLRAAF ACFDKRKVIP SQMSLLRAIC RKVSLLRALV CQISVLKAVM 181	141 Y i v AQILGAV F I V SQV AGAF Y V V AQLLGAV YMI AQCLGAI Y I V AQMLGSA 191 I.a.INaI
Consensus Conservation RMSD: ca 4nef.pdb, chain A 1fx8.pdb, chain A 1sor.pdb, chain A 1sor.pdb, chain A 7w7s.pdb, chain A 7w7s.pdb, chain A	101 GLaiatLvqa 49 GLGIGTLVQA 49 GLGVAMAIYL 49 GLALATLVQA 82 GGMIFVLVYC 51 GLAIATLAQS 151 agaalvyg.t	111 IghISGAHIN IGHISGAHIN TAGVSGAHLN VGHISGAHVN TAGISGGHIN LGHISGAHLN 161	121 PAVT fallig PAVTVACLVG PAVTIALWLF PAVTFAFLVG PAVTFGLFLA PAVTLGMLAS 171 g	131 cqvSILrAip CHVSVLRAAF ACFDKRKVIP SQMSLLRAIC RKVSLLRALV CQISVLKAVM 181	141 Y i v AQILGAV F I V SQVAGAF Y V AQLLGAV Y MI AQCLGAI Y I V AQMLGSA 191 I.a.INaI
Consensus Conservation RMSD: ca 4nef.pdb, chain A 1fx8.pdb, chain A 1sor.pdb, chain A 1so8.pdb, chain A 7w7s.pdb, chain A Consensus Conservation RMSD: ca 4nef.pdb, chain A	101 GLaiatLvqa 49 GLGIGTLVQA 49 GLGVAMAIYL 49 GLALATLVQA 82 GGMIFVLVYC 51 GLAIATLAQS 151 agaalvyg.t	111 IghISGAHIN IGHISGAHIN TAGVSGAHIN VGHISGAHVN TAGISGGHIN LGHISGAHLN 161	121 PAVT fallig PAVTVACLVG PAVTIALWLF PAVTFAFLVG PAVTFGLFLA PAVTEGMLAS 171 g	131 cqvSILrAip CHVSVLRAAF ACFDKRKVIP SQMSLLRAIC RKVSLLRALV CQISVLKAVM 181	141 Y i v AQILGAV YVAAQLLGAV F I V SQVAGAF YVVAQLLGAV YMIAQCLGAI YIVAQMLGSA 191 I.a.INaI
Consensus Conservation RMSD: ca 4nef.pdb, chain A 1fx8.pdb, chain A 1sor.pdb, chain A 1z98.pdb, chain A 7w7s.pdb, chain A Consensus Conservation RMSD: ca 4nef.pdb, chain A	101 GLaiatLvqa 49 GLGIGTLVQA 49 GLGVAMAIYL 49 GLALATLVQA 82 GGMIFVLVYC 51 GLAIATLAQS 151 agaalvyg.t 99 AGAALLHEIT 99 CAAALVYGLY	111 IghISGAHIN IGHISGAHIN TAGVSGAHLN VGHISGAHVN TAGISGGHIN LGHISGAHLN 161 	121 PAVT fallig PAVT VACLVG PAVT IALWLF PAVT FAFLVG PAVT FGLFLA PAVT FGLFLA PAVT LGMLAS	131 cqvSILrAip CHVSVLRAAF ACFDKRKVIP SQMSLLRAIC RKVSLLRALV CQISVLKAVM 181 	141 Y i v AQILGAV F I V SQVAGAF Y V AQLLGAV Y M I AQCLGA I Y I V AQMLGSA 191 I.a.INaI
Consensus Conservation RMSD: ca 4nef.pdb, chain A 1fx8.pdb, chain A 1sor.pdb, chain A 1z98.pdb, chain A 7w7s.pdb, chain A 7w7s.pdb, chain A Consensus Conservation RMSD: ca 4nef.pdb, chain A 1sor.pdb, chain A	101 GLaiatLvqa 49 GLGIGTLVQA 49 GLGVAMAIYL 49 GLALATLVQA 82 GGMIFVLVYC 51 GLAIATLAQS 151 agaalvyg.t 99 AGAALLHEIT 99 CAAALVYGLY 99 AGAAVLYSVT	111 IghISGAHIN IGHISGAHIN TAGVSGAHLN VGHISGAHVN TAGISGGHIN LGHISGAHLN 161 PADIR. YNLFFDF	121 PAVT fallig PAVT VACLVG PAVT IALWLF PAVT FAFLVG PAVT FGLFLA PAVT FGLFLA PAVT LGMLAS 171 g G EQT HHIVRGS	131 cqvSILrAip CHVSVLRAAF ACFDKRKVIP SQMSLLRAIC RKVSLLRALV CQISVLKAVM 181 VD	141 Y i v AQILGAV F I V SQVAGAF Y V AQLLGAV Y M I AQCLGAV Y M I AQCLGAI Y I V AQMLGSA 191 I.a.INaI
Consensus Conservation RMSD: ca 4nef.pdb, chain A 1fx8.pdb, chain A 1sor.pdb, chain A 1z98.pdb, chain A 7w7s.pdb, chain A 7w7s.pdb, chain A Consensus Conservation RMSD: ca 4nef.pdb, chain A 1sor.pdb, chain A 1sor.pdb, chain A	101 GLaiatLvqa 49 GLGIGTLVQA 49 GLGVAMAIYL 49 GLALATLVQA 82 GGMIFVLVYC 51 GLAIATLAQS 151 agaalvyg.t 99 AGAALLHEIT 99 CAAALVYGLY 99 AGAAVLYSVT 132 CGVGLVKAFM	111 IghISGAHIN IGHISGAHIN TAGVSGAHLN VGHISGAHVN TAGISGGHIN LGHISGAHLN 161 	121 PAVT fallig PAVTVACLVG PAVTIALWLF PAVTFAFLVG PAVTFGLFLA PAVTLGMLAS 171 g G EQTHHIVRGS G Q	131 cqvSILrAip CHVSVLRAAF ACFDKRKVIP SQMSLLRAIC RKVSLLRALV CQISVLKAVM 181 	141 Y i v AQILGAV F I V SQV AGAF Y V V AQLLGAV YMI AQCLGAI Y I V AQMLGSA 191 I.a.INaI I.a.INAI I.A.LNTL F G G.G.ANSV

	201	211	221	231	241
Consensus Conservation RMSD: ca	spgvtagQAv	g v <mark>E</mark> i f l T l q L	VIcifAaTDe	. r r	s
4nef.pdb, chain A	122 SNSTTAGQAV	TVELFLTLQL	VLCIFASTDE	.RR. GENPG	T
1sor.pdb, chain A	122 HPGVSVGQAT	IVEIFLTLQF	VLCIFATYDE	RRN.GRLG.	S
1z98.pdb, chain A 7w7s.pdb, chain A	156 A L G Y N K G T A L 123 S . G V T P S Q G V	GAEIIGTFVL GIELLATFQL	VYTVFSATDP VLCVIAVTDK	RRR.DVTG	. KRSARDSHV S
	251	261	271	281	291
Consensus Conservation RMSD: ca	a p <mark>L</mark> a I <mark>G</mark> f	s v a l g H L a g i	p y <mark>T G</mark> c g m <mark>N P A</mark>	RSFgPAvitn	n —
4nef.pdb, chain A	160 PALSIGF	SVALGHLLGT	HYTGCSMNPA	RSLAPAVVTG	
1sor.pdb, chain A	160 VALAVGE	SLTLGHLFGM	YYTGAGMNPA	RSFAPALLTR	LAGWGNVA
1z98.pdb, chain A	195 PILAPLPIGF	AVFMVHLATI	PITGTGINPA	RSFGAAVIFN	<mark>.</mark> N K
/w/s.pdb, chain A	160 APLAIGL	SVCLGHLAAT	SYIGCGINPA	RSFGPALILN	· · · · · · · N · ·
	301	311	321	331	341
Consensus Conservation RMSD: ca	. F t d	hWVyWv <mark>GP</mark> ii	<mark>G</mark> AilgallYd	.ILfp	
4nef.pdb, chain A	198 . FD D	HWVFWIGPLV	GAILGSLLYN	YVL. FPPAK	SLSERLAVLK
1fx8.pdb, chain A	224 . FTGGRDIPY	FLVPLFGPIV	GAIVGAFAYR	. KL.IGR	
1507.pdb, chain A	238 VW	OWLEWVGPVI	GAGLGSLLYD	VVI BAA	
7w7s.pdb, chain A	198 . FE N	HWVYWVGPMC	GGVAAALIYD	FLL. APK.	

Bacteria

In the case of the Bacteria we observe changes in the selectivity filter. Change of His \rightarrow Gly and Phe \rightarrow Trp

These leads to an increase of the pore as we saw in AQP7, this is why bacteria aquaporin acts as aquaglyceroporin

Spinach

Spinach mechanism of open and close conformation. In this case the loop D position plays an important role. When Ser115 is phosphorylated there's a loss of interaction with Cd \rightarrow so loop D less proximal to pore

Closer observation of the relevant region related with the closure of the pore

Superimposition of STAMP Structural Alignment

The aligned molecules are colored by their sequence similarity. Each aa is colored according to the degree of conservation with the alignment: blue means highly conserved, whereas red means very low or no conservation

Superimposition Results

Human APQ2s	AQP1 SHEEP (1SOR)	AQP FISH (7W7S)	AQP SPINACH (1Z98)	Bacteria (1FX8)
AQP2	QH: 0.84	QH: 0.83	QH:0.74	QH: 0.65
(4NLI)	RMSD: 1.02	RMSD: 0.83	RMSD: 1.13	RSMD: 1.43
	% Id: 57.45%	% Id: 40.08%	% Id: 32.64%	% Id: 26.86%

Structural dendogram

Spinacia oleracea Anabas testudineus Homo Sapiens Ovis aries Escherichia coli K12

Main differences when it comes to structural analysis are in bacteria and plants respect human aquaporin

Dendogram using CLUSTALW

0.10 changes per site

GLPF Escherichia coli K12 AQP0 Ovis aries AQP2 Homo Sapiens AQP1 Anabas testudineus SoPIP2;1 Spinacia oleracea

Thanks for your attention!

Diego Moreno Marc Rodríguez Maria Figueroa Beatriz Pou

PEM QUESTIONS

PEM questions

1. Which of the following statements is FALSE:

A) AQP2 has H-Bonds inside the alpha-helix of its structure.

B) AQP2 does not have any kind of salt bridges to stabilize its structure.

C) AQP2 forms a tetramer where each monomer has a functional pore.

D) AQP2 monomers are all alpha-proteins.

E) The AQP2 "tails" are not responsible for the function itself but the correct. transport of the protein.

2. About the NPA region, choose the TRUE statements:

- A) It stands for Not Polar Access.
- B) The Asparagine in this region is not conserved and tends to variate.
- C) It has no relevance for the water conductance.

D) It is completely rigid.

E) It establishes H-Bonds with the passing water molecules.

3. Which of the following statements accurately describes the structural organisation of aquaporins (AQPs)?

A) AQPs consist of seven α -helices arranged perpendicular to the membrane.

B) AQPs are composed of three α -helices that form a transmembrane channel.

C) AQPs are organized into six segments of an α -helix structure that cross the membrane from side to side.

D) AQPs have a single loop that folds toward the membrane and forms the pore.

E) AQPs do not contain any α -helices; instead, they are composed of β -sheets.

4.In the context of the T125M AQP2 mutation, what is the consequence of the amino acid change (Thr125 to Met) within the glycosylation consensus sequence (Asn-X-Ser/Thr)?

A) Enhances glycosylation B) Suppresses glycosylation C) Improves protein stability

- D) Promotes protein degradation
- E) Facilitates protein folding

5. What is the function of the detected salt bridge between Glu3 and Arg85 in Chain A?

A) Stabilisation of the C-terminal intracytoplasmic tail.

- B) Interaction with metals, such as cadmium.
- C) Enhancing the mobility of the membrane.
- D) Facilitating the crystallisation process of proteins.
- E) Regulating the movement of sodium molecules within the membrane.

6. What is the function of the area mainly composed of Arg187, His172, and Phe48 in aquaporins?

- A) Facilitating the entry of sodium and potassium ions into the pore.
- B) Neutralising the pH of acidic molecules.
- \dot{C} Allowing solutes with positive charge to pass through the pore.
- D) Increasing the diameter of the pore to accommodate larger molecules.
- E) Forming the selectivity filter to regulate the passage of solutes through the pore.

7. What conserved structural feature remarks similarity between the evolutionary lines of animals and plants despite their separation about 1.6 billion years ago?

A) Tryptophan appearance
B) NPA regions and selectivity filter conservation
C) Pore enlargement
D) Loop A removal
E) Amino acid substitution

8. What role do the residues of the NPA region play in the passage of water through the pore of aquaporins?

A) Blocking the passage of water molecules.

- B) Facilitating the entry of other solutes.
- C) Providing structural support to the pore.
- D) Forming hydrogen bonds with the water molecules.
- E) Creating a hydrophobic barrier within the pore.

9. Which molecule or protein is directly phosphorylated by protein kinase A (PKA) in response to vasopressin stimulation, leading to the internalization of AQP2 into vesicles again?

A) Vasopressin receptors.
B) Adenylate cyclases.
C) F-actin polymers and dyneins.
D) RhoA and Aquaporin-2 (AQP2).
E) Aquaporin-7(AQP7).

10. What is the role of Cd1 and Cd2 in the structure and function of aquaporin-2 (AQP2) in vivo?

A) Cd1 binds primarily with HisC80 and GluC232 to stabilize loop D.

B) Cd2 is ligated by GluA155 and GlnD57 to displace loop D.

C) Cd1 helps position the C-terminal helix by forming a hydrogen bond with GluB155.

D) Cd2 displaces loop D to the center of AQP2 by forming an ionic bond with HisC80.

E) Cd does not play a role itself in vivo, it is probably Ca2+.
BIBLIOGRAPHY

Bibliography

1.Day RE, Kitchen P, Owen DS, Bland C, Marshall L, Conner AC, et al. Human aquaporins: Regulators of transcellular water flow. Biochimica et Biophysica Acta (BBA) - General Subjects. 2014 May 1;1840(5):1492–506.

2.de Maré SW, Venskutonyte R, Eltschkner S, de Groot BL, Lindkvist-Petersson K. Structural Basis for Glycerol Efflux and Selectivity of Human Aquaporin 7. Structure. 2020 Feb 4;28(2):215-222.e3.

3.Deen PMT, Weghuis DO, Sinke RJ, van Kessel AG, Wieringa B, van Os CH. Assignment of the human gene for the water channel of renal collecting duct Aquaporin 2 (AQP2) to chromosome 12 region q12→q13. Cytogenetic and Genome Research [Internet]. 1994 Apr 1 [cited 2024 Feb 23];66(4):260–2. Available from: https://dx.doi.org/10.1159/000133707

4.Frick A, Eriksson UK, de Mattia F, Öberg F, Hedfalk K, Neutze R, et al. X-ray structure of human aquaporin 2 and its implications for nephrogenic diabetes insipidus and trafficking. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 2014 Apr 29 [cited 2024 Feb 23];111(17):6305–10. Available from: https://www.pnas.org/doi/abs/10.1073/pnas.1321406111

5.Fu D, Libson A, Miercke LJW, Weitzman C, Nollert P, Krucinski J, et al. Structure of a glycerol-conducting channel and the basis for its selectivity. Science [Internet]. 2000 Oct 20 [cited 2024 Feb 23];290(5491):481–6. Available from: https://www.science.org/doi/10.1126/science.290.5491.481

6.Gotfryd K, Mósca AF, Missel JW, Truelsen SF, Wang K, Spulber M, et al. Human adipose glycerol flux is regulated by a pH gate in AQP10. Nature Communications 2018 9:1 [Internet]. 2018 Nov 12 [cited 2024 Feb 23];9(1):1–11. Available from: <u>https://www.nature.com/articles/s41467-018-07176-z</u>

Bibliography

7.Hagströmer CJ, Steffen JH, Kreida S, Al-Jubair T, Frick A, Gourdon P, et al. Structural and functional analysis of aquaporin-2 mutants involved in nephrogenic diabetes insipidus. Scientific Reports | [Internet]. 123AD [cited 2024 Feb 23];13:14674. Available from: <u>https://doi.org/10.1038/s41598-023-41616-1</u>

8.Kitchen P, Conner MT, Bill RM, Conner AC. Structural Determinants of Oligomerization of the Aquaporin-4 Channel. Journal of Biological Chemistry. 2016 Mar 25;291(13):6858–71.

9.Knepper MA, Wade JB, Terris J, Ecelbarger CA, Marples D, Mandon B, et al. Renal aquaporins. Kidney International. 1996 Jun 1;49(6):1712–7.

10.Kruse E, Uehlein N, Kaldenhoff R. The aquaporins. Genome Biology [Internet]. 2006 Feb 28 [cited 2024 Feb 23];7(2):206. Available from: https://doi.org/10.3390/ijms18112255

11.Mellquist JL, Kasturi L, Spitalnik SL, Shakin-Eshleman SH, Ave R. The Amino Acid Following an Asn-X-Ser/Thr Sequon Is an Important Determinant of N-Linked Core Glycosylation Efficiency. [cited 2024 Feb 23]; Available from: <u>https://doi.org/10.1021/bi972217k</u>

12.Ozu M, Galizia L, Acuña C, Amodeo G. Aquaporins: More Than Functional Monomers in a Tetrameric Arrangement. Cells [Internet]. 2018 Nov 11 [cited 2024 Feb 23];7(11). Available from: <u>https://doi.org/10.3390/cells7110209</u>

13.Roche JV, Törnroth-Horsefield S. Aquaporin Protein-Protein Interactions. International Journal of Molecular Sciences [Internet]. 2017 Nov 1 [cited 2024 Feb 23];18(11). Available from: https://doi.org/10.3390/ijms18112255

Bibliography

14.Smart OS, Neduvelil JG, Wang X, Wallace BA, Sansom MSP. HOLE: A program for the analysis of the pore dimensions of ion channel structural models. Journal of Molecular Graphics. 1996 Dec;14(6):354–60.

15.Stone J, Wright D, Eargle J, Khalili F, Villa E, Wang Y, et al. Aquaporins. 2014 [cited 2024 Feb 23]; Available from: http://www.ks.uiuc.edu/Training/Tutorials/

16.Törnroth-Horsefield S, Wang Y, Hedfalk K, Johanson U, Karlsson M, Tajkhorshid E, et al. Structural mechanism of plant aquaporin gating. Nature 2005 439:7077 [Internet]. 2005 Dec 7 [cited 2024 Feb 23];439(7077):688–94. Available from: <u>https://www.nature.com/articles/nature04316</u>

17.Verkman AS, Anderson MO, Papadopoulos MC. Aquaporins: important but elusive drug targets. Nature Reviews Drug Discovery 2014 13:4 [Internet]. 2014 Mar 14 [cited 2024 Feb 23];13(4):259–77. Available from: <u>https://www.nature.com/articles/nrd4226</u>

18. Verma RK, Gupta AB, Sankararamakrishnan R. Major Intrinsic Protein Superfamily: Channels with Unique Structural Features and Diverse Selectivity Filters. Methods in Enzymology. 2015 Jan 1;557:485–520.

19.Zeng J, Schmitz F, Isaksson S, Glas J, Arbab O, Andersson M, et al. High-resolution structure of a fish aquaporin reveals a novel extracellular fold. Life Science Alliance [Internet]. 2022 Dec 1 [cited 2024 Feb 23];5(12). Available from: <u>https://www.life-science-alliance.org/content/5/12/e202201491</u>