

Immunoglobulins G

Structural biology 4th Human Biology Aina de Manuel, Antònia Escanellas, Nuria Mei Barbero.

Outline

- 1. Introduction
- 2. Immunoglobulin fold
- 3. Immunoglobulins G
 - Constant region
 - Variable region
- 4. Conclusions
- 5. Bibliography
- 6. Multiple choice questions

1- INTRODUCTION

Immunoglobulins

- Glycoprotein molecules produced by plasma cells
- Main function: recognition and binding to specific antigens
 - Responsible for the adaptive immune response
- Structure:
 - 2 identical heavy chains and 2 identical light chains
 - Y shaped: variable and constant regions

1IGT 2.8 Å, *Mus musculus*

Diversity

*Chromosomes 16, 6 and 12 respectively in mice

Diversity

Heavy chain -AAAA -AAAA

Immunoglobulin isotypes

Stranford, S.A. et al. (2022) Kuby Immunology. Austin: Macmillan Learning.

Class Ig	Structure	Heavy chain	Number of CH Ig domains	Subclasses	Light chain	J chain	Functions	Location
lg G	Monomer	γ	3	γ1, γ2, γ3, γ4 (humans) γ1, γ2a, γ2b, γ3 (mouse)	κorλ	None	Complement activation, agglutination, opsonization and neutralization, crosses placenta to protect foetus.	Serum and intercellular fluid
lg M	Pentamer	μ	4	-	κorλ	Yes	Complement activation, opsotnization, agglutination, and neutralization	Serum
lg A	Dimer	α	3	α1, α2	κorλ	Yes	Agglutination and neutralization	Mucous membrane secretion, gut
lg E	Monomer	ε	4	-	κorλ	None	Triggers release of histamine from basophils and mast cells	Serum, mast cell surfaces
lg D	Monomer	δ	4	-	κorλ	None	Antigen receptor	B cell surface

1IGT 2.8 Å, *Mus musculus*

Heavy chains Light chains

Chain A (light chain) Chain B (heavy chain) Chain C (light chain) Chain D (heavy chain)

1IGT 2.8 Å, *Mus musculus*

Hydrophobicity and hydrophilicity

Hydrophobic

Hydrophyllic

Disulfide bridges

Disulfide bridges (Hinge region)

Proline Disulfide bridges

Residue chain B - D	Distance
C 237C 237 B - C237 D	2.038 Å
C 240 B - C 240 D	2.035 Å
C 242 B - C 242 D	2.037 Å

1IGT 2.8 Å, Mus musculus

SCOP

class: All beta proteins

fold: Immunoglobulin-like beta-sandwich

> superfamily: Immunoglobulin domain-like

> > families

Ig-like beta-sandwich

Hydrogen bonds

1IGT 2.8 Å, *Mus musculus*

Disulfide bridges (Fab region)

Disulfide bridges (Fab region)

Salt bridges

Salt bridges (Variable region)

class: All beta proteins

fold: Immunoglobulin-like beta-sandwich

superfamily: Immunoglobulin domain-like

families

Superfamily

- Distantly related or unrelated proteins
- Eukaryotes and prokaryotes
- Sequence identity < 10%
- Greek-key β-sandwich structure
- Common hydrophobic core

Domains:

Conservation

1fc1 (2.90 Å) \rightarrow Human Fc fragment (Homo sapiens)

1hla (3.50 Å) \rightarrow Human class I histocompatibility antigen (Homo sapiens)

1bec (1.70 Å) \rightarrow Beta chain of T-cell antigen receptor (Mus musculus)

3cd4 (2.20 Å) \rightarrow Human CD4 (Homo sapiens)

1hnf (2.50 Å) \rightarrow Human CD2 (Homo sapiens)

1tnm (NMR) \rightarrow Muscle protein titin (Homo sapiens)

1nci (2.10 Å) \rightarrow N-cadherin (Mus musculus)

2mcm (1.50 Å) → Macromomycin (Streptomyces macromomyceticus)

3hhr (2.80 Å) \rightarrow Human GH receptor (Homo sapiens)

Conservation

	1	11	21	31	41	51	61	71
Consensus		t						
Conservation	-							
1fc1A	PSVFL	FPFKFKDTLM	T SRTPEVTCV	VVDVSHEDPQ	VKFNWYVDGV	QVHNAKTKPR	EQQYNSTYRV	VSVLTVLHQN
1hlaM								
1becA	AVTQSPRNKV	AVTGGKVTLS	CQQTNNHNNM	YWYRQDTGHG	LRLIHYSYGA	GSTEKGDIPD	GYKASRPSQE	QFSLILELAT
1tnmA								
3cd4A	K K V	VLGKKGDTVE	LTCTASQKKS	QFHWKNSNQ	IKILGNQGSF	LTKGPSKLND	RADSRRSLWD	QGNFPLIKN
1nciA								
2mcmA				1.1.1.2.1.2.2.2.3.1				
1hnfA		T N A	LETWGALGQD	INLDIPSFQM	SDDIDDIKWE	KTSDKKKIAQ	FRKEKETFKE	KDTYKLFKNG
1ctmA	YPIFAQQNYE	NPREATGRIV	CANCHLASKP	VDIEVPQAVL	PDTVFEAVVK	IPYDMQLKQV	LANGKKGALN	VGAVLILPEG
3hhrC	E <mark>P K F T K</mark>	CRSPERETFS	CHWTDEVHGP	QLFYTRRNQ	E WKECPD	YVSAGENSCY	FNSSFTSIWI	PYCIKLTSNG
	81	91	101	111	121	131	1/1	151
Consensus			ik	ppd	akvveiepae	nevsn	fllcdteafr	padievtwev
Conservation				P P 2				Paarottiot
1fc1A	WLDGKEYKCK	V S N	KALPAPIEKT	ISKAKGOPBE	POVYTLPPSR	EEMTKNQ V	SLTCLVKGFY	PSDIAVEWES
1hlaM			I QRT	P K -	IQVYSRHPAE	NGKSN	FLNCYVSGFH	PSDIEVDLLK
1becA	PSQTSVYFCA	SGGGRGSYAE	QFFGPGTRLT	VLEDLRQVTP	PKVSLFEPSK	AELANKQK - A	TLVCLARGFF	PDHVELSWWV
1tnmA			R L T K	PRS	MTVYEGESAR		- FSCDTDG - E	P-VPTVTWLR
3cd4A			L K I E	D S D	TYICEVEDQK	EEVQLLVFGL	TANSDTHLLQ	GQSLTLTLES
1nciA				G S D	WVIPPINLPE	NSRGPFP	QELVRIRSGR	DKNLSLRYSV
2mcmA				A P G	VTVTPATGLS	NGQTVTVSAT	GLTPGTVYHV	GQCAVVEPGV
1hnfA			TLKIK	HLK TDD	QDIYKVSIYD	TKGKNVLEKI	FDLKIQERVS	KPKISWTCIN
1ctmA	FELAPPDRIS	PEMKEKIGNL	SFQNYRPNKK	NILVIGPVPG	QKYSEITFPI	LAPDPATNKD	VHFLKYPIYV	GGNRGRGQIY
3hhrC			<u>G</u> T V D E K	CFSVDEIVQP	DPPIALNWTL	LNVSLTGIHA	DIQVRWEAPR	NADIQKGWMV
	101	171	101	101	201	011	001	001
Conconcus	nagoaonsot	tdpta	ioi kkd a	of Llycalov	201	tfacryogng	Lkoordikog	201
Consensus	nggeaenset	tupta	KKUy	silivsqiev	qaspig	tracivegily	ikeesuikey	sp
1fc1A	NGOPENNYKT	TPPVI	DSD	SEELVSKLTV	DKSBWO - OGN	VESCSVMHEA	LHNHYTOKSI	SL
1hlaM	NGERLEKVEH	SDISE	SKDW	SEVILVYTEE	TPT	EVACBUNHVT	LSOPKIVKWD	B
1becA	NGKEVHSGVS	TDPOA	YKESNY	SYCLSSBIRV	SATEWHNPBN	HEBCOVOEHG	LSEEDKWPEG	SPKPVTONIS
1tnmA	KGOVISTSAB	HOVIT	TKYK-S	TEELS	OAS DEG	NYSVVVENSE	GKOFAFETIT	
3cd4A	PPGSSPSVQC	RSPRG		KTISVSOLEL	008	TWICTVLONO	KKVEEKIDIV	VIA
1nciA	TGPGADOPPT	GIFIL	NPIS-G	OLSVIKPLDB	FILAR - FHLR	AHAVDINGNO	VENPIDIVIN	VID
2mcmA	IGCDATTSTD	VTADA	AGKITA	QLKVHSSEQA	VVGADGTPWG	TVNCKVVSCS	AGLGSDSGEG	AAQAITEA
1hnfA	TTLTCEVMNG	TDPEL	NLYODG	KHLKLSOBVI	THKWTTSLSA	KFKCTAGNKV	SKESSVEPVS	CPEK
1ctmA	PDGSKSNNTV	YNATAGGIIS	KILBKEKGGY	ELTIVDASNE	BOVIDIIPBG	LELLVSEGES	IKIDOPLTSN	PNVGGEGOGD

Conservation

TRAD

3- IMMUNOGLOBULIN G

CONSTANT REGION

IgG subclasses

Glycosylation

Glycosylation

Fc receptors

pH dependent ----- FcRn

Fc receptors

Fc receptors

Salt Bridges: Lys142 - Glu294 Lys 145 - Glu269
Fc receptors

Trp Pro Trp sandwich

Fc receptors

The FG loop has contact with both chains

IgG subclasses

Consensus Conservation 4hafA 6d58A 3aveA 4c55A	1 GPSVFLF GPSVFLF LLGGPSVFLF GPSVFLF	11 PPKPKDTLMI PPKPKDTLMI PPKPKDTLMI PPKPKDTLMI	21 SRTPEVTC/V SRTPEVTC/V SRTPEVTC/V SRTPEVTC/V SRTPEVTC/V	31 VDVSHEDPEV VDVSHEDPEV VDVSHEDPEV VDVSHEDPEV VDVSEDPEV VDVSCEDPEV	41 q F n WY V D G V E Q F N WY V D G V E Q F K WY V D G V E K F N WY V D G V E Q F N WY V D G V E
Consensus Conservation 4hafA 6d58A 3aveA 4c55A	51 VHNAKTKPRE VHNAKTKPRE VHNAKTKPRE VHNAKTKPRE VHNAKTKPRE	61 E D Y N S T Y R V V E D F N S T F R V V E D Y N S T F R V V E D Y N S T Y R V V E D F N S T Y R V V	71 SVLTVIHQDW SVLTVLHQDW SVLTVLHQDW SVLTVLHQDW SVLTVLHQDW	81 LNGKEYKCKV LNGKEYKCKV LNGKEYKCKV LNGKEYKCKV LNGKEYKCKV	91 SNK a LP a p I E SNK C LP A P I E SNK A LP A P I E SNK A LP A P I E SNK C LP S I E
Consensus Conservation 4hafA 6d58A 3aveA 4c55A	101 KT I SK a KGQP KT I SKTKGQP KT I SK A KGQP KT I SK A KGQP	111 REPOVYTLPP REPOVYTLPP REPOVYTLPP REPOVYTLPP REPOVYTLPP	121 SreEmTKNQV SREEMTKNQV SREEMTKNQV SRDELTKNQV SQEEMTKNQV	131 SLTCLVKGFY SLTCLVKGFY SLTCLVKGFY SLTCLVKGFY SLTCLVKGFY	141 PSDIAVEWES PSDIAVEWES PSDIAVEWES PSDIAVEWES PSDIAVEWES
Consensus Conservation 4hafA 6d58A 3aveA 4c55A	151 NGOPENNYKT SCOPENNYKT NGOPENNYKT NGOPENNYKT	161 TPPMLDSDGS TPPMLDSDGS TPPVLDSDGS TPPVLDSDGS	171 FFLYSKLTVD FFLYSKLTVD FFLYSKLTVD FFLYSKLTVD FFLYSRLTVD	181 KSRWQqGNvF KSRWQQGNVF KSRWQQGNVF KSRWQQGNVF KSRWQEGNVF	191 S C 3 V MH E A L H S C 3 V MH E A L H
Consensus Conservation 4hafA 6d58A 3aveA 4c55A	201 NHYTQKSLSL NHYTQKSLSL NHFTQKSLSL NHYTQKSLSL NHYTQKSLSL	211 s - S S			

4haf (2.04 A): Homo sapiens IgG2 6d58 (2.39 A): Homo sapiens IgG3 3ave (2.0 A): Homo sapiens IgG1 4c55 (2.35 A): Homo sapiens IgG4

Score: 9.64 RMSD: 0.86

Different species

Consensus	1	11	21	31	41
	gp <mark>SVFIF</mark>	PPKPKDtLml	srTPeVT <mark>C</mark> VV	V D v S q e D P e V	k F n W y V d g v E
3aveA	LLGGPSVFLF	PPKPKDTLMI	SRTPEVTCVV	VDVSHEDPEV	K F N W Y V D G V E
6d4eA	GPSVFLF	PPKPKDTLMI	SRTPEVTCVV	VDVSQEDPDV	K F N W Y V N G A E
3hkfA	SSVFIF	PPKPKDVLTI	TLTPKVTCVV	VDISKDDPEV	Q F S W F V D D V E
Consensus	51	61	71	81	91
	VHhAqTkPRE	e Q y <mark>N S T</mark> y R v V	SvLtvmHQDW	LNGKEyk <mark>C</mark> kV	snk <mark>AIPAPI</mark> e
3aveA	VHNAKTKPRE	EQYNSTYRVV	SVLTVLHODW	LNGKEYKCKV	SNKALPAPIE
6d4eA	VHHAQTKPRE	TQYNSTYRVV	SVLTVTHODW	LNGKEYTCKV	SNKALPAPIQ
3hkfA	VHTAQTQPRE	EQFNSTFRSV	SELPIMHODW	LNGKEFKCRV	NSAAFPAPIE
Consensus	101	111	121	131	141
	KTISKaKGqP	re <mark>PQVYTIPP</mark>	sreelt <mark>K</mark> nqV	SLTCIvkgFy	PsDIaVEWes
SaveA	KTISKAKGOP	REPOVYTLPP	SRDELTKNOV	S L T C L V K G F Y	PSDIAVEWES
6d4eA	KTISKDKGOP	REPOVYTLPP	SREELTKNOV	S L T C L V K G F Y	PSDIVVEWES
3hkfA	KTISKTKGRP	KAPQVYTIPP	PKEQMAKDKV	S L T C M I T D F F	PEDITVEWQW
Consensus	151	161	171	181	191
	n <mark>G Q P</mark> e n n <mark>Y K</mark> t	TpPvIDsDGS	y <mark>F I Y S K L</mark> t V d	KSrWqqGNvF	s <mark>CSVmHEaLH</mark>
SaveA	NGQPENNYKT	T P P V L D S D G S	FFLYSKLTVD	KSRWQQGNVF	SC SVMHEALH
6d4eA	SGQPENTYKT	T P P V L D S D G S	YFLYSKLTVD	KSRWQQGNVF	SC SVMHEALH
3hkfA	NGQPAENYKN	T Q P I MD T D G S	YFVYSKLNVQ	KSNWEAGNTF	TC SVLHEGLH
Consensus	201 <u>NHy</u> Tq <u>KSLS</u> -	211 s			
Conservation 3aveA 6d4eA 3hkfA	NHYTOKSLSL NHYTOKSLSV NHHTEKSLS -	S S			

3ave (2.0 A): *Homo sapiens* 6d4e (2.80 A): *Macaca mulatta* 3hkf (2.50 A): *Mus musculus*

VARIABLE REGION

Complementary Determining Regions (CDR)

CDRs are the regions that directly interact with **antigens**!

Light chain

Framework regions vs CDRs

Chothia et al. classification

<u>Heavy chain</u>		Canonical structure	
H1		1, 2, 3	
H2		1, 2a, 2c, 3a, 3b, 3c, 4	
НЗ		-	
Light chain		Canonical structure	
L1	<u>Lambda (λ)</u>	1λ, 2λ, 3λ, 4λ	
	<u>Карра (к)</u>	1к, 2к, 3к, 4к	
L2		I	
L3	<u>Lambda (λ)</u>	1aλ, 1bλ, 1cλ, 2λ	
	<u>Карра (к)</u>	1к, 2к	

 \rightarrow Loop length

- \rightarrow Conformation of the loop
- \rightarrow Conserved amino acid residues

Methodology

Light chain λ Sequence alignment

Light chain *λ* **Canonical structures**

L1 1λ

L1 2λ

L1 3λ

Al-Lazikani B, Lesk AM, Chothia C. Standard conformations for the canonical structures of immunoglobulins. J Mol Biol.

L1 κ is extended

L1 κ 1BBD 2.80 Å, *Homo sapiens*

L1 λ is helical

L1 λ 1IND 2.20 Å, Homo sapiens

 \rightarrow 8 residues in a hairpin

 \rightarrow 4 residues at the top: turn

 \rightarrow Ser94 and Asp92, H bond

	90	92	94	97
b	A۷	VDI	NSA	ASI

8fa

Light chain *x* Sequence alignment

Light chain *x* Canonical structures

Al-Lazikani B, Lesk AM, Chothia C. Standard conformations for the canonical structures of immunoglobulins. J Mol Biol.

 \rightarrow Residues 25 to 29: extended confirmation

 \rightarrow Residues 29 to 32: short links/hairpin loops

 \rightarrow Residue 29 with 31: hydrogen bond (I and N)

1fvc

1fgv

1igm

ASQ

AS

residue 31

1FGV IgG Fab at 1.9 Å *Homo sapiens*

L1 2×

1IGM IgG Fv at 2.3 Å Homo sapiens

29 31

QDVNTAV

ASQDISNYL

L1 κ is extended

L1 κ 1BBD 2.80 Å, *Homo sapiens*

L1 λ is helical

L1 λ 1IND 2.20 Å, Homo sapiens

L3 1x

 \rightarrow Most common in k L3

 \rightarrow Gln90 conserved

1TET IgG1 Fab at 2.3 Å Homo sapiens

> 90 1tet QGSHIPFT

Heavy chain Sequence alignment

Heavy chain **Canonical structures**

Al-Lazikani B, Lesk AM, Chothia C. Standard conformations for the canonical structures of immunoglobulins. J Mol Biol.

3C2A IgG Fab at 2.1 Å Homo sapiens

2G75 IgG Fab at 2.28 Å Homo sapiens

8FAB IgG Fab at 2.8 Å Homo sapiens

 \rightarrow Huge length and sequence differences

 \rightarrow Impact: antigen binding

 \rightarrow Variability: full loop structure

3c2a 2g75 8fab

ANTIBODY-ANTIGEN INTERACTION

Herceptin-HER2 interaction

Reversible noncovalent interactions

Electrostatic forces

Hydrogen bonds

Van der Waals forces

Hydrophobic forces

Herceptin binds HER2 on the C-terminal portion of domain IV

Herceptin's core hotspot residues for HER2 binding

Mechanism and Application in Structure-Based Ligand Design. Int. J. Mol. Sci. Figure 4.

Hydrophobic groove is formed by residues in H3 and L3

1N8Z 2.52 Å

Phe17 and Pro16 bind to the hydrophobic groove

1N8Z 2.52 Å Heavy chain

1N8Z 2.52 Å Strong electrostatic interaction between Asp4 and Arg50, Arg59 occur with remarkable hydrogen bond interactions

2.52 Å

CONCLUSIONS

Conclusions

- 1. Immunoglobulins have a very stable and conserved structure, which is mediated by different bonds such as disulfide bridges and hydrogen bonds
- 2. The immunoglobulin fold provides a perfect example of how structure determines and/or facilitates function
- 3. The constant region of IgG is the most conserved in sequence and structure
- 4. Glycosylation is important for the open conformation of the Fc region and the interaction with the receptors
- **5.** Despite CDRs being hypervariable regions, there are some chain conformations that are more frequently found, defining canonical structures
- 6. CDRs are a clear example of the fact that structure is generally more conserved than sequence
- 7. In the antigen-antibody binding, both hydrophobic interactions and hydrogen bonds are formed between the CDRs of the Fab and the epitope

Bibliography

ACS Publications. (2024). Ranking the Susceptibility of Disulfide Bonds in Human IgG1 Antibodies by Reduction, Differential Alkylation, and LC-MS Analysis. [online] Available at: https://pubs-acs-org.sare.upf.edu/doi/full/10.1021/ac100575n [Accessed 18 Feb. 2024].

Annual Reviews. (2019). *IgG Fc Receptors*. [online] Available at: https://www.annualreviews.org/doi/abs/10.1146/annurev.immunol.19.1.275?journalCode=immunol [Accessed 21 Feb. 2024].

Bissan Al-Lazikani, Lesk, A.M. and Chothia, C. (1997). Standard conformations for the canonical structures of immunoglobulins 1 1Edited by I. A. Wilson. *Journal of Molecular Biology*, [online] 273(4), pp.927–948. doi:<u>https://doi.org/10.1006/jmbi.1997.1354</u>.

Bruhns, P., Iannascoli, B., England, P., Mancardi, D.A., Fernandez, N., Jorieux, S. and Daëron, M. (2009). Specificity and affinity of human Fcγ receptors and their polymorphic variants for human IgG subclasses. *Blood*, [online] 113(16), pp.3716–3725. doi:https://doi.org/10.1182/blood-2008-09-179754.

Chatellier, J., H.V, M., Vernet, T. and Danièle Altschuh (1996). Functional Mapping of Conserved Residues Located at the VL and VH Domain Interface of a Fab. *Journal of Molecular Biology*, [online] 264(1), pp.1–6. doi:https://doi.org/10.1006/jmbi.1996.0618.

Chimera User Guide Written by. (n.d.). Available at: https://map.rcsb.org/sites/default/files/Chimera%20User%20Guide%205.0.pdf [Accessed 21 Feb. 2024].

Chiu, M.L., Goulet, D.R., Alexey Teplyakov and Gilliland, G.L. (2019). Antibody Structure and Function: The Basis for Engineering Therapeutics. *Antibodies*, [online] 8(4), pp.55–55. doi:<u>https://doi.org/10.3390/antib8040055</u>.

Chothia C, Gelfand I, Kister A. Structural determinants in the sequences of the immunoglobulin variable domain. J Mol Biol. 1998;278:475-479.

Chothia C, Lesk A, Tramontano A, Levitt M, Smith-Gill S, Air G et al. Conformations of immunoglobulin hypervariable regions. Nature. 1989;342(6252):877-883.

Chothia C, Lesk AM.Canonical structures for the hypervariable regions of immunoglobulins. J Mol Biol. 1987 Aug 20;196(4):901-17.

Chothia, C. and Lesk, A.M. (1987). Canonical structures for the hypervariable regions of immunoglobulins. *Journal of Molecular Biology*, [online] 196(4), pp.901–917. doi:https://doi.org/10.1016/0022-2836(87)90412-8.
Bibliography

Cobb, B.A. (2019). The history of IgG glycosylation and where we are now. Glycobiology, [online] 30(4), pp.202–213. doi:https://doi.org/10.1093/glycob/cwz065.

Data, P. (2014). RCSB PDB - 4X4M: Structure of FcgammaRI in complex with Fc reveals the importance of glycan recognition for high affinity IgG binding. [online] Rcsb.org. Available at: https://www.rcsb.org/structure/4X4M [Accessed 21 Feb. 2024].

Data, P. (2020). RCSB PDB - 11GT: STRUCTURE OF IMMUNOGLOBULIN. [online] Rcsb.org. Available at: https://www.rcsb.org/structure/11GT [Accessed 21 Feb. 2024].

Dondelinger, M., Filée, P., Sauvage, E., Quinting, B., Serge Muyldermans, Moreno Galleni and Vandevenne, M.S. (2018). Understanding the Significance and Implications of Antibody Numbering and Antigen-Binding Surface/Residue Definition. *Frontiers in Immunology*, [online] 9. doi:https://doi.org/10.3389/fimmu.2018.02278.

Duncan, A.R. and Winter, G. (1988). The binding site for C1q on IgG. Nature, 332(6166), pp.738-740. doi:https://doi.org/10.1038/332738a0.

Ebi.ac.uk. (2024). InterPro. [online] Available at: https://www.ebi.ac.uk/interpro/entry/InterPro/IPR003597/ [Accessed 21 Feb. 2024].

Gergely, J. and Sarmay, G. (1990). The two binding-site models of human IgG binding Fcγ receptors. *The FASEB Journal*, [online] 4(15), pp.3275–3283. doi:<u>https://doi.org/10.1096/fasebj.4.15.2253843</u>.

Hyun Soo Cho, Mason, K., Ramyar, K.X., Ann Marie Stanley, Gabelli, S.B., Denney, D.W. and Leahy, D.J. (2003). Structure of the extracellular region of HER2 alone and in complex with the Herceptin Fab. *Nature*, [online] 421(6924), pp.756–760. doi:<u>https://doi.org/10.1038/nature01392</u>.

Irvine, E.B. and Alter, G. (2020). Understanding the role of antibody glycosylation through the lens of severe viral and bacterial diseases. *Glycobiology*, [online] 30(4), pp.241–253. doi:https://doi.org/10.1093/glycob/cwaa018.

Janeway, C.A., Travers, P., Walport, M. and Shlomchik, M.J. (2024). *The structure of a typical antibody molecule*. [online] Nih.gov. Available at: https://www.ncbi.nlm.nih.gov/books/NBK27144/ [Accessed 21 Feb. 2024].

Kazuhiro Miyanabe, Akiba, H., Kuroda, D., Makoto Nakakido, Osamu Kusano-Arai, Iwanari, H., Takao Hamakubo, Manuel, J. and Kouhei Tsumoto (2018). Intramolecular H-bonds govern the recognition of a flexible peptide by an antibody. *The Journal of Biochemistry*, [online] 164(1), pp.65–76. doi:https://doi.org/10.1093/jb/mvy032.

Bibliography

Liu, H. and May, K. (2012). Disulfide bond structures of IgG molecules. mAbs, [online] 4(1), pp.17–23. doi:https://doi.org/10.4161/mabs.4.1.18347.

Marta Gómez Perosanz, Russo, G., Luis, J., Pennisi, M., Reche, P.A., Shepherd, A. and Pappalardo, F. (2019). Computational Immunogenetics. *Elsevier eBooks*, [online] pp.906–930. doi:https://doi.org/10.1016/b978-0-12-809633-8.20452-4.

Nowak, J., Baker, T., Georges, G., Kelm, S., Klostermann, S., Shi, J., Sridharan, S. and Deane, C.M. (2016). Length-independent structural similarities enrich the antibody CDR canonical class model. *mAbs*, [online] 8(4), pp.751–760. doi:<u>https://doi.org/10.1080/19420862.2016.1158370</u>.

Pomarici, N.D., Cacciato, R., Kokot, J., Fernández-Quintero, M.L. and Liedl, K.R. (2023). Evolution of the Immunoglobulin Isotypes—Variations of Biophysical Properties among Animal Classes. *Biomolecules*, [online] 13(5), pp.801–801. doi:<u>https://doi.org/10.3390/biom13050801</u>.

RCSB: PDB-101. (2024). PDB101: Molecule of the Month: Antibodies. [online] Available at: https://pdb101.rcsb.org/motm/21 [Accessed 21 Feb. 2024].

ResearchGate. (2019). CDR definitions in Chothia numbering. [online] Available at: https://www.researchgate.net/figure/CDR-definitions-in-Chothia-numbering_tbl1_337735681 [Accessed 21 Feb. 2024].

Schroeder, H.W. and Cavacini, L. (2010). Structure and function of immunoglobulins. *Journal of Allergy and Clinical Immunology*, [online] 125(2), pp.S41–S52. doi:https://doi.org/10.1016/j.jaci.2009.09.046.

Shields, R.L., Namenuk, A.K., Hong, K., Y. Gloria Meng, Rae, J., Briggs, J., Xie, D., Lai, J., Stadlen, A., Li, B., Fox, J.A. and Presta, L.G. (2001). High Resolution Mapping of the Binding Site on Human IgG1 for FcyRI, FcyRII, FcyRII, and FcRn and Design of IgG1 Variants with Improved Binding to the FcyR. *Journal of Biological Chemistry*, [online] 276(9), pp.6591–6604. doi:https://doi.org/10.1074/jbc.m009483200.

Stranford, S.A. et al. (2022) Kuby Immunology. Austin: Macmillan Learning.

Structural classification of proteins (no date) SCOP. Available at: https://scop.mrc-lmb.cam.ac.uk/ (Accessed: 21 February 2024).

Bibliography

Sun, T.-Y., Wang, Q., Zhang, J., Wu, T. and Zhang, F. (2013). Trastuzumab-Peptide Interactions: Mechanism and Application in Structure-Based Ligand Design. *International Journal of Molecular Sciences*, [online] 14(8), pp.16836–16850. doi:<u>https://doi.org/10.3390/ijms140816836</u>.

Tau.ac.il. (2019). ConSurf-DB | Evolutionary conservation profiles of proteins. [online] Available at: https://consurfdb.tau.ac.il/main_output.php?pdb_ID=5D4Q&view_chain=A&unique_chain=5D4QA [Accessed 21 Feb. 2024].

Vargas-Madrazo, E., Lara-Ochoa, F., and, C. and Juan Carlos Almagro (1998). *Evolution of the structural repertoire of the human V(H) and V(κ) germline genes*. [online] ResearchGate. Available at: https://www.researchgate.net/publication/13765182_Evolution_of_the_structural_repertoire_of_the_human_VH_and_Vk_germline_genes [Accessed 21 Feb. 2024].

Wikipedia Contributors (2022). Immunoglobulin superfamily. [online] Wikipedia. Available at: https://en.wikipedia.org/wiki/Immunoglobulin_superfamily [Accessed 21 Feb. 2024].

Multiple choice questions

1. How many light chains are encoded in the human genome?

a. 2 of them: lambda and kappa

- b. 4 of them: mu, sigma, delta and alpha
- c. 6 of them: mu, sigma, delta, lambda, kappa and alpha
- d. All of the above
- e. None of the classifications is correct
- 2. Mark the correct sentence about the Ig like fold is...
 - a. On an immunoglobulin G there is only one Ig like fold
 - b. Only found on proteins that belong to the immune system
 - c. The constant region and the variable region is structurally identical
 - d. It is a typical example of how function determines the structure
 - e. It is formed by beta and alpha helices
- 3. The structure of an immunoglobulin G ...
 - a. Has an Y shape
 - b. It is formed by 2 heavy chains and 2 light chains
 - c. The variable domain is formed by light and heavy chains
 - d. The Fab and Fc fragment is obtained by the action of the enzyme papain
 - e. All of them are correct

Multiple choice questions

- 4. Which type of fold have immunoglobulins?
 - Ig-like alpha-helix a) b) c)
 - Ig-like beta-sandwich
 - Alpha + beta
 - d Alpha / beta
 - None of them e)
- 5. IgG glycosylation:
 - Is important for the binding of the antigen a) b) c) d) e)

 - Is located in the hinge region Can be located at any part of the Fc
 - Is important for the binding of the receptor
 - Is not important at all

6. About Fc receptors:

- They bind the Fab part of IgGs $Fc\gamma RI$ is the one with less afinity $Fc\gamma RI$ is an inhibitory receptor a) b)
- c) d)
- FcyRI has 2 loops
- e) FcyRI has 3 loops, but only two of them interacts with IgG
- 7. Which is the most variable CDR?

a)	L1
b)	L3
cĺ	H2
d)	H1
e)	H3

Multiple choice questions

8. About the canonical structures of CDRs:

- a) Canonical structures are defined by the loop length, the conformation of the loop, and conserved residues
- b) Canonical structures are defined by the loop length and by conserved residues
- c) There are 10 canonical structures in total
- d) There are canonical structures characterized for every CDR
- e) L1 and H1 share the same canonical structure

9. About CDRs in immunoglobulins:

- a) CDRs are not the most variable regions within immunoglobulins
- b) CDRs of the same type can't share main chain conformations
- c) CDRs confer specificity to antibodies by facilitating antigen recognition
- d) Canonical structures for CDRs were initially characterized by Baldomero Oliva and Nuria Centeno
- e) CDR H3 has several characterized canonical structures

10. About the interaction between HER2 and Herceptin:

- a) No hydrogen bonds are formed in this interaction
- b) Herceptin binds specifically to the extracellular domain IV of HER2
- c) The interaction is uniquely based on electrostatic interactions
- d) A hydrophobic groove is formed by residues present in CDRs L3 and H3
- e) Answers a and c are correct

Immunoglobulins G

Structural biology 4th Human Biology Aina de Manuel, Antònia Escanellas, Nuria Mei Barbero.