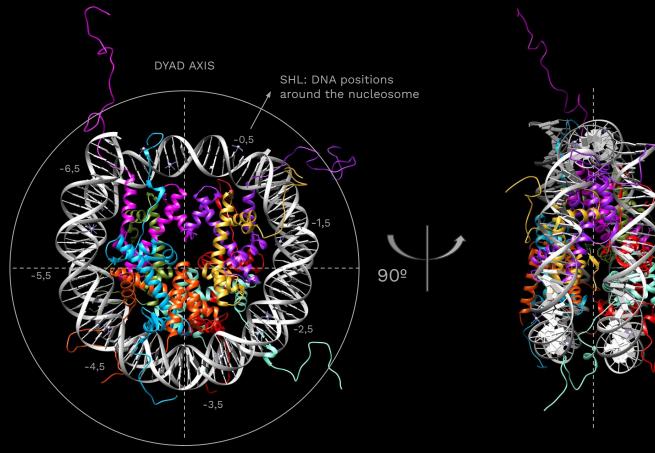
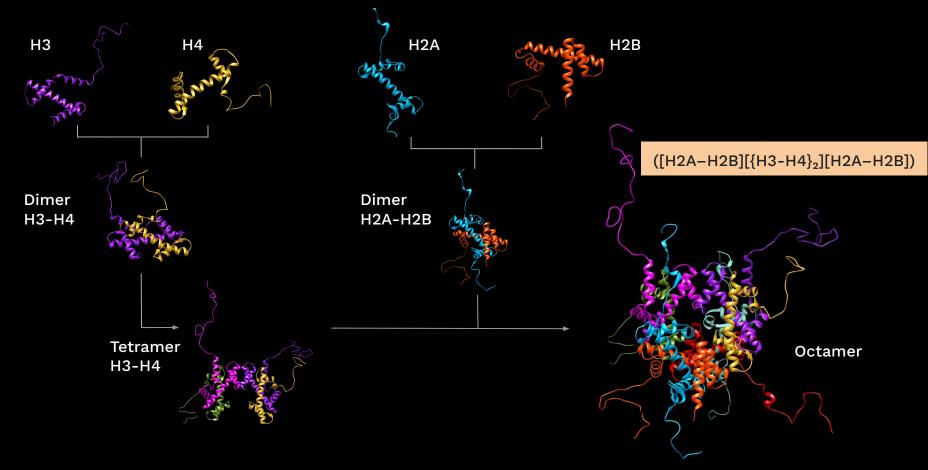
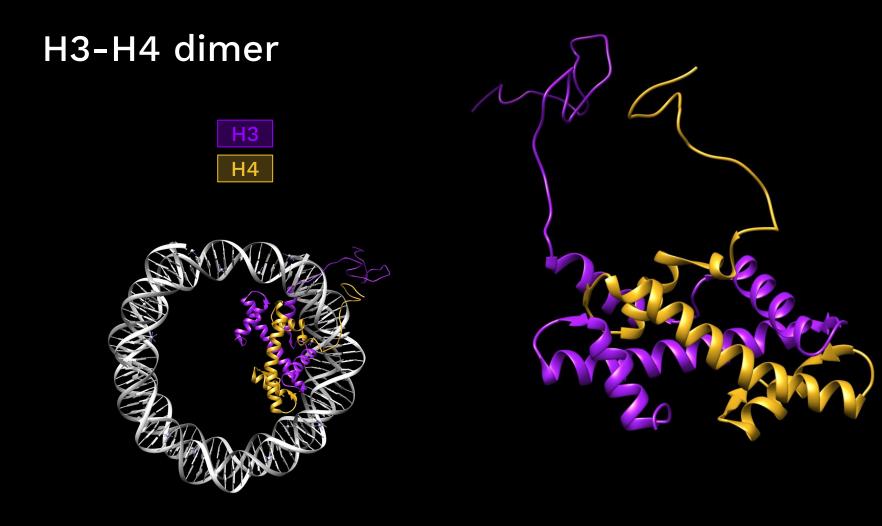
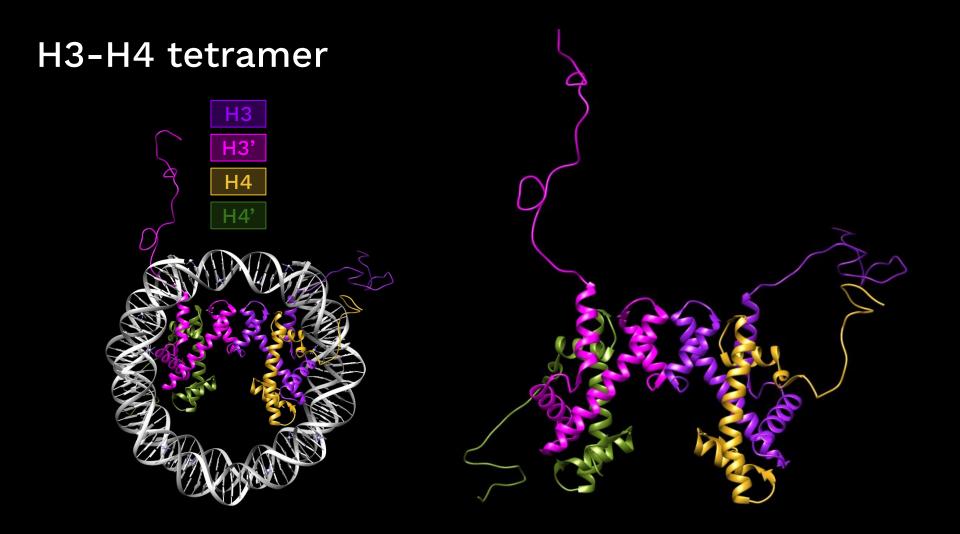

THE NUCLEOSOME

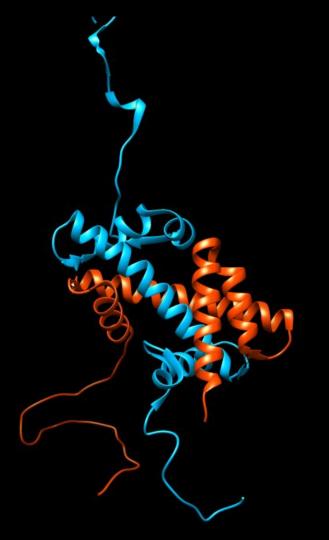

Carla Cifuentes, Ainhoa Larrañaga and Berta Sambola Structural Biology - 2023/2024

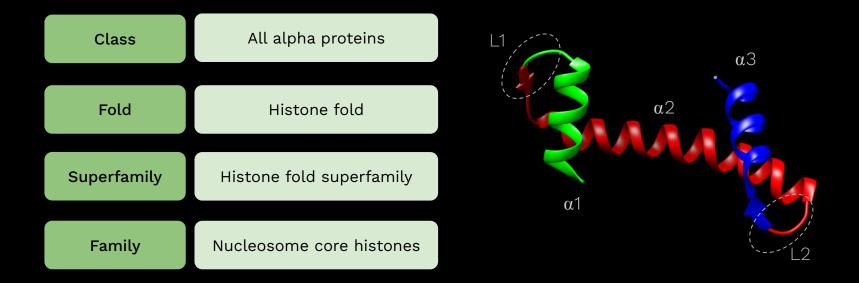


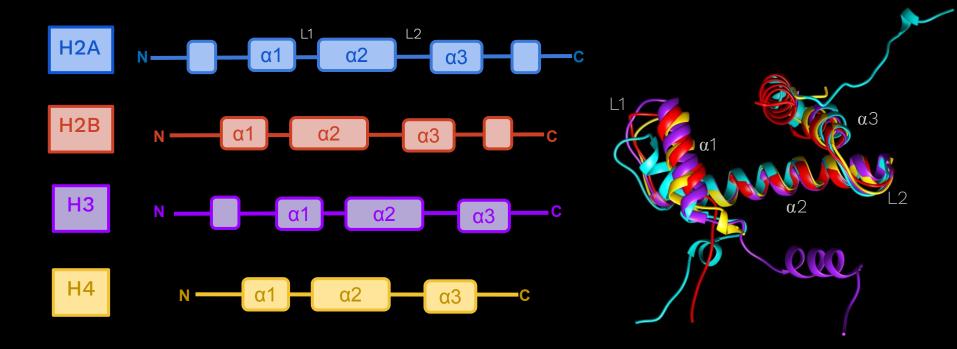



Nucleosome axis

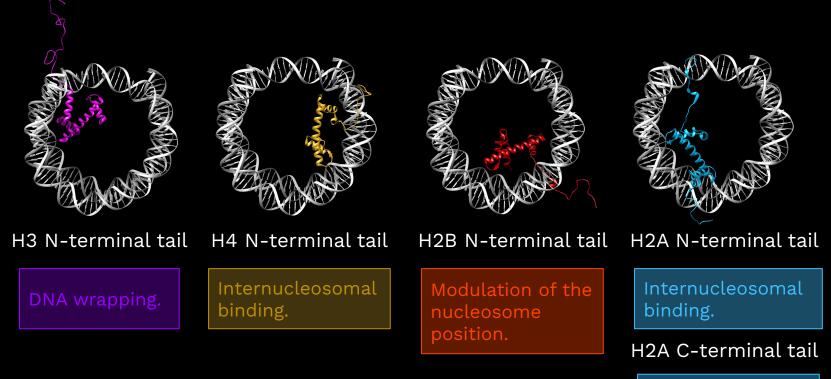
Histone structure and nucleosome assembly





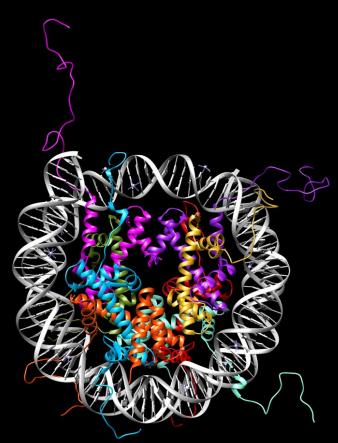


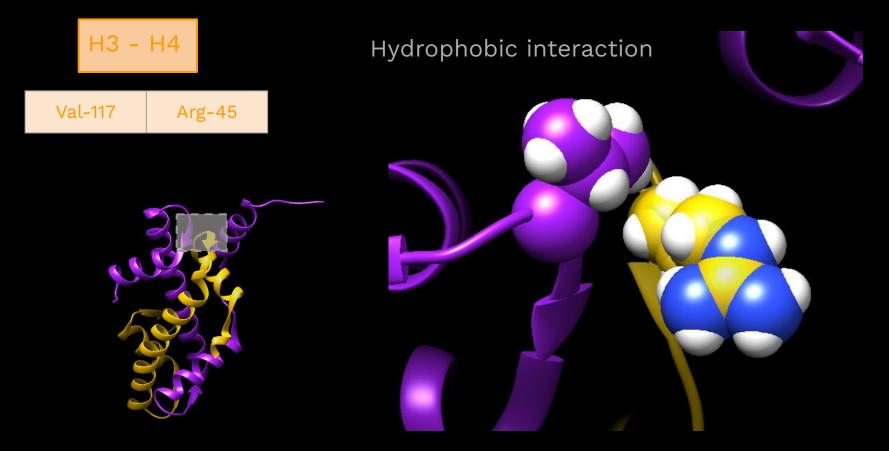
SCOP Classification: Histone core proteins


Histone fold

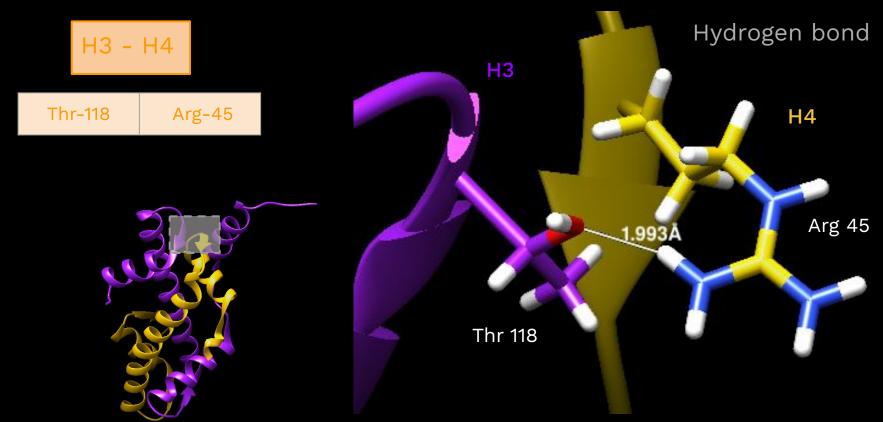
Histone alignment

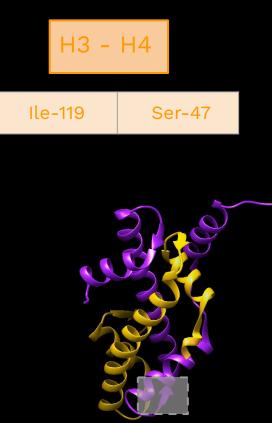
0	1	11	21	31	41
Consensus Conservation H3_homo H2B_homo H2A_homo H4_homo		ygyaypai PG-TVALREJ YS-VYVYKVL AGLQFPVGRV QGITKPAL	rrlqrktgis RRYQKSITELL KOVHPDTGIS HRLLRKGNYS RRLARRGGVK	ir-glgi IR-KLPFQRL SK-AMGI ERVGAGAPVY RISGLIY-EE	mravlqdfke VRELAQDFKT MNSFVNDIFE LAAVLEYLTA TRGVLKVFLE
Consensus	51 riarqasaaa	61 aynkrktita	71 rhlqyair	81 -	91 aqgqa
Conservation H3_homo H2B_homo H2A_homo H4 homo	D L R F Q S S A V M R I A G E A S R L A E I L E L A G N A A N V I R D A V T Y T	ALQEACEAYL HYNKRSTIT <mark>S</mark> RDNKKTRIIP EHAKRKTVTA	VGLFEDTN REIQTAVR RHLQLAIRND MDVVYALK	LCAIHAKRVT LLLPGELAKH EELNKLLGRV	IMPKD IQL AVSEG TKA TIAQGGVLPN RQG RT
Consensus Conservation H3_homo	101 aqairg-k <mark>ARRIR</mark> GER VIKYISAK IQAVLLPK LYGFGG				

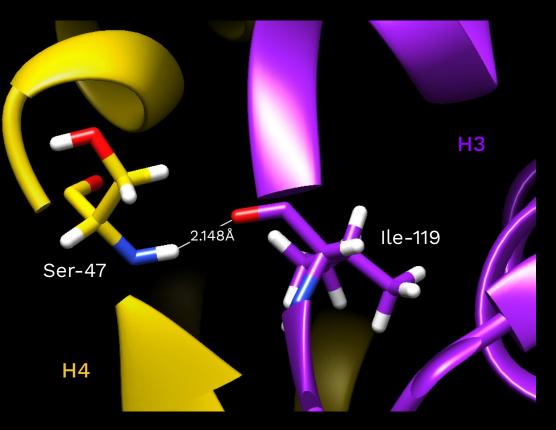

Histone tails


- Modulate nucleosome recognition and influence the condensed state of the chromatin fiber.

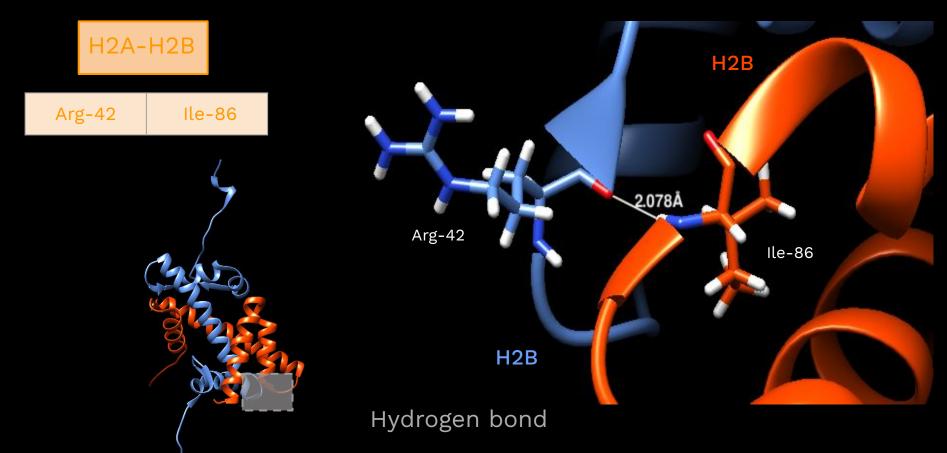
Binding to the linker DNA.

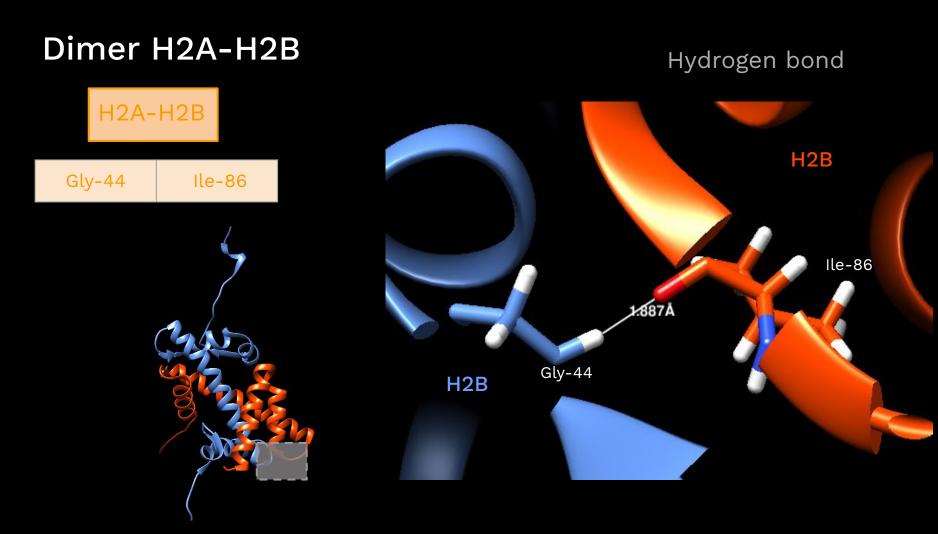

HISTONE INTERACTIONS


Dimer H3-H4

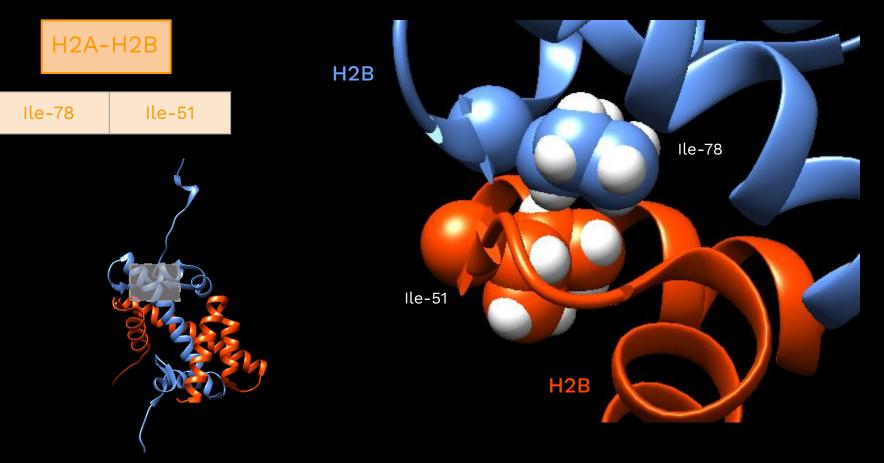


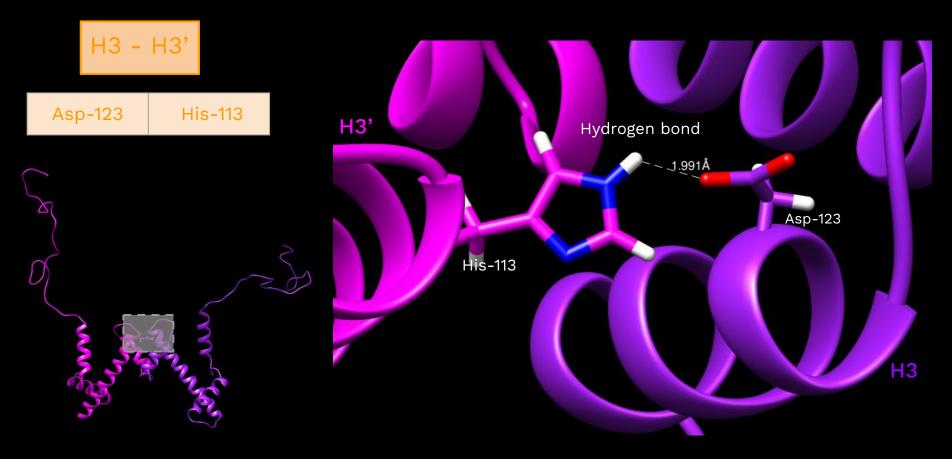
Dimer H3-H4


Dimer H3-H4

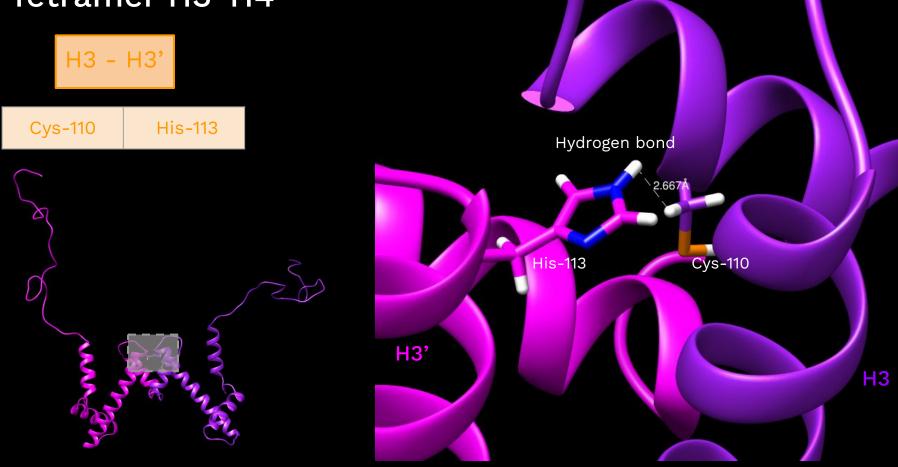


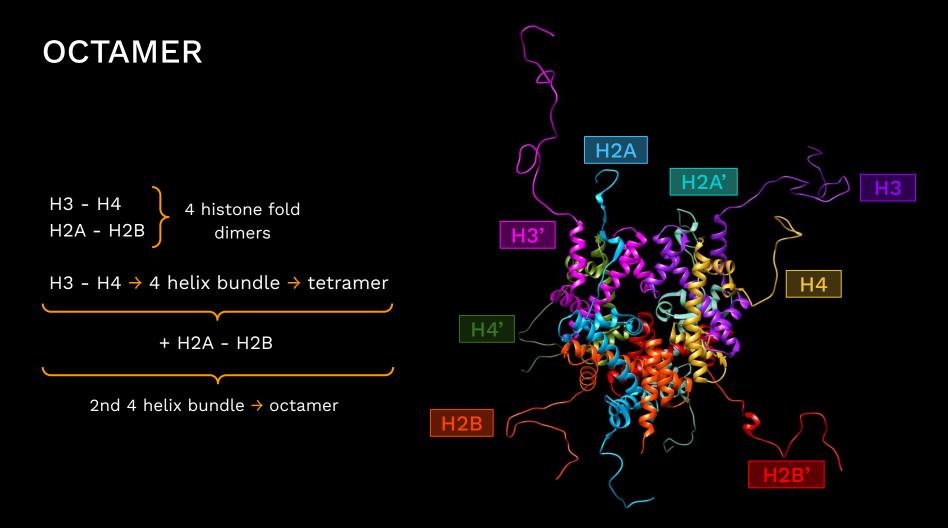
Hydrogen bond


Dimer H2A-H2B

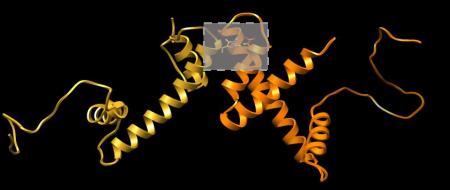


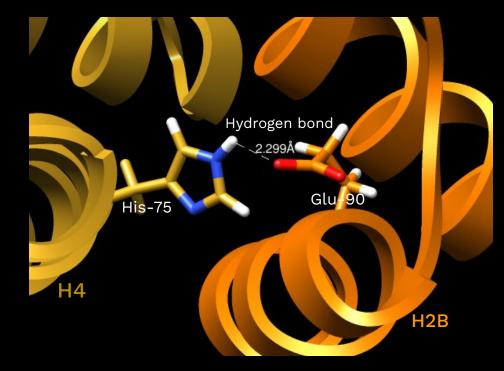
Dimer H2A-H2B

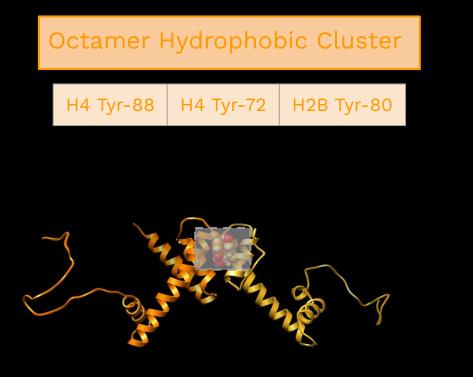

Hydrophobic interaction

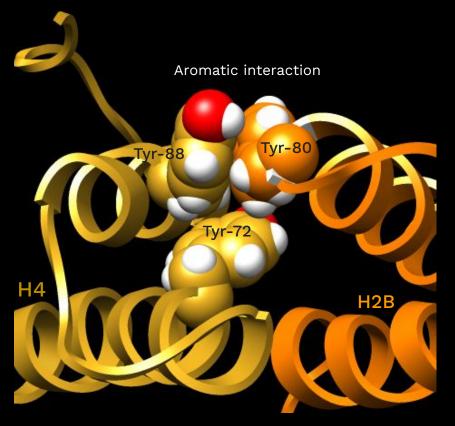


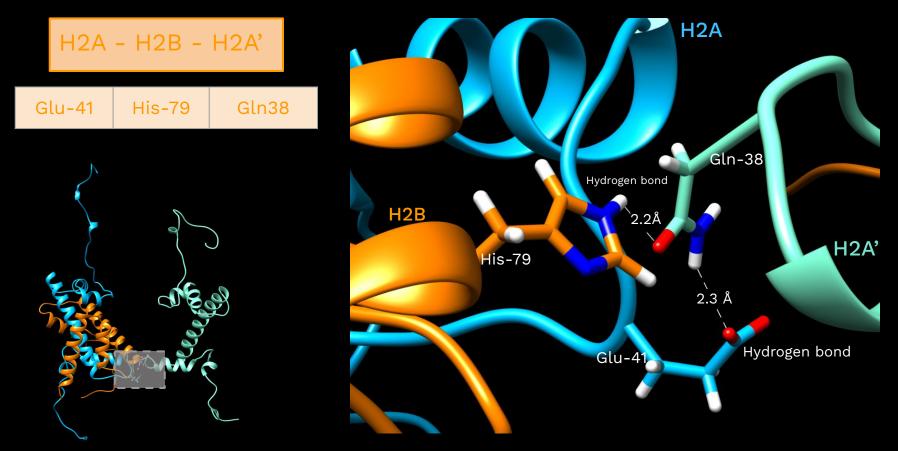
Tetramer H3-H4

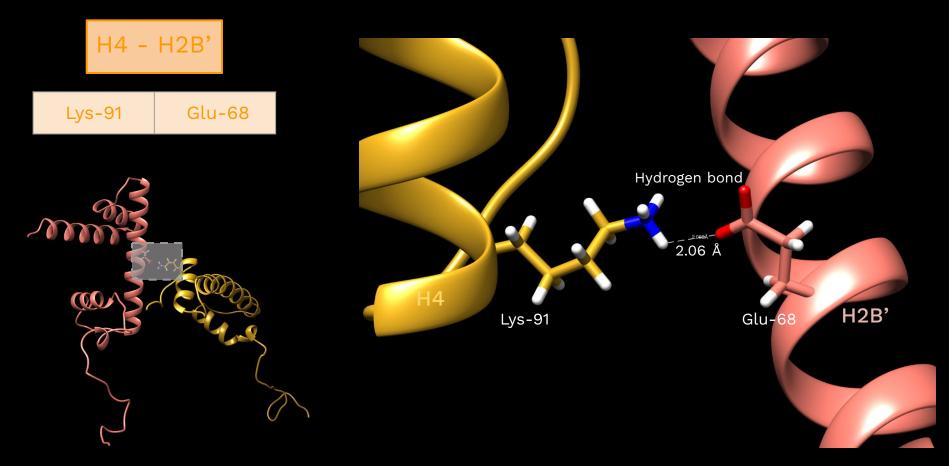


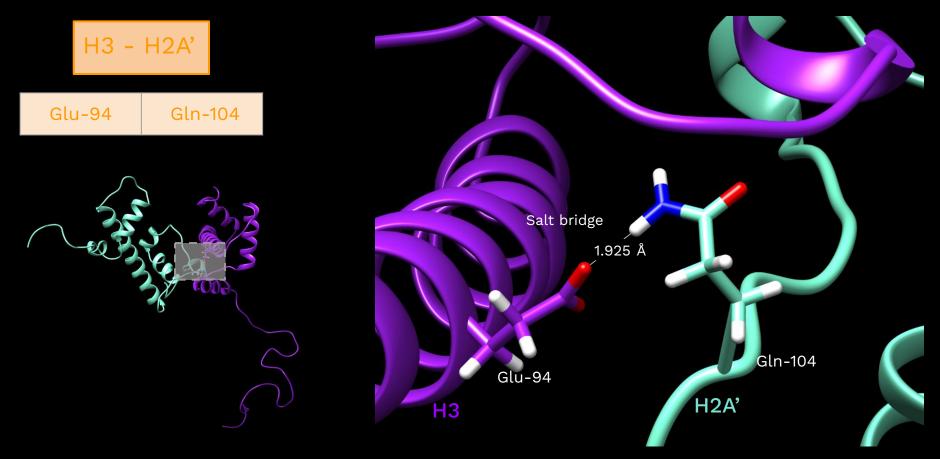


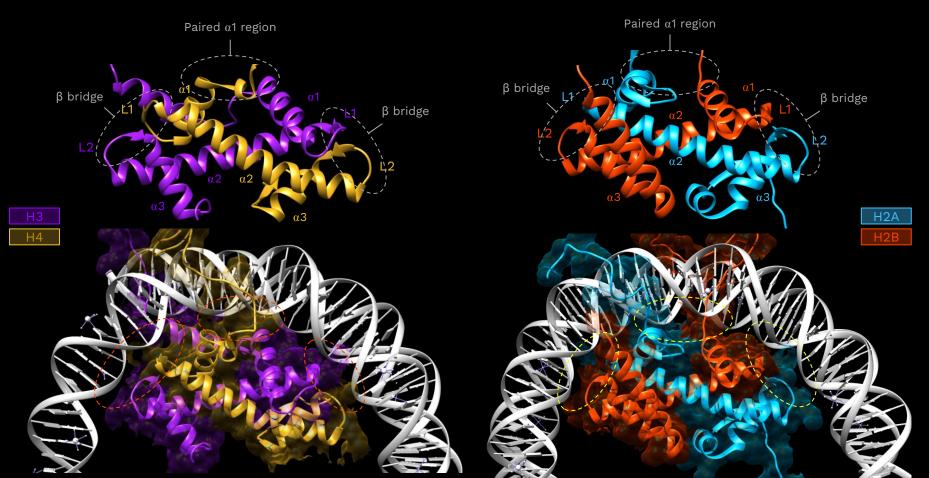

Histone 4 - Histone 2B

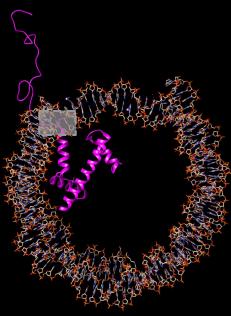

His 75	Glu 60
Arg 92	Glu 73

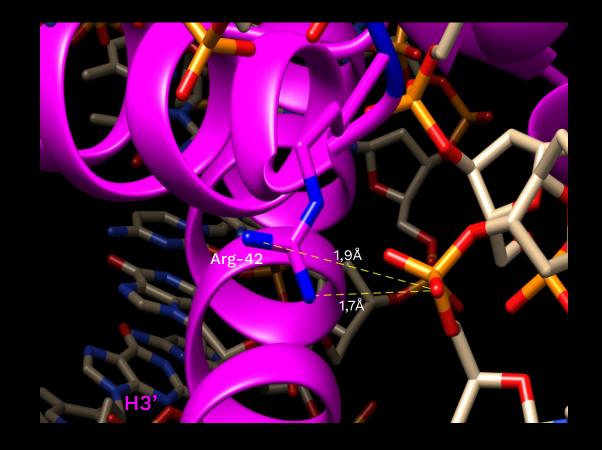






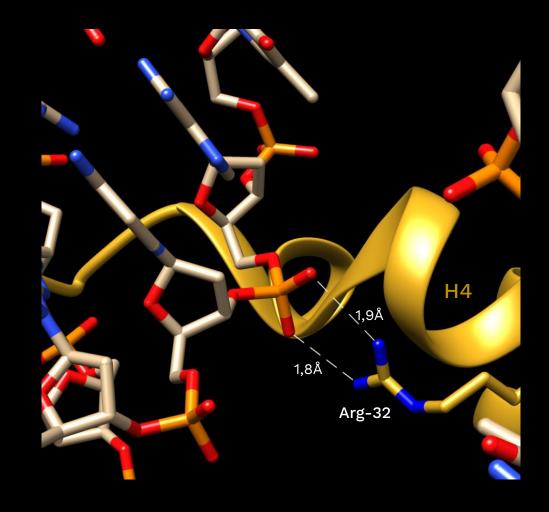





Contact sites for the DNA

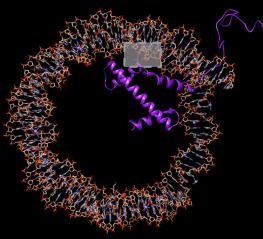
Salt bridge

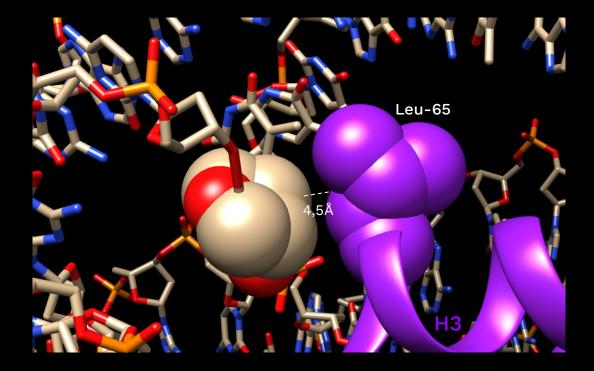
Most common mechanism. Electrostatic attraction between the charged molecular entities of the guanidinium nitrogens to the phosphate group oxygens.



Hydrogen bond

Made from main-chain amide nitrogen atoms of amino acid.




Non-polar interactions

Results when electrons are equally shared between atoms.

This contacts are made with deoxyribose groups.

(Leu-65) - (5-methyl group of thymidine)

POST-TRANSLATIONAL MODIFICATIONS

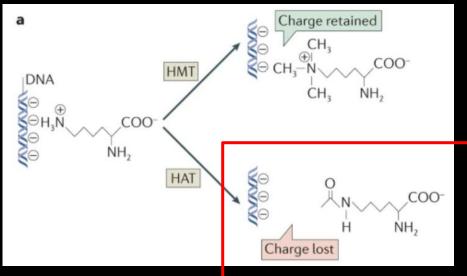
Acetylation

Addition of acetyl groups to lysine residues on the N-terminal tails.

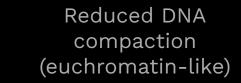
Methylation

Phosphorylation

Addition of phosphate groups to serine, threonine, or tyrosine residues of histone proteins.


Citrullination

Addition of methyl groups to specific Lys, His or Arg residues on histone proteins.


Conversion of arginine residues to citrulline.

Acetylation

Lys acetylation neutralizes positive --> charge Stabilization of histone-DNA and inter-nucleosomal electrostatic interactions

Figure: Tessarz P, Kouzarides T. Histone core modifications regulating nucleosome structure and dynamics. Nature Reviews Molecular Cell Biology. 2014;15(11):703-708. <u>https://doi.org/10.1038/nrm3890</u>

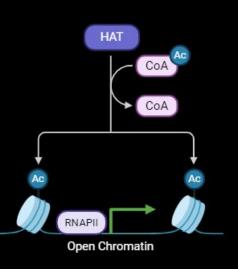
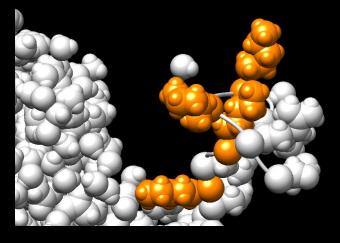



Figure: created with bio render

Acetylation

- Attract transcription factors and chaperones to **promote transcription**.
- N-terminal H4 acetylations (H4K5, H4K8, H4K12, H4K16): transcriptional activators.
- Influence in **histone crosstalk**.
- Acetylation patterns can contribute to the establishment and maintenance of **epigenetic memory**.

<u>Hyperacetylation</u> \rightarrow active genes <u>Hypoacetylation</u> \rightarrow silent regions (telomeres)

H4 N-terminal hyperacetylation

Acetylation

H3K56 acetylation

DNA replication, repair and transcription activation

- Keep nucleosome-free chromatin regions accessible
- Reduces the interaction with DNA
- Lowers H3-H4 binding affinity to DNA
- Enhance transcription factor binding

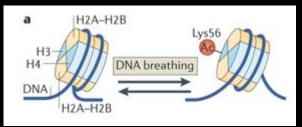
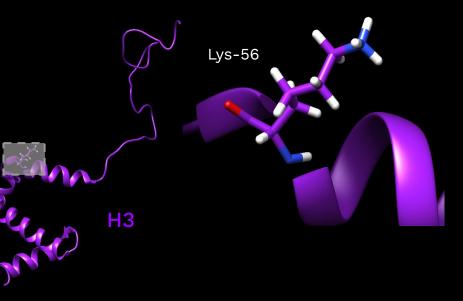
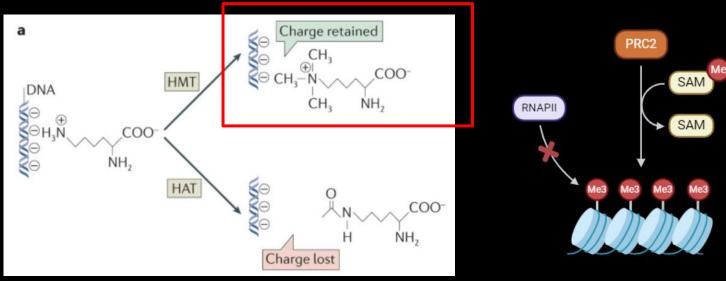




Figure: Tessarz P, Kouzarides T. Histone core modifications regulating nucleosome structure and dynamics. Nature Reviews Molecular Cell Biology. 2014;15(11):703-708. https://doi.org/10.1038/nrm3890

Methylation

- Occurs on all basic residues: arginine, lysines and histidines.
- Maintain positive charge **→ electrostatic interaction with DNA.**
- Promotes the compaction of the chromatin (heterochromatin-like).

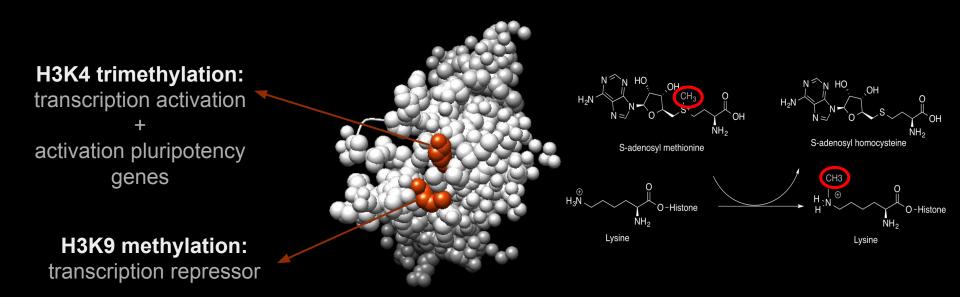
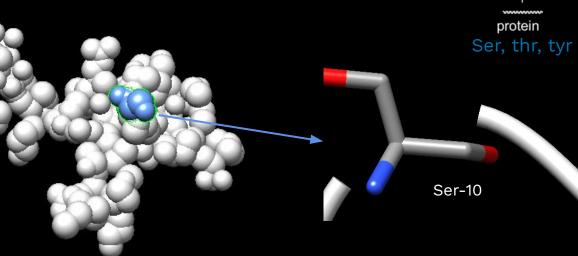
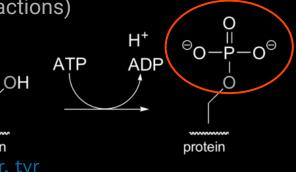


Figure: Tessarz P, Kouzarides T. Histone core modifications regulating nucleosome structure and dynamics. Nature Reviews Molecular Cell Biology. 2014;15(11):703-708. <u>https://doi.org/10.1038/nrm3890</u>

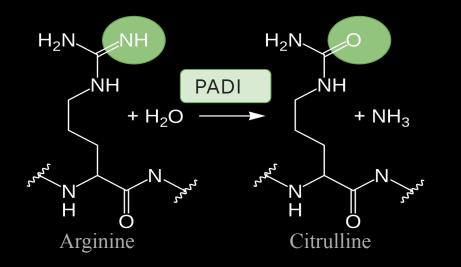
Figure: created with bio render


Methylation


Effects of histone methylation can be **context-dependent** and vary based on the specific residue modified and the degree of methylation.

Phosphorylation

- Introduction of negative charges (affect DNA interactions)
- Nucleosome more accessible: transcriptional activation
- Response to DNA damage



H3S10 phosphorylation:

involved in transcription and cell division, and promotes chromosome condensation

Citrullination

- Catalysed by the Ca2+-dependent peptidylarginine deiminase (PADI) enzymes
- Reduction in hydrogen-bonding ability
- Loss of positive charge: loss chromatin structure

H1R54 citrullination in the nucleosomal DNA binding region: extensive chromatin decondensation ⇒ loss of structure

LINKER HISTONE: H1

Formation of higher order chromatin structure

- Regulate specific gene transcription.
- Stabilize DNA wrapping around nucleosome.
- Suppress transcription of repetitive transposable DNA elements.

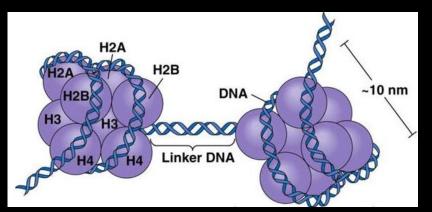


Figure from: http://www.info-farmacia.com/bioquimica/nucleosomas

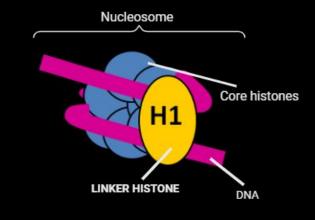
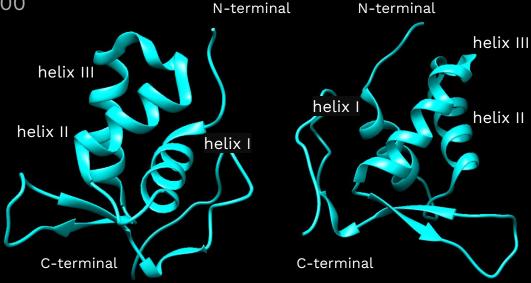
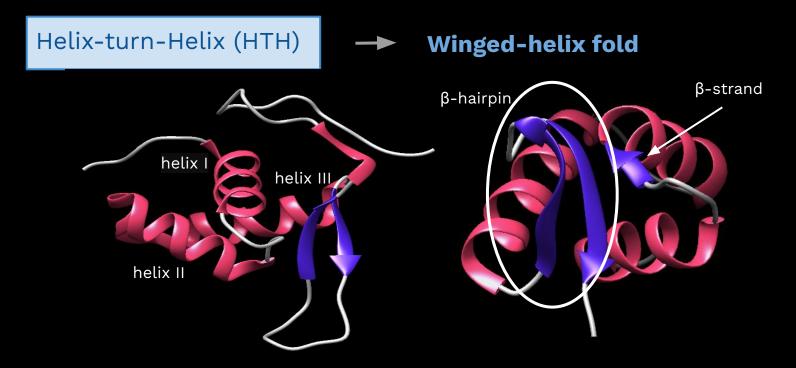
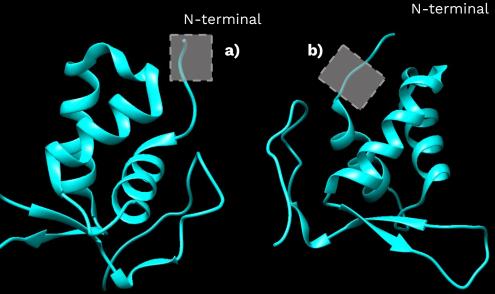



Figure: created with bio render

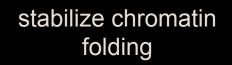

LINKER HISTONE H1 - STRUCTURE

- 1. Globular domain: ~ 75 residues
- 2. N-terminal tail: 20-35 residues
- 3. Basic **C-terminal** domain: ~100 residues

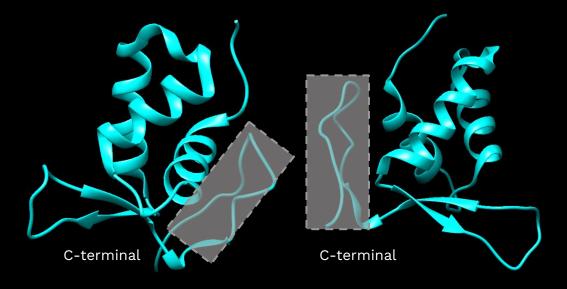
LINKER HISTONE H1 - STRUCTURE

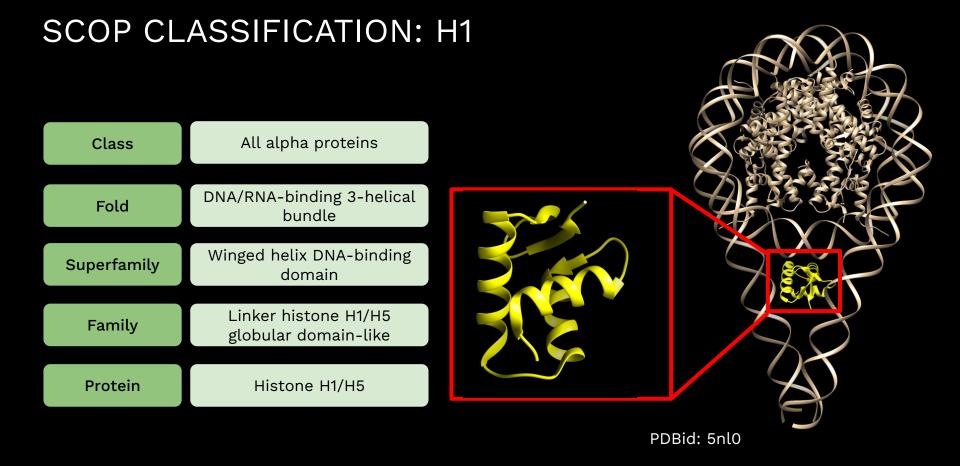

1. Conserved **Globular** domain: ~ 75 residues

LINKER HISTONE H1 - STRUCTURE

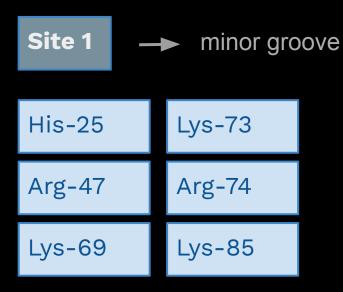

- 1. Globular domain: ~ 75 residues
- 2. N-terminal tail: 20-35 residues
 - a. <u>Distal</u> part: hydrophobic residues
 - b. <u>Proximal</u> part: basic region

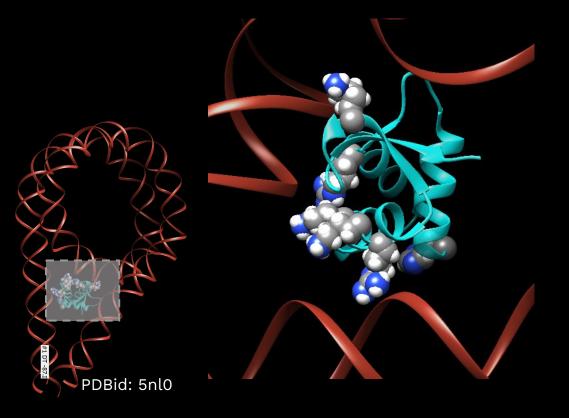
Non-essential for the formation of higher-order chromatin structures

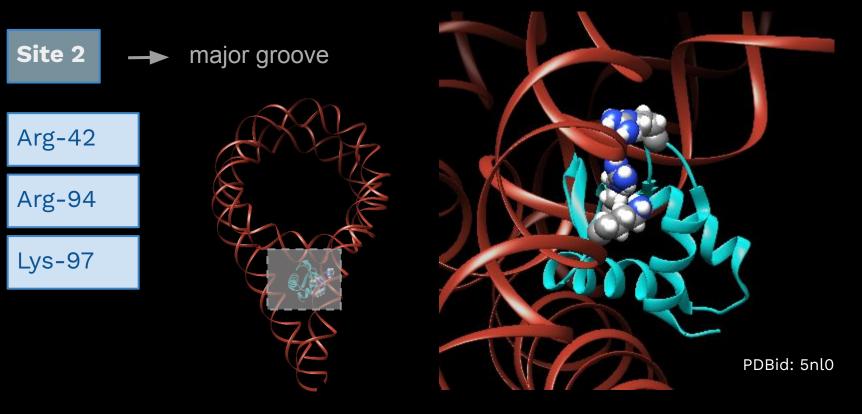



LINKER HISTONE H1 – STRUCTURE

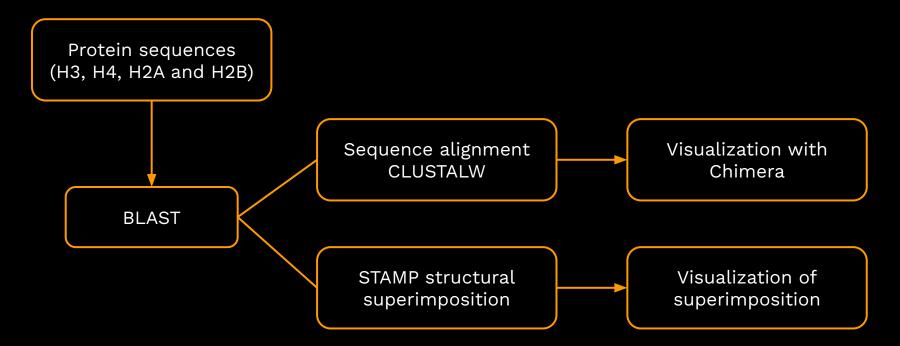
- 2. N-terminal tail: 20-35 residues
- 3. Basic C-terminal domain: ~100 residues
 - \rightarrow 30-50 net positive charges




- α-helix (24%)
- β-structure (25%)
- open loops (17%)
- turns (33%)



LINKER HISTONE H1 - DNA INTERACTIONS


LINKER HISTONE H1 - DNA INTERACTIONS

	1	11	21	31	41
Consensus	sasspsY	k E I <mark>I</mark> t k a i q a	l k e r K G s S r a	alkKyikd - f	y - v r k n a
Conservation		Balling and a	and the second s		
Xenopus_laevis	SRRSASHPTY	SEMIAAAIRA	EKSRGGSSRQ	SIQKYIKS-H	YKVGHNA
Homo_sapiens	H A K <mark>P P Y S Y</mark>	ISLITMAIQQ	APG-KMLTLS	EIYQWIMDLF	PYYRENQQRW
Gallus_gallus	MAGPSV	TELITKAVSA	SKERKGLSLA	A L K K A L A A G G	YDVEKN
Drosophila_melanogaster	K A S S <mark>P S</mark> S L T Y	KEMILKSMPQ	LNDGKGSSRI	V L K K Y V K D T F	S S K L K T S S N F
Saccharomyces_cerevisiae	E <mark>A S</mark> S K S Y	RELIIEGLTA	LKERKGSSRP	ALKKFIKENY	P - I V G S A S N F
	51	61	71	81	91
Consensus	51 dlqiklaikk	61 - IveaGvIvQ	71 p K <mark>G</mark> a s G s f	81 k	91
Consensus Conservation	•••				91
	•••	- IveaGvIvQ		k	91 S P G K K
Conservation	dlqiklaikk	- IveaGvIvQ	pK - - <mark>G</mark> asGs f	k L a K s	
Conservation Xenopus_laevis	d q i k a i k k D L Q K L S R R	- IveaGvIvQ - LLAAGVLKQ	p K G a s G s f T K G V G A S G S F	k L a K s R L A K S D K A K R	S Р G К К
Conservation Xenopus_laevis Homo_sapiens	d q i k a i k k D L Q I K L S I R R Q N S I R H S L S F	- I v e a G v I v Q - L L A A G V L K Q N D C F V K V A R S	p K G a s G s f T K G V G A S G S F P D K P G K G S Y W	k L a K s R L A K S D K A K R A L H P S S G N M F	S P G K K E N G C Y L R R Q K

	101				
Consensus	-	-	-	-	-
Conservation					
Xenopus_laevis	-	-	-	-	-
Homo_sapiens	R	F	Κ	L	А
Gallus_gallus	-	-	-	-	-
Drosophila_melanogaster	-	-	-	-	-
Saccharomyces_cerevisiae	-	-	-	-	-

H3

	1	11	21	31	41
Consensus	k <mark>P</mark>	HRYRPGTVAL	REIRRYQKST	ELLIRKLPFQ	RLVREIAQDF
Conservation					
Xenopus_laevis	A P A T G G V K K P	HRYRPGTVAL	REIRRYQKST	ELLIRKLPFQ	RLVREIAQDF
Homo_sapiens	P	HRYRPGTVAL	REIRRYQKST	ELLI <mark>RKLPFQ</mark>	RLVREIAQDF
Gallus_gallus	A	HRYRPGTVAL	REIR-YQKST	ELLI <mark>RKLPFQ</mark>	RLVREIAQDF
Drosophila_melanogaster	K P	HRYRPGTVAL	REIRRYQKST	ELLI <mark>RKLPFQ</mark>	RLVREIAQDF
Saccharomyces_cerevisiae	P	HRYKPGTVAL	REIRRFQKST	ELLI <mark>RKLPFQ</mark>	RLVREIAQDF

	51	61	71	81	91
Consensus	KTDLRFQSSA	V M A L Q E A s E A	YLVgLFEDTN	LCAIHAKRVT	IMPKDIQLAR
Conservation		and the second se			
Xenopus_laevis	KTDLRFQSSA	VMALQEASEA	YLVALFEDTN	LCAIHAKRVT	IMPKDIQLAR
Homo_sapiens	KTDLRFQSSA	VMALQEACEA	YLVGLFEDTN	LCAIHA <mark>KR</mark> VT	IMPKDIQLAR
Gallus_gallus	KTDLRFQSSA	VMALQEASEA	YLVGLFEDTN	LCAIHAKRVT	IMPKDIQLAR
Drosophila_melanogaster	KTDLRFQSSA	VMALQEASEA	YLVGLFEDTN	LCAIHAKRVT	IMPKDIQLAR
Saccharomyces_cerevisiae	KTDLRFQSSA	IGALQESVEA	YLVSLFEDTN	LAAIHA <mark>KR</mark> VT	IQKKEIKLAR

Consensus Conservation	101 <mark>R R G E R</mark> a
Xenopus_laevis	RIRGERA
Homo_sapiens	RIRGER-
Gallus_gallus	RIRGERA
Drosophila_melanogaster	RIRGERA
Saccharomyces_cerevisiae	RLRGER-

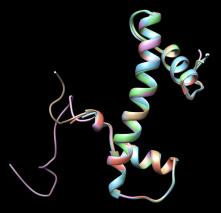
	1	11	21	31	41
Conservation					
Consensus	r D N I Q G I T	KPAIRRLARR	GGVKRISGLI	YEETRGVLKV	FLENVIRDAV
Gallus_gallus	VLRDNIQGIT	KPAIRRLARR	GGVKRISGLI	YEETRGVLKV	FLENVIRDAV
Xenopus_laevis	VLRDNIQGIT	KPAIRRLARR	GGVKRISGLI	YEETRGVLKV	FLENVIRDAV
Homo_sapiens	N I Q G I T	KPAIRRLARR	GGVKRISGLI	YEETRGVLKV	FLENVIRDAV
Drosophila_melanogaster	RDNIQGIT	KPAIRRLARR	GGVKRISGLI	YEETRGVLKV	FLENVIRDAV
Saccharomyces_cerevisiae	DNIQGIT	KPAIRRLARR	GGVKRISGLI	YEEVRAVLKS	FLESVIRDSV
	51	61	71	81	
Conservation					

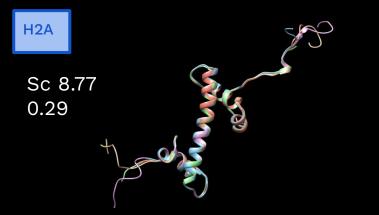
Conservation	the second s	and the second second second second second		
Consensus	TYTEHAKRKT	VTAMDVVYAL	KRQGRTLYGF	GG
Gallus_gallus	TYTEHAK-KT	VTAMDVVYAL	KRQGRTLYGF	GG
Xenopus_laevis	TYTEHAKRKT	VTAMDVVYAL	KRQGRTLYGF	GG
Homo_sapiens	TYTEHAKRKT	VTAMDVVYAL	KRQGRTLYGF	GG
Drosophila_melanogaster	TYTEHAKRKT	VTAMDVVYAL	KRQGRTLYGF	GG
Saccharomyces_cerevisiae	TYTEHAKRKT	VTSLDVVYAL	KRQGRTLYGF	GG

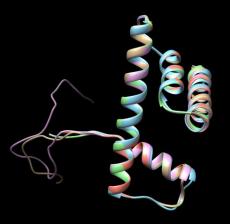


	1	11	21	31	41
Consensus		r a k A K s <mark>R S</mark> s R	AGLQFPVGRV	HRLLRKGNYA	ERVGAGAPVY
Conservation		and the second se	and the second	and the second second second second	
Xenopus_laevis	S	RAKAKTRSSR	AGLQFPVGRV	HRLLRKGNYA	ERVGAGAPVY
Homo_sapiens		RAKAKTRSSR	AGLQFPVGRV	HRLLRKGNYS	ERVGAGAPVY
Gallus_gallus	S	RAKAKSRSSR	AGLQFPVGRV	HRLLRKGNYA	ERVGAGAPVY
Drosophila_melanogaster		<mark>A K S R S</mark> N R	AGLQFPVGRI	HRLLRKGNYA	ERVGAGAPVY
Saccharomyces_cerevisiae		Q S R S A K	AGLTFPVGRV	HRLLRRGNYA	QRIGSGAPVY
	51	61	71	81	91
Consensus	LAAVLEYL tA	EILELAGNAA	RDNKKTRIIP	RHLQLAIRND	EELNKLLGrV
Conservation	LAAVLEYLTA	and the second second second	and the second	and the second second second second	
Conservation Xenopus_laevis	LAAVLEYLTA	EILELAGNAA	RDNKKTRI I P	RHLQLAVRND	EELNKLLGRV
Conservation Xenopus_laevis Homo_sapiens		E I L E L A G N A A E I L E L A G N A A	RDNKKTRIIP RDNKKTRIIP	RHLQLAVRND RHLQLAIRND	E E L N K L L G R V E E L N K L L G R V
Conservation Xenopus_laevis Homo_sapiens Gallus_gallus	LAAVLEYLTA LAAVLEYLTA LAAVLEYLTA	E I L E L A G N A A E I L E L A G N A A E I L E L A G N A A	RDNKKTRI RDNKKTRI RDNKKTRI RDNKKTRI	RHLQLAVRND RHLQLAIRND RHLQLAIRND	EELNKLLGRV EELNKLLGRV EELNKLLGKV
Conservation Xenopus_laevis Homo_sapiens Gallus_gallus Drosophila_melanogaster	LAAVLEYLTA LAAVLEYLTA LAAVLEYLTA LAAVLEYLTA LAAVMEYL A A	E I L E L A G N A A E I L E L A G N A A E I L E L A G N A A E I L E L A G N A A E V L E L A G N A A	RDNKKTRI RDNKKTRI RDNKKTRI RDNKKTRI RDNKKTRI	RHLQLAVRND RHLQLAIRND RHLQLAIRND RHLQLAIRND	EELNKLLGRV EELNKLLGRV EELNKLLGKV EELNKLLSGV
Conservation Xenopus_laevis Homo_sapiens Gallus_gallus	LAAVLEYLTA LAAVLEYLTA LAAVLEYLTA	E I L E L A G N A A E I L E L A G N A A E I L E L A G N A A	RDNKKTRI RDNKKTRI RDNKKTRI RDNKKTRI	RHLQLAVRND RHLQLAIRND RHLQLAIRND	EELNKLLGRV EELNKLLGRV EELNKLLGKV
Conservation Xenopus_laevis Homo_sapiens Gallus_gallus Drosophila_melanogaster Saccharomyces_cerevisiae	LAAVLEYLTA LAAVLEYLTA LAAVLEYLTA LAAVMEYLAA LTAVLEYLAA	E I L E L A G N A A E I L E L A G N A A E I L E L A G N A A E I L E L A G N A A E V L E L A G N A A	RDNKKTRI RDNKKTRI RDNKKTRI RDNKKTRI RDNKKTRI	RHLQLAVRND RHLQLAIRND RHLQLAIRND RHLQLAIRND	E E L N K L L G R V E E L N K L L G R V E E L N K L L G K V E E L N K L L G K V
Conservation Xenopus_laevis Homo_sapiens Gallus_gallus Drosophila_melanogaster Saccharomyces_cerevisiae	LAAVLEYLTA LAAVLEYLTA LAAVLEYLTA LAAVLEYLTA LAAVMEYL A A	E I L E L A G N A A E I L E L A G N A A E I L E L A G N A A E I L E L A G N A A E V L E L A G N A A	RDNKKTRI RDNKKTRI RDNKKTRI RDNKKTRI RDNKKTRI	RHLQLAVRND RHLQLAIRND RHLQLAIRND RHLQLAIRND	EELNKLLGRV EELNKLLGRV EELNKLLGKV EELNKLLSGV

101	111	121
TIAQGGVLPN	I Q a V L L P K K t	e
TIAQGGVLPN	IQSVLLPKKT	ESSKSKSK
TIAQGGVLPN	IQAVLLPK	
TIAQGGVLPN	IQAVLLPKKT	DSHKA
TIAQGGVLPN	IQAVLLPKKT	E
TIAQGGVLPN	IHQNLLPKKS	A K A T
	T I A QGGV L P N T I A QGGV L P N	TIAQGGVLPNIQaVLLPKKtTIAQGGVLPNIQSVLLPKKTTIAQGGVLPNIQAVLLPK-TIAQGGVLPNIQAVLLPKKTTIAQGGVLPNIQAVLLPKKT




	1	11	21	31	41
Consensus	- k s <mark>R K E</mark> S Y s i	Y v Y K V L K Q V H	PDTGISSKAM	s IMNSFVND I	FERIAGEASR
Conservation					
Gallus_gallus	KKSRKESYSI	YVYKVLKQVH	PDTGISSKAM	GIMNSFVNDI	FERIAGEASR
Homo_sapiens	KRSRKESYSV	YVYKVLKQVH	PDTGISSKAM	GIMNSFVNDI	FERIAGEASR
Xenopus_laevis	RKTRKESYAI	YVYKVLKQVH	PDTGISSKAM	SIMNSFVNDV	FERIAGEASR
Drosophila_melanogaster	- RKRKESYAI	YIYKVLKQVH	PDTGISSKAM	SIMNSFVNDI	FERIAAEASR
Saccharomyces_cerevisiae	RKETYSS	YIYKVLKQTH	PDTG I SQKSM	SILNSFVNDI	FERIATEASK
	51	61	71	81	91
Consensus	51 L A H Y N K R S T I	61 T S <mark>R E I Q T A V R</mark>	71 L L L P G E L A K H	81 A V S E G T K A V T	91 <mark>K Y</mark> T <mark>S</mark> s K
Consensus Conservation					
Conservation	LAHYNKRSTI	TSREIQTAVR	LLLPGELAKH	AVSEGTKAVT	KYTSsK
Conservation Gallus_gallus	LAHYNKRST I LAHYNKRST I	TSREIQTAVR TSREIQTAVR	L L L P GE L A K H	AVSEGTKAVT AVSEGTKAVT	KYTSSK KYTSSK
Conservation Gallus_gallus Homo_sapiens	LAHYNKRSTI LAHYNKRSTI LAHYNKRSTI	TSREIQTAVR TSREIQTAVR TSREIQTAVR	L L L P GE L A K H L L L P GE L A K H L L L P GE L A K H	AVSEGTKAVT AVSEGTKAVT AVSEGTKAVT	KYTSSK KYTSSK KYTSAK



0.22

CONCLUSIONS

- Histone tails → important role in genetic regulation and in mediating intra and inter nucleosomal interactions.
- Stable interactions among histones but interactions with DNA are dynamic and subject to fluctuation.
- Post-translational modifications → modify histone affinity for chromatin and the binding of transcriptional cofactors.
- Histone 1 \rightarrow indispensable role in the organization of chromatin.
- Histones have an extremely high degree of conservation between species.

BIBLIOGRAPHY

- Cavalieri V. (2021). The Expanding Constellation of Histone Post-Translational Modifications in the Epigenetic Landscape. *Genes*, 12(10), 1596. <u>https://doi.org/10.3390/genes12101596</u>
- Cutter, A. R., & Hayes, J. J. (2015). A brief review of nucleosome structure. FEBS letters, 589(20 Pt A), 2914–2922. https://doi.org/10.1016/j.febslet.2015.05.016
- Greer, E., Shi, Y. (2012). Histone methylation: a dynamic mark in health, disease and inheritance. *Nat Rev Genet* 13, 343–357. <u>https://doi.org/10.1038/nrg3173</u>
- 4. Harp, J. M., Hanson, B. L., Timm, D. E., & Bunick, G. J. (2000). Asymmetries in the nucleosome core particle at 2.5 A resolution. *Acta crystallographica. Section D, Biological crystallography*, *56*(Pt 12), 1513–1534. <u>https://doi.org/10.1107/s0907444900011847</u>
- 5. Koyama, M., Kurumizaka, H. (2018). Structural diversity of the nucleosome. *The Journal of Biochemistry*, 163(2), 85–95. https://doi.org/10.1093/jb/mvx081
- Kurumizaka, H., Kujirai, T., & Takizawa, Y. (2021). Contributions of Histone Variants in Nucleosome Structure and Function. *Journal of molecular biology*, 433(6), 166678. <u>https://doi.org/10.1016/j.jmb.2020.10.012</u>
- Luger, K., M\u00e4der, A., Richmond, R. *et al.* (1997). Crystal structure of the nucleosome core particle at 2.8 \u00e5 resolution. *Nature* 389, 251–260. <u>https://doi.org/10.1038/38444</u>

Kurumizaka, H., Kujirai, T., & Takizawa, Y. (2021). Contributions of Histone Variants in Nucleosome Structure and Function. *Journal of molecular biology*, 433(6), 166678. <u>https://doi.org/10.1016/i.imb.2020.10.012</u>

BIBLIOGRAPHY

- Onufriev, A. & V. Schiessel, H. (2019). The nucleosome: from structure to function through physics. *Structural Biology*, 56, 119-130. <u>https://doi.org/10.1016/j.sbi.2018.11.003</u>
- Roque, A., Ponte, I., & Suau, P. (2016). Interplay between histone H1 structure and function. *Biochimica et biophysica acta*, 1859(3), 444–454. <u>https://doi.org/10.1016/j.bbagrm.2015.09.009</u>
- Simon, M., North, J. A., Shimko, J. C., Forties, R. A., Ferdinand, M. B., Manohar, M., Zhang, M., Fishel, R., Ottesen, J. J., & Poirier, M. G. (2011). Histone fold modifications control nucleosome unwrapping and disassembly. *Proceedings of the National Academy of Sciences of the United States of America*, 108(31), 12711–12716. <u>https://doi.org/10.1073/pnas.1106264108</u>
- Tessarz, P., Kouzarides, T. (2014). Histone core modifications regulating nucleosome structure and dynamics. *Nature Reviews* Molecular Cell Biology, 15, 703–708. <u>https://doi.org/10.1038/nrm3890</u>

PEM QUESTIONS

- 1. Which statement describes the role of H1?
 - a. H1 plays a significant role in connecting the nucleosome to the DNA linker.
 - b. H1 has only one binding site.
 - c. Both A and B are correct.
 - d. H1 is a core histone protein.
 - e. All of the above statements are correct.
- 2. Related to the histone's evolution:
 - a. H1 is really conserved through evolution.
 - b. Histone core proteins are really conserved through evolution.
 - c. Histone 2A doesn't have any variants between different species.
 - d. Only H4 and H3, that form the tetramer, are conserved through evolution.
 - e. None of the above are correct.

- 3. What interactions make the histones' H3-H4 tetramer?
 - a. Interactions between the H2B and H4 chains.
 - b. Interactions between the H4 and H4' chains, creating a 4 helix bundle.
 - c. Interactions between the H3 and H3' chains, creating a 4 helix bundle.
 - d. Interactions between the H4 and H4' chains, creating two different 4 helix bundles.
 - e. Interactions between the H3 and H3' chains, creating two different 4 helix bundle.
- 4. The octamer is comprised by:
 - a. The H3-H4 tetramer and the H2A-H2B tetramer.
 - b. The H3-H4 tetramer and two H2A-H2B dimers.
 - c. The H3-H4 tetramer and two H2A-H2B dimers and H1.
 - d. One H3-H4 dimer and the H2A-H2B tetramer.
 - e. None of the above are correct.

- 5. Which of the following Histones present a N-terminal tail?
 - a. Histone H3
 - b. Histone H4
 - c. Histone H2A
 - d. Histone H2B
 - e. All of the above.
- 6. Which of the following statements is incorrect?
 - a. Histones basic structure is composed of 3 alpha helices and two loops.
 - b. H2A has both a N-terminal and C-terminal tails.
 - c. The loops are made of alpha proteins.
 - d. H2A-H2B dimers can't tetramerize.
 - e. The core histones' alignment presents many differences in the amino-acid residues.
- 7. About the histone core DNA-binding interactions:
 - a. The interactions only happen within the $\,\beta$ bridges and the DNA.
 - b. Interactions happen in the β bridges and the paired α 1 region of the histones.
 - c. There are only salt-bridges and hydrogen bonds.
 - d. The minor groove of the DNA backbone is not responsible for the interactions.
 - e. The DNA backbone can create interactions because of it's electropositivity.

- 8. Which of the following statements is correct about the post-translational modifications?
 - a. Phosphorylation decreases the chromatin accessibility
 - b. Methylation occurs in acid residues
 - c. Both A and B are correct
 - d. The effect of methylation is context dependent
 - e. All of the above statements are correct
- 9. Related to the post-translational modifications:
 - a. Acetylation neutralizes the positive charge of lysine residues
 - b. Citrullination consists on the conversion of histidine to citrulline
 - c. Phosphorylation is not involved in DNA damage repair
 - d. Methylations neutralized the positive charge of the basic residues
 - e. Phosphorylation takes place in all aromatic residues
- 10. Which of the following statements is incorrect about the histone H1?
 - a. The histone H1 has a winged-helix fold
 - b. The N-terminal tail is a non-essential domain
 - c. The "wings" or loops are small beta-sheets
 - d. It contains a beta-hairpin
 - e. It is categorized in the all alpha class, it does not have any beta structure

THE NUCLEOSOME

Carla Cifuentes, Ainhoa Larrañaga and Berta Sambola Structural Biology - 2023/2024