TRANSCRIPTION FACTORS

Structural Biology, 2024 Mar Castaño, Mariona Colomer and Francina Barceló

Table of contents

1- Introduction	Ē
2- JUN	i
3- KLF4	i.
4- Conclusions	i
5- PEM questions	i
6- Bibliography	i I I

Introduction

Transcription factors (TFs) are proteins that bind to specific DNA-regulatory sequences in order to **control gene expression**.

This could lead to changes in gene transcription and protein synthesis, which would then impact cellular function. Their activity is essential to determine function and respond to cellular environments

Introduction

Transcription factors are classified based on the characteristics of their DNA-binding domains.

The three most abundant superclasses have in common that an α -helix is exposed in such a way that it binds into the major groove of the DNA:

Basic domains Zinc-coordinating DNA-binding domains Helix-turn-helix domains

Fig1. Superclass distribution of human TF genes

Wingender E, Schoeps T, Haubrock M, Dönitz J. TFClass: a classification of human transcription factors and their rodent orthologs. Nucleic Acids Res. 2015 Jan;43(Database issue):D97-102. doi: 10.1093/nar/gku1064. Epub 2014 Oct 31. PMID: 25361979; PMCID: PMC4383905.

c-JUN

Basic domains

Basic region:

- Free in solution has a random structure
- Alpha-helically folded upon binding to DNA.

A specific alpha-helical dimerization domain provides the linkage between two DNA-contacting basic regions which adopt helical conformation

Class:

Basic leucine zipper factors (bZIP) Fos, Jun, CREB, C/EBP, ATF-4

Basic helix-loop-helix factors (bHLH)

Basic helix-span-helix factors (bHSH)

bZIP

The bZIP TFs plays an essential role in several processes in eukaryotic cells, from early development to tumorigenesis.

40-80 amino acid long bZIP domain with two motifs:

- **Basic region**: bind TF to its target DNA.
- **Leucine zipper**: needed for TF dimerization.

Heterodimer

Homodimer

- Transcriptional activator.
- Homodimer or heterodimer (c-Fos).
- Regulation of cell growth and differentiation.
- Deregulated expression is implicated in the oncogenic transformation of cells.

CLASS	All alpha proteins	
FOLD	Left-handed parallel coiled-coil	
SUPERFAMILY	Leucine zipper-like	
FAMILY	Leucine zipper domain	
PROTEIN	c-Jun	
SPECIES	Human (Homo Sapiens)	

Homology: Basic region

Basic region

JUN_BOVIN	GETPPLSPIDMESQER	IKAERKRMRNRIAASKCRKRKLER	LARLEEKVKTLKAQNSELASTANMLREQVAQLKQKVMNHVNSGCQLMLTQQLQTF
JUN_PIG	GETPPLSPIDMESQER	IKAERKRMRNRIAASKCRKRKLER	LARLEEKVKTLKAQNSELASTANMLREQVAQLKQKVMNHVNSGCQLMLTQQLQTF
JUN_MOUSE	GETPPLSPIDMESQER	IKAERKRMRNRIAASKCRKRKLER	LARLEEKVKTLKAQNSELASTANMLREQVAQLKQKVMNHVNSGCQLMLTQQLQTF
JUN_RAT	GETPPLSPIDMESQER	IKAERKRMRNRIAASKCRKRKLER	LARLEEKVKTLKAQNSELASTANMLREQVAQLKQKVMNHVNSGCQLMLTQQLQTF
JUN_HUMAN	GETPPLSPIDMESQER	IKAERKRMRNRIAASKCRKRKLER	LARLEEKVKTLKAQNSELASTANMLREQVAQLKQKVMNHVNSGCQLMLTQQLQTF
JUN_CHICK	GETPPLSPIDMESQER	IKAERKRMRNRIAASKCRKRKLER	LARLEEKVKTLKAQNSELASTANMLREQVAQLKQKVMNHVNSGCQLMLTQQLQTF
JUN_COTJA	GETPPLSPIDMESQER	IKAERKRMRNRIAASKCRKRKLER	LARLEEKVKTLKAQNSELASTANMLREQVAQLKQKVMNHVNSGCQLMLTQQLQTF
JUN_SERCA	GETPPLSPIDMESQER	IKAERKRMRNRIAASKCRKRKLER	LARLEEKVKTLKAQNSELASTANMLREQVAQLKQKVMNHVNSGCQLMLTQQLQTF
	************	*******	***************************************

GCN4	SSD-	PAALKRARNTEAARRSRARKLQRMKQLEDKVEELLSKNYHLENEVARLKKLVGER
JUN	SQER	RIKAERKRMRNRI <mark>AA</mark> SK <mark>CR</mark> KRKLERIARLEEKVKTLKAQNSELASTANMLREQVAQLKQKVMNHVNSG
CEBPB	KTVDKHS	SDEYKIRRERNNIAVRKSRDKAKMRNLETQHKVLELTAENERLQKKVEQLSRELSTLRNLFKQLPEP-
CREB1	QPAEEAA	ARKREVRLMKNREAARECRRKKKEYVKCLENRVAVLENQNKTLIEELKALKDLYCHKSD
ATF4	KVKGEKL	LDKKLKKMEQNKTAATRYRQKKRAEQEALTGECKELEKKNEALKERADSLAKEIQYLKDLIEEVRKAR
		: :* * * : * : * . *

Hydrogen bonds \rightarrow Arg (R), Asn (N) and Lys (K) Van der Waals \rightarrow Ala (A) and Ser (S) $\rightarrow\,$ hydrogen atom is covalently bonded to an electronegative atom $\rightarrow\,$ temporary fluctuation in the distribution of electrons

Basic region

- Specific bases contacts between: N-terminal region c-Jun with DNA in the major groove, over a whole turn
- Only asymmetric major groove contact Fos/Jun + DNA \rightarrow Arginine 279 of Jun

Van der Waals \rightarrow hydrophobic interaction

Leucine zipper

- Dictates dimerization specificity: prerequisite for DNA-binding
- Heptad coil: 7 residue modules
- Leucine at position d: repetition every 7 residues
- Can form either homodimers or heterodimers: Knobs-into-holes model

Heptad coil

a <mark>b c d e f g</mark>

- Hydrophobic a-a and d-d interactions
- Electrostatic e-g and a-g interactions
 - Hydrogen Bonds
 - Salt bridges

Hydrophobic a-a and d-d interactions:

Electrostatic e-g and a-g interactions:

Salt bridges

g - e	Lys292 - Glu173	2.938 å
e - g	Lys297 - Glu168	2.801 Å

lysine

Hydrogen Bond

Homology: Leucine zipper

Leucine-zipper

GETPPLSPIDMESQERIKAERKRMRNRIAASKCRKRKLERIARLEEKVKTLKAQNSELASTANMLREQVAQLKQKVMNHVNSGCQLMLTQQLQTF JUN BOVIN GETPPLSPIDMESQERIKAERKRMRNRIAASKCRKRKLERIARLEEKVKTLKAONSELASTANMLREQVAQLKOKVMNHVNSGCQLMLTQQLQTF JUN PIG JUN MOUSE GETPPLSPIDMESQERIKAERKRMRNRIAASKCRKRKLERIARLEEKVKTLKAQNSELASTANMLREQVAQLKQKVMNHVNSGCQLMLTQQLQTF JUN RAT GETPPLSPIDMESQERIKAERKRMRNRIAASKCRKRKLERIARLEEKVKTLKAQNSELASTANMLREQVAQLKQKVMNHVNSGCQLMLTQQLQTF JUN HUMAN GETPPLSPIDMESQERIKAERKRMRNRIAASKCRKRKLERIARLEEKVKTLKAQNSELASTANMLREQVAQLKOKVMNHVNSGCQLMLTQQLQTF GETPPLSPIDMESQERIKAERKRMRNRIAASKCRKRKLERIARLEEKVKTLKAQNSELASTANMLREQVAQLKQKVMNHVNSGCQLMLTQQLQTF JUN CHICK GETPPLSPIDMESQERIKAERKRMRNRIAASKCRKRKLERIARLEEKVKTLKAQNSELASTANMLREQVAQLKOKVMNHVNSGCQLMLTQQLQTF JUN COTJA JUN SERCA GETPPLSPIDMESQERIKAERKRMRNRIAASKCRKRKLERIARLEEKVKTLKAQNSELASTANMLREQVAQLKQKVMNHVNSGCQLMLTQQLQTF

GCN4	SSDPAALKRARNTEAARRSRARKLQR	MKOLEDKY	VEEL	LSKNYHL	ENEVAR	LKKLVGER		
JUN	SQERIKAERKRMRNRIAASKCRKRKLER	IARLEEK	/KTL	KAQNSEL	ASTANM	L REQ VAQ L	KQK	MNHVNSG
CEBPB	KTVDKHSDEYKIRRERNNIAVRKSRDKAKMR	NLETQHK	/LE <mark>L</mark>	TAENERL	QKKVEQ	LSRELSTL	RNL	-KQLPEP-
CREB1	QPAEEAARKREVRLMKNREAARECRRKKKEY	VKCLENR	VAV L	ENQNKT	IEELKA	L KDL Y CHK	SD-	
ATF4	KVKGEKLDKKLKKMEQNKTAATRYRQKKRAE	QEALTGE	CKEL	EKKNEAL	KERADS	LAKE <mark>IQY</mark> L	KDL	LEEVRKAR
	* ** .	100 A	*	(<u>.</u> * *	<pre></pre>	*	199	

Superimposition

KLF4

Zinc Fingers

Small, functional, independently folded domain that requires **coordination of one or more zinc ions** to stabilize its structure by a different combination of cysteines and histidines.

Nuclear receptors with C4 zinc fingers Other C4 zinc finger-type factors C2H2 zinc finger factors DM-type intertwined zinc finger factors CXXC zinc finger factors C2HC C3H zinc finger factors C2CH THAP-type zinc finger factors

Zinc Fingers - C2H2 family

- Two Cys and two His residues bonded tetrahedrally to a Zn ion.
- Consists of a short antiparallel β -sheet formed by two strands and hairpin turn, followed by an α -helix.
- They are transcription factors, meaning that they function by identifying particular DNA sequences.

KLF4: Biological function

•	Transcription factor
•	SP/KLF superfamily: three zinc-finger motifs
•	Binds to the DNA sequence: 5'-GAGGCGTGGC-3'
•	Indispensable for terminal maturation of epithelial tissues
•	They are also potentials targets for cancer therapy

CLASS	Small proteins Usually dominated by metal ligand, heme, and/or disulfide bridges
FOLD	Beta-beta-alpha zinc fingers (N-terminal beta-hairpin and C-terminal alpha-helical region; each part provides two zinc-coordinating residues)
SUPERFAMILY	Beta-beta-alpha zinc fingers
FAMILY	Classic Zinc Fingers, C2H2
PROTEIN	Krüppel-like factor 4, GKLF
SPECIES	Mouse (Mus musculus)

General structure

2WBS - PDB information

α-helix

Consensus sequence of C2H2 family

<mark>Ψ</mark>-X-<mark>C</mark>-X2-5-<mark>C</mark>-X3-ι<mark>Ψ-</mark>X5-ι<mark>Ψ-</mark>X2-H<mark>-</mark>X3-5-H

Consensus sequence - different species

<mark>w</mark>-X-C-X2-5-C-X3-1<mark>y-</mark>X5-1y-X2-H-X3-5-H

Consensus sequence - same family structures

Superimposition

Superimposition with Zn

Score

RMSD

5.58

1.18

Conservation of residues

Residues involved in Zn binding

Conservation of residues

Hydrophobic core

Finger 3

Hydrophobic core

Specific DNA-binding - residues conservation among species

DNA-binding consensus sequence

KLF4 consensus binding site

Residues involved in specific DNA binding

Position -1

Interaction between position -1 and position 2

Finger 3

Non-specific DNA-phosphate binding residues

Conclusions

JUN	KLF4

- There is a highly conservation between species and also between homologous in the two main domains.
- Basic region binds a specific binding site of the DNA, the AP-1 site.
- Leucine Zipper region is a highly conserved and functionally important structure that plays a central role in gene expression regulation in eukaryotic cells by mediating the dimerization of transcription factors and their subsequent DNA binding.

- During evolution, important residues have been conserved
- In the C2H2 family, the hydrophobic core holds together the antiparallel beta-sheets and the alpha-helices.
- Hydrophobic residues are essential for protein stability.
- Sequence conservation is not observed in the residues involved in nonspecific DNA-phosphate binding but it is in those involved in specific DNA binding.

PEM Questions

1. bZIP TFs:

a)

- a) Have two motifs: DNA-binding basic region and leucine zipper.
- Both of them are conserved within evolution. b)
- Both are correct. c)
- d) Free in solution becomes alpha-helically folded.
- All of them are correct. e)

2. Transcription factors from AP1:

4. Leucine zipper region is characterized by:

- a) Alanine residue repeats every fourth position
- b) Leucine residue repeats every seventh position
- Electrostatic interactions between d and g positions c)
- d) Hydrophobic interactions between residues in e position
- All are correct e)

d)

e)

Leu296 and Leu173

Glu186 and Thr196

- 5. Which of the following residues are implicated in both hydrophobic Are involved in cell growth, proliferation, survival, apoptosis, interactions and electrostatic interaction?
- transformation, oncogenesis. Val293 and Thr196 a) Asn300 and Lys176 b) Are Jun and KLF4. b) Lvs176 and Val294 c)
 - Both are correct. c)
 - Only binds TRE sites. d)
 - e) All of them are correct.
- 3. The most important interactions between Jun and DNA are:
 - Van der Waals. a)
 - Hydrogen bonds. b)
 - c) Both are correct.
 - d) Salt bridges.
 - All of them are correct. e)

PEM Questions

6. Which is the consensus sequence of C2H2 family?

- a) $.-Z-X_{1-2}-F-X_{2-4}-C-X_3-Z-X_5-Z-X_2-H-X_{3-5}-C$
- b) -Z-X₁₋₂-F-X₂₋₄-C-X₃-Z-X₅-Z-X₂-C-X₃₋₅-H
- c) $-Z-X_{1-2}-C-X_{2-4}-C-X_3-Z-X_5-Z-X_2-Y-X_{3-5}-H$
- d) $-Z-X_{1-2}-C-X_{2-4}-C-X_3-Z-X_5-Z-X_2-H-X_{3-5}-H$
- e) $-Z-X_{1-2}-G-X_{2-4}-C-X_3-Z-X_5-Z-X_2-H-X_{3-5}-H$
- 7. Which are the two Zn fingers that most contribute to the DNA binding specificity?
 - a) Finger 1 and finger 3
 - b) Finger 1 and finger 2
 - c) Finger 2 and finger 3
 - d) None of the above
 - e) All of them are exactly the same

8. Regarding the hydrophobic core, select the true statement:

- a) It allows the stabilization of the zinc finger structure
- b) The residues involved are highly conserved

c) a and b are true

- d) In the three zinc fingers the residues forming the hydrophobic core are exactly the same.
- e) All of the above

9. Select the correct answers about KLF4:

- 1. According to SCOP it belongs to the helix loop helix family.
- 2. It has 4 zinc fingers
- 3. Each of its fingers contains a β sheet and two α helix
- 4. It is a transcription factor

a)	1,2,3,4
b)	1,2,3
c)	1 y 3
d)	2 y 4
e)	4

10. Choose the correct answer about KLF4 and its specific binding to DNA:

- a) The residues involved in this interaction with the DNA are extremely conserved among different species.
- b) The arginine residues from helix position -1 are stabilized by a salt bridge with aspartate residues of helix position 2.
- c) The contribution of the first zinc finger is smaller than that of the two C-terminal zinc fingers
- d) The arginine residues of helix positions -1 and 6 confer the most of the DNA-binding specificity.
- e) All of them are true

Bibliography

- Branden, C.-I., & Tooze, J. (1999). Introduction to Protein Structure (2nd ed.). CRC Press.
- Cruzalegui, F. H., Hardingham, G. E., & Bading, H. (1999). c-Jun functions as a calcium-regulated transcriptional activator in the absence of JNK/SAPK1 activation. The EMBO journal, 18(5), 1335–1344. https://doi.org/10.1093/emboj/18.5.1335
- Glover, J. N., & Harrison, S. C. (1995). Crystal structure of the heterodimeric bZIP transcription factor c-Fos-c-Jun bound to DNA. Nature, 373(6511), 257–261. https://doi.org/10.1038/373257a0
- Junius, F. K., O'Donoghue, S. I., Nilges, M., Weiss, A. S., & King, G. F. (1996). High resolution NMR solution structure of the leucine zipper domain of the c-Jun homodimer. The Journal of biological chemistry, 271(23), 13663–13667. https://doi.org/10.1074/jbc.271.23.13663
- Kaczynski, J., Cook, T. & Urrutia, R. Sp1- and Krüppel-like transcription factors. *Genome Biol* 4, 206 (2003). https://doi.org/10.1186/gb-2003-4-2-206
- Liu, Y., Olanrewaju, Y. O., Zheng, Y., Hashimoto, H., Blumenthal, R. M., Zhang, X., & Cheng, X. (2014). Structural basis for Klf4 recognition of methylated DNA. *Nucleic acids research*, 42(8), 4859–4867. https://doi.org/10.1093/nar/gku134
- Lively, T. N., Nguyen, T. N., Galasinski, S. K., & Goodrich, J. A. (2004). The basic leucine zipper domain of c-Jun functions in transcriptional activation through interaction with the N terminus of human TATA-binding protein-associated factor-1 (human TAF(II)250). The Journal of biological chemistry, 279(25), 26257–26265. https://doi.org/10.1074/jbc.M400892200
- New human TF classification. (n.d.). Edgar-wingender.de. Retrieved February 27, 2024, from http://www.edgar-wingender.de/huTF_classification.html
- Pace, N. J., & Weerapana, E. (2014). Zinc-binding cysteines: diverse functions and structural motifs. *Biomolecules*, 4(2), 419–434. https://doi.org/10.3390/biom4020419
- Presnell, J. S., Schnitzler, C. E., & Browne, W. E. (2015). KLF/SP Transcription Factor Family Evolution: Expansion, Diversification, and Innovation in Eukaryotes. *Genome biology and evolution*, 7(8), 2289–2309. https://doi.org/10.1093/gbe/evv141
- Pulverer, B. J., Kyriakis, J. M., Avruch, J., Nikolakaki, E., & Woodgett, J. R. (1991). Phosphorylation of c-jun mediated by MAP kinases. Nature, 353(6345), 670–674. https://doi.org/10.1038/353670a0

Bibliography

- Sharma, R., Choi, K. J., Quan, M. D., Sharma, S., Sankaran, B., Park, H., LaGrone, A., Kim, J. J., MacKenzie, K. R., Ferreon, A. C. M., Kim, C., & Ferreon, J. C. (2021). Liquid condensation of reprogramming factor KLF4 with DNA provides a mechanism for chromatin organization. Nature communications, 12(1), 5579. https://doi.org/10.1038/s41467-021-25761-7
- Schuetz, A., Nana, D., Rose, C., Zocher, G., Milanovic, M., Koenigsmann, J., Blasig, R., Heinemann, U., & Carstanjen, D. (2011). The structure of the Klf4 DNA-binding domain links to self-renewal and macrophage differentiation. *Cellular and molecular life sciences : CMLS*, 68(18), 3121–3131. https://doi.org/10.1007/s00018-010-0618-x
- Suske, G., Bruford, E., & Philipsen, S. (2005). Mammalian SP/KLF transcription factors: bring in the family. *Genomics*, 85(5), 551–556. https://doi.org/10.1016/j.ygeno.2005.01.005
- Suske G. (1999). The Sp-family of transcription factors. *Gene*, 238(2), 291–300. https://doi.org/10.1016/s0378-1119(99)00357-1
- Swamynathan S. K. (2010). Krüppel-like factors: three fingers in control. *Human genomics*, 4(4), 263–270. https://doi.org/10.1186/1479-7364-4-4-263