

ESCHERICHIA COLI RNA POLYMERASE

Laura Campamà, Marcel Homet, Marc Jené and Eva Escobar

STRUCTURAL BIOLOGY 01/03/2024

Introduction

Structure

Conservation

Interactions

Limitations

Conclusions

INTRODUCTION An overview of E. coli RNAP

Central Dogma of Molecular Biology

Prokaryotic Transcription

Basics of E. coli RNA polymerase

- N-terminal domain (NTD, 1-235)
- Linker (236-247)

 $\beta + \beta'$ subunits $\rightarrow RNApol crab claw shape$ \odot subunit \rightarrow Non-essential role

 σ^{70} factor \rightarrow Housekeeping genes

- Domain $4 \rightarrow -35$ element (dsDNA)
- Domain $2 \rightarrow -10$ element (ssDNA)

STRUCTURE A study of E. coli RNAP most relevant features

E. coli RNAP Subunits

 $\alpha 1 + \alpha 2$

Alpha

rpoA 329 aa (36.5 kDa)

RNAP assembly

Interactions with DNA and transcription factors for transcriptional regulation **rpoB** + **rpoC** 1342 aa (150.4 kDa) / 1407 aa (155.0 kDa)

Beta

β + β

NTP binding Rifampin binding site Catalytic Mg²⁺ coordination σ factor binding DNA and RNA binding Omega 0

rpoZ 91 aa (10.2 kDa)

RNAP folding? ppGpp binding site 1?

α subunit: SCOP Classification

- Alpha and Beta proteins (a+b)
- Alpha and Beta proteins (a+b)
- All alpha proteins
- Insert subdomain of RNA polymerase alpha subunit
- DCoH-like
- SAM domain-like
- Insert subdomain of RNA polymerase alpha subunit
- BP11-like subunits of RNA polymerase
- C-terminal domain of RNA polymerase alpha subunit
- Insert subdomain of RNA polymerase alpha subunit
- RNA polymerase alpha subunit dimerisation domain
- C-terminal domain of RNA polymerase alpha subunit

ß and **B**' subunits

- Two largest subunits → 80% of the total mass of core enzyme
- Form each **claw arm** of the **crab claw shape** of RNAP→ **cleft for DNA entry** to the enzyme active site

ß and **B**' subunits

- Two largest subunits → 80% of the total mass of core enzyme
- Form each **claw arm** of the **crab claw shape** of RNAP→ **cleft for DNA entry** to the enzyme active site

7MKO 3.15Å Chimera

β and β' - Active Site

Crab Claw

2 double-psi beta barrels (DPBB)

- DPBB (β') → Acid Aspartic Triad→ sequence motif - NADFDGDQ : coordination of catalytic Mg²⁺ ions
- DPBB (β) → Basic residues: interaction with incoming nucleotides

7MKP 3.41Å Chimera

β' subunit - Motifs and Functions

Trigger Loop (TL) → Catalysis

NTP bound → TL closes the active site

 folds into Trigger Helices (TH) →
 forms a Three-Helix Bundle (THB)
 with BH → closes the active site and
 increases the nucleotide addition rate
 ~104 by positioning the NTP substrate
 for catalysis

Bridge Helix (BH) → **Translocation**

- **N-ter** \rightarrow three flexible loops: β fork loop 2, β D loop II, and β ' F-loop
- C-terminal → anchor module: flexible switch 1 and 2 elements → connects the β' clamp domain to the body of RNAP.

ω subunit

- Smallest subunit of bacterial RNAP (91 residues)
- Only one **DISPENSABLE** for cell growth and for in vitro transcription activity
- Proposed roles ? :
 - Response to bacterial alarmone ppGpp during the stringent response
 - Chaperone for RNAP folding
 - Protection of the DPBB domain against various damages

7MKP 3.41Å Chimera

Enzyme Core Assembly

σ^{70} factor- Holoenzyme

Main functions:

- Direction of RNAP catalytic core → transcription start sites
- Initiation of dsDNA strand separation → transcription bubble

4 domains

- **σ**_{1.1}
- $\sigma_2 \rightarrow -10$ element + discriminator motifs
- $\sigma_3 \rightarrow \alpha$ helix \rightarrow extended -10 element
- o₄ → helix-turn-helix DNA-binding domain → -35 element

4YG2 3.70Å Chimera

Holoenzyme

4YG2 3.70Å Chimera

EVOLUTIONARY CONSERVATION She knows what happened. She was there

Evolutionary conservation

Hypothesized to have been one of the earliest proteins to appear.

Distinction between species by complexity of RNAP

- Bacteria bind to sigma 70
- Bacteria have only 1 RNAP

Eukarya	Archaea	Prokarya
RPB 3	D	α1
RPB 11	L	α2
RPB 2	В	β
RPB 1	A"	β'
RPB 6	K	ω

Evolutionary conservation

Eukarya	Archaea	Prokarya
RPB 3	D	α1
RPB 11	L	α2
RPB 2	В	β
RPB 1	A"	β'
RPB 6	K	ω

Phylogenetic tree of our RNAPs

Subunit conservation RNAP

PDB ID	Species	PDB ID	Species
E. coli	7MKP	P. gingivalis	8DKC
P. aeruginosa	7XL3	B. subtilis	6WVJ
T. aquaticus	1L9U	Strep. coelicolor	7X74
X. oryzae	6J9E	Strept. venezuelae	8DY9
F. tularensis	6WMP		

*Positions based on e.coli

β subunit conservation

DPBB - β strands

Positively charged aa

	791		301		811		821	
Consensus	dGEIAL	GqNI	IVAfl	M P W n G y	NyEDa	IISe	RIVqeDv	y T s
Conservation			and the second					
Strep venezuelae 8DY9 1	DGEMAL	GKNL	LVAF	MPWEGH	NYEDA	ILSQ	RLVQDDV	LSS
Strep_coelicolor/7X74_1	NGEMAL	GKNL	LVAF	MPWEGH	NYEDA	ILSQ	RLVQDDV	/ L S S
M_tuberculosis/7Q4U_1	DGEMAL	GKNL	LVAI	MPWEGH	NYEDA	ILSN	RLVEED	LTS
B_subtilis 6WVJ_1	LGELAL	GRNV	MVGF	MTWDGY	NYEDA	IIMSE	RLVKDD	YTS
T_aquaticus 1L9U_1	EGFLAL	GQNV	LVAI	MPFDGY	NFEDA	IVISE	ELLKRDF	YTS
E_coli 7MKP_1	LGELAL	GQNM	RVAF	MPWNGY	NFEDS	ILVSE	RVVQEDF	RFTT
P_aeruginosa	MGELAL	GQNM	RVAF	MPWNGF	NFEDS	ICLSE	RVVQEDF	RFTT
X_oryzae 6J9E_1	IGELAL	GQNM	LIAF	MPWNGY	NFEDS	ILLSE	RVVEEDF	XYTT
F_tularensis 6WMP_1	FGELSL	GHNL	MVAF	MPWNGY	NFEDS	ILLSE	RIVKDDH	(YTS
P gingivalis/8DKC 1	GGELAL	GRNV	QVAY	MPWKGY	NYEDA	IVLNE	RMVREDE	FFTS

DNA BD

	1065		1075	1	085		1095				1224		1234	\square
Consensus	Km	AGRHGNKC	S ViSkl	IPVED	MPyl	adGTP\	DI	i L N P	LGVP	Consensus	pv	t VGyMY i	IK	. L
Conservation			I Destroyed							Conservation			- T	
Strep_venezuelae 8DY9_1	KL.	AGRHGNKC	VISKI	LPIED	MPFL	EDGTP	DI	ILNP	LGVP	Strep venezuelae 8DY9 1	PI	SVGYMYI	LK	L
Strep_coelicolor 7X74_1	KL.	A G R H G N K C	VISKI	NPIED	MPFL	EDGTP	DI	ILNP	LAVP	Strep coelicolor 7X74 1	PI	SVGYMYI	LK	L
M_tuberculosis 7Q4U_1	K L	AGRHGNKC	VIGKI	LPVED	MPFL	ADGTP	DI	ILNT	HGVP	M_tuberculosis/7Q4U_1	PN	/TVGYMYI	MK	L
B_subtilis 6WVJ_1	KM	AGRHGNKO	VISKI	LPEED	MPYL	PDGTP	DI	MLNP	LGVP	B subtilis/6WVJ 1	IRV	/SVGIMYM	IK	L
T aquaticus 1L9U_1	KL.	ANRHGNKO	VVAKI	LPVED	MPHL	PDGTP\	/ DV	ILNP	LGVP	T aquaticus 1L9U 1	i PI	VVGQMFI	MK	L
E_coli 7MKP_1	KM.	A	VISKI	NPIED	MPYC) E N G T P \	DI	VLNP	LGVP	E_coli 7MKP_1	: PN	/ T V <mark>G</mark> Y M Y M	L K	L
P_aeruginosa	KM	A	VVSVI	MPVED	MPHC) A N G T P \	DI	VLNP	LGVP	P aeruginosa	: PT	ТVGYMYM	LK	L
X_oryzae 6J9E_1	KM	A	VVSNV	VPVED	MPYM	/ A T G E S \	DI	VLNP	LGVP	X oryzae 6J9E 1	KT	ТVGYMHY	LK	L
F_tularensis 6WMP_1	KM	A	VVSRV	LPVED	MPYM	1 E D G T P \	/ DV	CLNP	LGIP	F tularensis 6WMP 1	: H\	/ T V G Y M Y M	L K	L
P_gingivalis 8DKC_1	K M.	A G R H G N K C	IVSKI	VRQED	MPFL	ADGTP\	DI	CLNP	LGVP	P_gingivalis 8DKC_1	P A	A T V G V T Y F	LK	L

*Positions based on e.coli

β' subunit conservation

DPBB - β strands

	349						359						3	69						
Consensus	Y	S g	R S	V	V	VG	P	q	LΚ	LH	IQ	C	GL	Ρ	K I	(M)	AL	- E	LF	K
Conservation										-		0			-					
T_aquaticus 1L9U_1	Y	SG	RS	V	IV	VG	P	Q	LΚ	LH	Q	C	GL	Ρ	KF	RM	AL	. E	LF	K
B_subtilis 6WVJ_1	Y	SG	RS	V	IV	VG	P	H	L K	M	(Q	C	GL	Ρ	KE	EM	ΑL	E	LF	K
Strep_venezuelae 8DY9_1	Y	S A	RS	V	IV	VG	P	Q	L K	LH	IQ	C	GL	Ρ	K	A M	AL	- E	LF	K
Strep_coelicolor 7X74_1	Y	S A	RS	V	IV	VG	P	Q	LΚ	LH	H Q	C	GL	P	K	A M	AL	- E	LF	K
M tuberculosis/7Q4U_1	Y	SG	RS	V	IV	VG	P	Q	L K	LH	H Q	C	GL	Ρ	ΚI	_ M	AL	- E	LF	K
E_coli 7MKP_1	Y	S G	RS	V	ΙТ	VG	P	Y	L R	LH	IQ	C	GL	Ρ	Kł	K M	ΑL	- E	LF	K
P_aeruginosa	Y	S G	RS	V	ΙT	VG	P	Т	L R	LH	IQ	C	GL	Ρ	Κŀ	KM.	ΑL	- E	LF	K
X_oryzae 6J9E_1	Y	SG	RS	V	ΙT	VG	P	Y	L K	LH	H Q	C	GL	P	Kł	KM.	AL	E	LF	K
F_tularensis 6WMP_1	Y	SG	RS	V	ΙT	VG	P	S	L R	LH	ΗE	C	GL	Ρ	KI	KM.	ΑL	E	LF	K
P_gingivalis 8DKC_1	Y	S A	RS	V	IV	VG	P	E	L K	MH	HE	C	GL	P	K	MC	AA	A E	LY	K

Asp Triad

	421	4	.31	441	45	51				455			4	65		
Consensus	IaE	HPVLLNR	APTLHRLGI	IQ AFE	PvLiEGK	AI	QLH	IPLVC	Consensus	Α	f N A	DFDC	DQ	MAVH	vPLs	аE
Conservation									Conservation				-			
T_aquaticus 1L9U_1	IHG	KVVLLNR	APTLHRLG	IQ AFQ	PVLVEGQ	SI	QLH	IPLVC	T_aquaticus 1L9U_1	A	FNA	DFDC	DQ	MAVH	VPLS	SF
B_subtilis 6WVJ_1	IKE	HPVLLNR	APTLHRLG	IQ AFE	PTLVEGR	AI	RLH	IPLVC	B_subtilis 6WVJ_1	A	Y N A	DFDG	DQ	MAVH	VPLS	AE
Strep_venezuelae 8DY9_1	IAE	HPVLLNR	APTLHRLG	IQ AFE	PQLVEGK	AI	QIH	IPLVC	Strep_venezuelae 8DY9_1	Α	FNA	DFDC	DQ	MAVH	LPLS	AE
Strep_coelicolor 7X74_1	IAE	HPVLLNR	APTLHRLG	IQ AFE	PQLVEGK	AI	QIH	IPLVC	Strep_coelicolor 7X74_1	Α	FNA	DFDG	DQ	MAVH	LPLS	AE
M tuberculosis/7Q4U_1	IAE	HPVLLNR	APTLHRLG	IQ AFE	PMLVEGK	AI	QLH	IPLVC	M tuberculosis 7Q4U_1	Α	FNA	DFDC	DQ	MAVH	LPLS	AE
E_coli 7MKP_1	IRE	HPVLLNR	APTLHRLG	IQ AFE	PVLIEGK	AI	QLH	IPLVC	E_coli 7MKP_1	A	Y N A	DFDG	DQ	MAVH	VPLT	LE
P_aeruginosa	IRE	HPVLLNR	APTLHRLG	IQ AFE	PVLIEGK	AI	QLH	IPLVC	P_aeruginosa	Α	YNA	DFDG	DQ	MAVH	VPLT	LE
X_oryzae 6J9E_1	IRE	HPVLLNR	APTLHRLG	IQ AFE	PVLIEGK	AI	QLH	IPLVC	X_oryzae 6J9E_1	Α	FNA	DFDG	DQ	MAVH	VPLS	LE
F_tularensis 6WMP_1	INE	HPVLLNR	APTLHRLG	IQ AFE	PRLIEGK	AI	QLH	IPLVC	F_tularensis 6WMP_1	Α	FNA	DFDC	DQ	MAVH	VPLT	VE
P_gingivalis 8DKC_1	MKG	HPVLLNR	APTLHRLG	IQ AFQ	PKLIEGK	AI	QLH	IPLSC	P_gingivalis 8DKC_1	Α	FNA	DFDC	DQ	MAVH	LPLS	NE

σ70 conservation

Structure conservation

Alpha-helix

Spacing of hydrophobic aa (loop vary length)

TATAAT box BD

	377	387	
Consensus	khliEAN	LRL VVS	i A K k Y T g
Conservation			
S_venezuelae 8DY9F	NHLLEAN	LRL VVS	LAKRYTG
M_tuberculosis 7KIFF	NHLLEAN	L <mark>R</mark> L VVS	LAKRYTG
T_aquaticus 4XLPF	QHLIEAN	LRL VVS	IAKKYTG
B_subtilis 7CKQF	RRLAEAN	LRL VVS	IAKRYVG
E_coli 4YG2F	KEMVEAN	LRL VIS	IAKKYTN
F_tularensis 6WMRZ	KEMIEAN	L <mark>R</mark> L VVS	EAKKYTN

PDB ID	Species
E. coli	4YG2
B. subtilis	7CKQ
T. aquaticus	4XLP
S. venezuelae	8DY9F
F. tularensis	6WMP
M. tuberculosis	7KIF

Species

PDB ID

Subunit conservation across life

$\alpha_{\rm I}$ structure conservation

	51	61	71
Consensus Conservation	. I a <mark>N</mark> a i <mark>R R</mark> i I	i a y v P i m A i d	sVyiien
RMSD: ca			
1L9UA.pdb	31 . LGNPLRRIL	LSSIPGTAVT	SVYIED. VLH
1WCMC.pdb	26 AMANSLRRVM	IAEIPTLAID	SVEVETN
2PMZD.pdb	22 E F V N A I R R A S	MLYVPIMAVD	DVYFIEN
2WAQD.pdb	22 E F V N A I R R A A	MLYVPVMSID	DVYFIEN
5IYCC.pdb	29 A VANSIRRVF	IAEVPIIAID	WVQIDAN
7MKPA.pdb	33 . LGNALRRIL	LSSMPGCAVT	EVEIDG. VLH

Structural alignment of RNAPs

PDB ID	Species
E. coli	7MKP
T. aquaticus	1L9U
S. solfataricus	2PMZ
S. shibatae	2WAQ
S. cerevisiae	1WCM
H. sapiens	5IYC

β ' subunit differences

Bridge Helix

RMSD: 1.207 of β'

Consensus	'31 rqlagmrg	741 Im - kp - g	751 - etpvtas7	⁶¹ regLtvley ⁷	71 Tisahgarkg		121
Escherichia	BOLAGMBG	MAKPDG	SLIFTPITAN	FREGINVIOY	FISTHGARKE	Consensus	ARKGLADTAL
Pseudomonas	RQLAGMRG	LMAKPDG	SILETPITAN	FREGLNVLQY	FISTHGARKG	Conservation	
Thermus	RQLCGMRG	LMQKPSG	ETFEVPVRSS	FREGLTVLEY	FISSHGARKB	T aquaticusI1L9U 1	ARKGGADTAL
S_cerevisiae 1WCM H_sapiens 5IYC	RIAFGEVDRI		PESKGEVENS	YLAGLTPDEF	FFHAMGGREG	B subtilis/6WVJ 1	ARKGLADTAL
S_solfataricus 2PMZ						Strep venezuelael8DY9 1	ARKGLADTAL
S_shibatae 2WAQ	V S N G		N P L V T R E	DIEKLDSGSI	TFDDLVRCGK	Strep_coelicolor/7X74_1	ARKGLADTAL
7	/81	791 8	201 8	11	102.00	ou op_cooncoronny i _ i	
	•.	101 0	01 0			M tuberculosis/704U 1	ARKGIADIAL
Consensus	гаотагктае	sgritrriva	vaqqıvvteq	acg		M_tuberculosis 7Q4U_1 E_colil7MKP_1	ARKGLADTAL
Consensus Conservation Escherichia		SGYLTBRIVD	Vaqaivvtea VADDLVVTED	a c g		M_tuberculosis 7Q4U_1 E_coli 7MKP_1 P_aeruginosa	ARKGLADTAL ARKGLADTAL
Consensus Conservation Escherichia Pseudomonas	LADTALKTAN LADTALKTAN	SGYLTRRLVD SGYLTRRLVD	V A Q D L V V T E D V A Q D L V V T E D V A Q D L V V T E I	a c g		M_tuberculosis 7Q4U_1 E_coli 7MKP_1 P_aeruginosa	ARKGLADTAL ARKGLADTAL ARKGLADTAL
Consensus Conservation Escherichia Pseudomonas Thermus	I A O T A I K T A P L A D T A L K T A N L A D T A L K T A N G A D T A L R T A D	S G Y L T F I V G S G Y L T R L V D S G Y L T R R L V D S G Y L T R K L V D	VAQDLVVTED VAQDLVVTED VAQDLVVTEI VAHEIVVREA			M_tuberculosis 7Q4U_1 E_coli 7MKP_1 P_aeruginosa X_oryzae 6J9E_1 E_tularonsie16W/MP_1	ARKGLADTAL ARKGLADTAL ARKGLADTAL ARKGLADTAL
Consensus Conservation Escherichia Pseudomonas Thermus S_cerevisiae 1WCM H sapiens 5 1YC	I A OTALKTAN LADTALKTAN GADTALKTAN LIDTAVKTAE LIDTAVKTAE	S G Y L T R L V D S G Y L T R R L V D S G Y L T R R L V D S G Y L T R K L V D T G Y L Q R R L V K T G Y L O R R L I K	VAQDLVVTED VAQDLVVTED VAQDLVVTEI VAHEIVVREA ALEDIMVHYD SMESYMVKYD	a c g		M_tuberculosis 7Q4U_1 E_coli 7MKP_1 P_aeruginosa X_oryzae 6J9E_1 F_tularensis 6WMP_1 D_ginginglig9DKC_1	ARKGLADTAL ARKGLADTAL ARKGLADTAL ARKGLADTAL
Conservation Escherichia Pseudomonas Thermus S_cerevisiae 1WCM H_sapiens 5IYC S_solfataricus 2PMZ	I A OTALKTAN LADTALKTAN GADTALKTAN GADTALRTAD LIDTAVKTAE LIDTAVKTAE	S G Y I T T T I V G S G Y L T R R L V D S G Y L T R R L V D S G Y L T R K L V D T G Y I Q R R L V K T G Y I Q R R L I K	V A Q D L V V T E D V A Q D L V V T E D V A Q D L V V T E I V A H E I V V R E A A L E D I M V H Y D S M E S V M V K Y D	a c g	I Q F I Y G E D G M V Q L R Y G E D G L	M_tuberculosis 7Q4U_1 E_coli 7MKP_1 P_aeruginosa X_oryzae 6J9E_1 F_tularensis 6WMP_1 P_gingivalis 8DKC_1	ARKGLADTAL ARKGLADTAL ARKGLADTAL ARKGLADTAL ARKGLADTAL ARKGLADTAL

RNAP conformation

INTERACTIONS *RNAP and her friends*

Between subunits - α and β (HBonds)

4YG2 3.70Å

Between subunits - α and β Conservation

Prokaryotes

Between subunits - β and β ' Salt Bridges

Prokaryotes

Between subunits - σ 70 and RNAP Salt Bridges

Between subunits - σ 70 and RNAP Salt Bridges

Prokaryotes

AND THE REAL PROPERTY.	373	270		Prokarvo	tes and Euka	irvotes
Consensus	Y	RRVINRNNRL		j e i e i e i g e		
Conservation				249	259	269
T_aquaticus 1L9U_1	Y	RRLINRNNRL	Consensus	lrpkypfdaa	rratsdlnDl	vrriinrnnr
B_subtilis 6WVJ_1	Y	RRVINRNNRL	Conservation			
Strep_venezuelae 8DY9_1	Y	RRVINRNNRL	E colil7MKP	LRPLVPLDGG	REATSDINDI	YRRVINRNNR
Strep_coelicolor 7X74_1	Y	RRVINRNNRL	P_aeruginosal7XL3	IRPIVPIDGG	REATSDINDI	YRRVINRNNR
M_tuberculosis 7Q4U_1	Y	RRVINRNNRL	T aquaticus[1] 91	LRPMVOVDGG	REATSDINDI	YRRLINRNNR
E_coli 7MKP_1	Y	RRVINRNNRL	S shibatael2WAQ	VPGKIPEVII	MRAIGLITOR	DIVYAVS
P_aeruginosa	Y	RRVINRNNRL	H saniens/5/VC	KOEVPLIEV	ERALGEVSDR	DILEHUYDE
X_oryzae 6J9E_1	Y	RRVINRNNRL	S solfataricus/2PM7	LEEKVKOASN	LI POKIVDDI	KNITINK
F_tularensis 6WMP_1	Y	RRVINRNNRL	S corovisiaol1WCM	VDDGIGENEG	OPCEDDITEK	LADILKANIS
P gingivalis/8DKC 1	Y	RRVIIRNNRI	o_cereviside 1WCW	VIL OTOFNEO	QNULUULIFN	LADILKANIS

σ70

Prokaryotes

B' subun

	377	387	397
Consensus	khliEANLRL	VVSiAKkYTg	RGmIFLDLIQ
Conservation		Reall_Hill_House	
S_venezuelae 8DY9F	NHLLEANLRL	VVSLAKRYTG	RGMLFLDLIQ
M tuberculosis 7KIFF	NHLLEANLRL	VVSLAKRYTG	RGMAFLDLIQ
T aquaticus 4XLPF	QHLIEANLRL	VVSIAKKYTG	RGLSFLDLIQ
B_subtilis 7CKQF	RRLAEANLRL	VVSIAKRYVG	RGMLFLDLIQ
E_coli 4YG2F	KEMVEANLRL	VISIAKKYTN	RGLQFLDLIQ
F_tularensis 6WMRZ	KEMIEANLRL	VVSEAKKYTN	RGLHFLDIIQ

σ70 - DNA negative element

 4yIn (#0) chain 1
 11
 ACTTGACATCCCACCTCA

 CGTATGCTATAATGTGTGCAGTCTGACGCGG

4YLN 5.5Å

DPBB - DNA

7MKO 3.15Å

DNA Adenine 20 (O)

Coenzyme binding - Mg²⁺

7MKP 3.41Å

	751 <mark>A</mark> f	NA	D	F	D	G	D	Q
	AF	NA	D	F	D	G	D	Q
	AY	NA	D	F	D	G	D	Q
1	AF	NA	D	F	D	G	D	Q
	AF	NA	D	F	D	G	D	Q
	AF	NA	D	F	D	G	D	Q
	AY	NA	D	F	D	G	D	Q
	AY	NA	D	F	D	G	D	Q
	AF	NA	D	F	D	G	D	Q
	AF	NA	D	F	D	G	D	Q
	A F	NA	D	F	D	G	D	Q

Active Site - Hydrophobic Interactions

- Purple → Hydrophilic
- Brown → Hydrophobic

7MKO 3.15Å

Active Site - Electrostatic Interactions

Active Site - Electrostatic Interactions

Coenzyme binding - Zn²⁺

β' subunit

Zinc Binding Domain

TIORATYOLES			Positions	based on e.com
Consensus Conservation T_aquaticus 1L9U_1 B_subtilis 6WVJ_1 Strep_venezuelae 8DY9_1 Strep_coelicolor 7X74_1 M_tuberculosis 7Q4U_1 E_coli 7MKP_1 P_aeruginosa X_oryzae 6J9E_1 F_tularensis 6WMP_1 P_gingivalis 8DKC_1	61 k F G P t k D y E R F G P T K D Y E R F G P T K D WE K F G P T R D WE K F G P T R D WE K F G P T R D WE R F G P V K D Y E K F G P I K D Y E K F G P I K D Y E R F G P V K D F E	71 CICGKYKRVr CHCGKYKRVR CYCGKYKRVR CYCGKYKRVR CYCGKYKRVR CYCGKYKRVR CLCGKYKRLK CLCGKYKRLK CLCGKYKRLK CLCGKYKRLK CLCGKYKRLK	81 h r G v i C E r C G F E G K V C E R C G F K G I I C E R C G F K G I I C E R C G F K G I I C E R C G F K G I I C E R C G H R G V I C E K C G H R G V I C E K C G H R G V V C E R C G H R G V V C E R C G H R G V V C E R C G H R G V V C E R C G H R G V V C E R C G	91 V E V T r a K V R R V E V T R S I V R R V E V T R A K V R R V E V T R A K V R R V E V T R A K V R R V E V T R A K V R R V E V T Q T K V R R V E V T Q T K V R R V E V T Q A K V R R V E V E Q A K V R R V E V T E K K V R R

Conservation of residues 65-94

- 4 Cys residues for Zn²⁺ binding
- Positively charged aa

Conservation of residues 814 - 898

- 4 Cys residues for Zn²⁺ binding

Prokaryotes

Conser Conser T_aqua B_subti Strep_v Strep_c M_tube E_coli/i P_aeru X_oryza F_tulare P_ging

Drolearizat

1000	811	881	891
ISUS	I r E e D C G T e r	k v R S v I I C e t	rtGVCAKCYG
valion	Statement of the local division of the local		
ticus 1L9U_1	VREADCGTTN	PVRSPLICQT	RYGVCQKCYG
lis 6WVJ 1	IRETDCGTDR	WIRSAFTCNT	PHGVCKRCYC
enezuelael8DY9 1	IREEDCGTER	KTRSVLTCES	AVGTCAFCYG
coelicolor/7X74 1	IREEDCGTER	KTRSILTCES	QVGTCAMCYG
rculosis 7Q4U 1	VREHDCQTER	KVRSVLTCAT	STGVCATCYG
MKP 1	VTEDDCGTHE	KVRSVVSCDT	DFGVCAHCYC
ginosa	VTEIDCGTEH	VVRSPITCET	RHGICAMCYG
ael6J9E 1	ITEIDCGTTE	KVRSTISCES	SFGVCARCYG
ensis 6WMP 1	VIEEDCGTDD	KVRSPITCKT	RRGLCAKCYG
valis 8DKC_1	ITEEDCGTLR	EIRSVLTCES	KKGVCAKCYG

Inhibitor: ppGpp alarmone

LIMITATIONS We are not perfect...

Resolution of the structure (both EM and X-ray)

Size of the molecule

Conflicting literature and missing information

CONCLUSIONS Take-home messages

Complex structure, multifunctional enzyme

Many relevant interactions between subunits, ligands and inhibitors

The most functional residues are evolutionarily conserved

BIBLIOGRAPHY We did not invent any of this

The following PDB IDs were referenced in this work: 7MKP, 7MKO, 7Q4U, 1L9U, 6J9E, 6WMP, 8DKC, 6WVJ, 8DY9, 5NSR, 5NSS, 2PMZ, 2WAQ, 1WCM, 8HYJ, 7AST, 4YG2, 4XLP, 8DY9, 7X74, 7KIF, 6WMR, 7CKQ, 5UAC, . PDB: Protein Data Bank. Retrieved from https://www.rcsb.org/

Arumugam M, Raes J, Pelletier E, et al. Enterotypes of the human gut microbiome. Nature. 2011;473(7346):174-180. doi:10.1038/nature09944

Braffman NR, Piscotta FJ, Hauver J, Campbell EA, Link AJ, Darst SA. Structural mechanism of transcription inhibition by lasso peptides microcin J25 and capistruin. Proc Natl Acad Sci U S A [Internet]. 2019;116(4):1273–8. Available from: http://dx.doi.org/10.1073/pnas.1817352116

Burrows CJ, Muller JG. Oxidative nucleobase modifications leading to strand scission. Chem Rev. 1998;98(3):1109-1152. doi:10.1021/cr960421z

Burton ZF. The Old and New Testaments of gene regulation: Evolution of multi-subunit RNA polymerases and co-evolution of eukaryote complexity with the RNAP II CTD. Transcription [Internet]. 2014;5(3):e28674. Available from: http://dx.doi.org/10.4161/trns.28674

Cech TR, Steitz JA. The noncoding RNA revolution—trashing old rules to forge new ones. Cell. 2014;157(1):77-94. doi:10.1016/j.cell.2014.03.008

Clark AG, Eisen MB, Smith DR, et al. Evolution of genes and genomes on the Drosophila phylogeny. Nature. 2007;450(7167):203-218. doi:10.1038/nature06341

Costea PI, Hildebrand F, Arumugam M, et al. Enterotypes in the landscape of gut microbial community composition. Nat Microbiol. 2018;3(1):8-16. doi:10.1038/s41564-017-0072-8

Fox EJ, Loeb LA. Lethal mutagenesis: targeting the mutator phenotype in cancer. Semin Cancer Biol. 2010;20(5):353-359. doi:10.1016/j.semcancer.2010.10.004

Glyde R, Ye F, Darbari VC, Zhang N, Buck M, Zhang X. Structures of RNA polymerase closed and intermediate complexes reveal mechanisms of DNA opening and transcription initiation. Mol Cell [Internet]. 2017;67(1):106-116.e4. Available from: http://dx.doi.org/10.1016/j.molcel.2017.05.010

Hu Y, Liu B. Roles of zinc-binding domain of bacterial RNA polymerase in transcription. Trends Biochem Sci [Internet]. 2022;47(8):710–24. Available from: http://dx.doi.org/10.1016/j.tibs.2022.03.007

Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486(7402):207-214. doi:10.1038/nature11234

Karin M. Nuclear factor-kappaB in cancer development and progression. Nature. 2006;441(7092):431-436. doi:10.1038/nature04870

Konkel ME, Tilly K. Temperature-regulated expression of bacterial virulence genes. Microbes Infect. 2000;2(2):157-166. doi:10.1016/s1286-4579(00)00269-7

Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409(6822):860-921. doi:10.1038/35057062

McHardy IH, Goudarzi M, Tong M, et al. Integrative analysis of the microbiome and metabolome of the human intestinal mucosal surface reveals exquisite inter-relationships. Microbiome. 2013;1(1):17. doi:10.1186/2049-2618-1-17

Multiple Sequence Alignment - CLUSTALW [Internet]. Genome.jp. Available from: https://www.genome.jp/tools-bin/clustalw

Murakami KS. X-ray Crystal Structure of Escherichia coli RNA Polymerase 670 Holoenzyme. J Biol Chem [Internet]. 2013;288(13):9126–34. Available from: http://dx.doi.org/10.1074/jbc.m112.430900

Nakayama T, Kamigochi T, Tanaka N, Nagai S. Molecular diversity and catalytic potential of eukaryotic polynucleotide phosphorylase. J Biochem. 1996;119(6):1048-1055. doi:10.1093/oxfordjournals.jbchem.a021538

Opalka N, Brown J, Lane WJ, Twist K-AF, Landick R, Asturias FJ, et al. Complete structural model of Escherichia coli RNA polymerase from a hybrid approach. PLoS Biol [Internet]. 2010;8(9):e1000483. Available from: http://dx.doi.org/10.1371/journal.pbio.1000483

P42448 structurePREDICTOR [Internet]. Imim.es. Available from: http://sbi.imim.es/students/proj2002/e14871/homolegestpg.html

Patel UR, Gautam S, Chatterji D. Validation of omega subunit of RNA polymerase as a functional entity. Biomolecules [Internet]. 2020;10(11):1588. Available from: http://dx.doi.org/10.3390/biom10111588

Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59-65. doi:10.1038/nature08821

Sanchez-Vazquez P, Dewey CN, Kitten N, Ross W, Gourse RL. Genome-wide effects on Escherichia coli transcription from ppGpp binding to its two sites on RNA polymerase. Proc Natl Acad Sci U S A [Internet]. 2019;116(17):8310–9. Available from: http://dx.doi.org/10.1073/pnas.1819682116

Sutherland C, Murakami KS. An introduction to the structure and function of the catalytic core enzyme of Escherichia coli RNA polymerase. EcoSal Plus [Internet]. 2018;8(1). Available from: http://dx.doi.org/10.1128/ecosalplus.esp-0004-2018

Taniguchi H, Araki H, Oshima T, et al. A superfamily of DNA polymerases. Nature Rev Mol Cell Biol. 2007;8(10):741-750. doi:10.1038/nrm2252

Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. The human microbiome project. Nature. 2007;449(7164):804-810. doi:10.1038/nature06244

Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 2014;15(3):R46. doi:10.1186/gb-2014-15-3-r46

Wu GD, Chen J, Hoffmann C, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334(6052):105-108. doi:10.1126/science.1208344

Yatsunenko T, Rey FE, Manary MJ, et al. Human gut microbiome viewed across age and geography. Nature. 2012;486(7402):222-227. doi:10.1038/nature11053

Zhang H-W, Huang K, Gu Z-X, Wu X-X, Wang J-W, Zhang Y. A cryo-EM structure of KTF1-bound polymerase V transcription elongation complex. Nat Commun [Internet]. 2023;14(1):1–11. Available from: https://www.nature.com/articles/s41467-023-38619-x/figures/2

Zuo Y, Wang Y, Steitz TA. The Mechanism of E. coli RNA Polymerase Regulation by ppGpp Is Suggested by the Structure of their Complex. Mol Cell [Internet]. 2013;50(3):430–6. Available from: http://dx.doi.org/10.1016/j.molcel.2013.03.020

MULTIPLE CHOICE? *Easy, we all want to pass BE*

1. What is true about σ 70?

- a. It's part of the region that binds DNA
- b. Is conserved among prokaryotes
- c. Also binds to subunit β '
- d. Is separated from the core enzyme after DNA binding
- e. All of the above

2. RNA polymerase ...

- a. Is only conserved in Eukaryotes
- b. Consists of three enzymes in Humans RNA-pol I / II / III
- c. It has low conservation among species
- d. Has a Gly triad in the alpha subunit
- e. Is made of one subunit

3. RNAP function is to ...

- a. Transcribe DNA into RNA
- b. Replicate DNA
- c. Translate RNA into proteins
- d. Act as a cell cycle control
- e. It does not have a determined function yet

4. **RNAP** is a ...

- a. Ribosomal nucleus activating protein
- b. A transcription factor
- c. DNA-dependant RNA polymerase
- d. A cell cycle inhibitor
- e. A cancer drug

5. Which statement(s) is true?

- a. The β and β ' subunit form two double psi beta barrels (DPBB)
- b. The alpha subunit is a homodimer
- c. a and b are correct
- d. The β ' subunit interacts with DNA
- e. All of the above

6. What is the importance of Aspartic acid triad in RNAP?

- a. Is just a conserved sequence recently discovered
- b. Helps bind Mg2+ as well as RNA and DNA
- c. There is no such sequence in the RNAP enzyme
- d. It has an inhibitor purpose
- e. Generate a charge free zone in the surface of the RNAP

7. Which statement is correct?

- a. The binding sites between subunits are not conserved
- b. RNAP is a small molecule easily crystallized
- c. RNAP's core enzyme consist only of the beta claw domain
- d. All of them are false
- e. RNAP is a good example to prove that sequence is more important than structure

8. **RNAP interacts with ...**

- a. RNA, DNA, co-factors, promoters, ...
- b. Ribosomes
- c. The cell membrane
- d. Only DNA
- e. Other structures to form a functional tertiary structure

9. What is true about the β ' subunit of *E.coli* RNA polymerase?

- a. It is a small polypeptide chain made by approximately 50 amino acids
- b. It is considered as a non-essential subunit
- c. Together with the α subunit they create the crab claw where DNA will remain to be transcripted
- d. It plays an important role in the nucleotide addition cycle
- e. All of the above

10. What is true about *E.coli* RNA polymerase?

- a. It can change its double-psi beta barrel (DPBB) conformation according to multiple interactions
- b. It is considered as a non-essential enzyme
- c. With only the α subunit it can create the crab claw where DNA will remain to be transcripted
- d. It plays an important role in proliferation
- e. All of the above

THANK YOU Q&A, ready, set, go!

Laura Campamà, Marcel Homet, Marc Jené and Eva Escobar STRUCTURAL BIOLOGY 01/03/2024

EXTRA INFORMATION But wait... there's more!

RNA elongation: NTP addition (catalysis)

Nucleophilic attack of a bound nucleoside 5'-triphosphate by the 3'-hydroxyl of an RNA primer = incorporation of a nucleoside monophosphate into RNA and the release of pyrophosphate

EBI Microbial Chemistry Services. EBI Metabolic Reactions Database. RNA polymerases catalyse the nucleophilic, in-line attack of a 3'-hydroxyl nucleotide on the innermost phosphate of the RNA primer, which occurs using two-metal catalysis. Accessed February 28, 2024. Available from: https://www.ebi.ac.uk/thornton-srv/m-csa/entry/788/#:~:text=RNA%20polymerases%20catalyse%20the%20nucleophilic,occur%20using%20two%2Dmetal%20catalysis.

RNAP Channels

Bacterial σ factors

Paget MS. Bacterial sigma factors and anti-sigma factors: structure, function and distribution. Biomolecules. 2015;5(3):1245-1265. doi:10.3390/biom5031245

Active and inactive conformations

Active and inactive conformations

$\sigma 54 \text{ RNAP closed}$

 σ 54 RNAP intermediate

Active and inactive conformations

σ 54 RNAP intermediate

Triad Acid binding site not on position 460 in the alignment.

		221	231	241	251	261	271	281
Consensus	-							
Conservation								
T_aquaticus 1L9U_1		PRRVRVDYLR	KERAALRIPL	SAWVEKEAYR	PGEVLAELSE	PYLFRAEESG	VVELKDLAEG	HL
B_subtilis 6WVJ_1	-							
Strep_venezuelae 8DY9_1	2	AKKLENDLGE	LEAEGAKADV	RRKVREGAER	EMKQLRDRAQ	REIDRLDEVW	SRFKNLKVQD	LE
Strep_coelicolor 7X74_1	2	AKKLETDLAE	LEAEGAKADV	RRKVREGAER	EMKQLRDRAQ	REIDRLDEVW	NRFKNLKVQD	LE
M_tuberculosis 7Q4U_1	2	AQKLEADLAE	LEAEGAKADA	RRKVRDGGER	EMRQIRDRAQ	RELDRLEDIW	STFTKLAPKQ	LI
E_coli 7MKP_1	•							
P_aeruginosa	-							
X_oryzae 6J9E_1	-							
F_tularensis 6WMP_1	•							
P_gingivalis 8DKC_1	-							

T. aquaticus has insertions in the β ' sequence.

	751
Consensus	NADFDGDQMA
Conservation	
Escherichia	NADFDGDQMA
Pseudomonas	NADFDGDQMA
Mycobacterium	NADFDGDQMA
Thermus	NADFDGDQMA

chain D	1 MKDLLKFLKAQTKTEEFDAIKIALASPDMIRSWSFGEVKKPETINYRTFK	
chain D	51 PERDGLFCARIFGPVKDYECLCGKYKRLKHRGVICEKCGVEVTQTKVRRE	
chain D	101 RMGHIELASPTAHIWFLKSLPSRIGLLLDMPLRDIERVLYFESYVVIEGG	
chain D	151 MTNLERQQILTEEQYLDALEEFGDEFDAKMGAEAIQALLKSMDLEQECEG	ļ
chain D	201 LREELNETNSETKRKKLTKRIKLLEAFVQSGNKPEWMILTVLPVLPPDLR	
chain D	251 PLVPLDGGRFATSDLNDLYRRVINRNNRLKRLLDLAAPDIIVRNEKRMLG	
chain D	301 EAVDALLDNGRRGRAITGSNKRPLKSLADMIKGKQGRFRQNLLGKRVDYS	
chain D	351 GRSVITVGPYLRLHQCGLPKKMALELFKPFIYGKLELRGLATTIKAAKKM	
chain D	401 VEREEAVVWDILDEVIREHPVLLNRAPTLHRLGIQAFEPVLIEGKAIQLH	
chain D	451 PLVCAAY <mark>NADFDGDQ</mark> AAVHVPLTLEAQLEARALMMSTNNILSPANGEPII	
chain D	501 VPSQDVVLGLYYMTRDCVNAKGEGMVLTGPKEAERLYRSGLASLHARVKV	

Inhibitor: Rifampin (Antibiotic)

3.240Å

5UAC 3.80Å

		651	661	671	
Consensus	= (G SSQL <mark>SQ</mark> FMDQ	nNPLSeITHK	RRISAL	3
Conservation					
Strep_venezuelae 8DY9_1	1	G TSQLSQFMDQ	NNPLSGLTHK	RRLSAL	
Strep_coelicolor/7X74_1	= 0	G TSQLSQFMDQ	NNPLSGLTHK	RRLNAL	
M_tuberculosis 7Q4U_1	= (G TSQLSQFMDQ	NNPLSGLTHK	RRLSAL	
B_subtilis 6WVJ_1	F (G SSQLSQFMDQ	TNPLAELTHK	RRLSAL	ĝ
T_aquaticus 1L9U_1	19	S RSQLSQFKDE	TNPLSSLRHK	RRISAL	
E_coli 7MKP_1	= 0	G SSQLSQFMDQ	NNPLSEITHK	RRISAL	
P_aeruginosa	= 0	G SSQLSQFMDQ	NNPLSEITHK	RRVSAL	
X_oryzae 6J9E_1	E	G SSQLSQFMDQ	NNPLSEVTHK	RRVSAL	ŝ
F_tularensis 6WMP_1	= 1	T SGALSQFMDQ	DNPLSEVTHK	RRISAL	
P_gingivalis 8DKC_1	= 0	G TNALSQFMDQ	TNPLAEITHK	RRLSAL	